
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Computer simulations of a heterogeneous
membrane with enhanced sampling techniques

Cite as: J. Chem. Phys. 153, 144110 (2020); doi: 10.1063/5.0014176
Submitted: 18 May 2020 • Accepted: 23 September 2020 •
Published Online: 13 October 2020

Yevhen K. Cherniavskyi,1 Arman Fathizadeh,2 Ron Elber,2,3,a) and D. Peter Tieleman1,a)

AFFILIATIONS
1Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary,
Alberta T2N 1N4, Canada

2The Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
3Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA

Note: This paper is part of the JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,
Force Fields, and Applications.
a)Authors to whom correspondence should be addressed: ron@oden.utexas.edu and tieleman@ucalgary.ca

ABSTRACT
Computational determination of the equilibrium state of heterogeneous phospholipid membranes is a significant challenge. We wish to
explore the rich phase diagram of these multi-component systems. However, the diffusion and mixing times in membranes are long compared
to typical time scales of computer simulations. Here, we evaluate the combination of the enhanced sampling techniques molecular dynamics
with alchemical steps and Monte Carlo with molecular dynamics with a coarse-grained model of membranes (Martini) to reduce the number
of steps and force evaluations that are needed to reach equilibrium. We illustrate a significant gain compared to straightforward molecular
dynamics of the Martini model by factors between 3 and 10. The combination is a useful tool to enhance the study of phase separation and
the formation of domains in biological membranes.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0014176., s

I. INTRODUCTION

Biological membranes are complex environments that function
as a semi-permeable barrier between the cell interior and the exter-
nal environment. They consist of phospholipids, cholesterol and
protein molecules, and more. The membrane components assem-
ble into microphases and nanodomains and regulate cell function.
According to the raft hypothesis, lateral inhomogeneity of the lipid
membranes plays a key role in cell signaling, protein aggregation,
and membrane fusion.1

A number of experimental techniques such as x-ray and neu-
tron scattering,2,3 nuclear magnetic resonance (NMR),4 and oth-
ers5 provide structural data on lipid membranes. Despite signifi-
cant progress, studying the structure of biological membranes at
molecular resolution remains a challenging task due to the disor-
dered and fluid characteristics of these systems. Scattering-based
techniques can directly probe the spatial organization of lipid

membranes without introducing additional probes that alter the
membrane structure.6 However, the scattering signal is a spatial and
temporal average over many fluid structures, leading to a smooth
and less detailed signal. The averaging and separation of signals
is even more difficult in mixed membranes with multiple types of
phospholipids.7

The rapid growth in the power of computers and the devel-
opment of simulation methodology has significantly increased the
use of computer simulations for the study of lipid membranes.8–10

Recently, a state-of-the-art realistic model of the plasma membrane
that contains more than 60 types of phospholipids was developed.11

Nevertheless, sampling the equilibrium distribution of constituents
of heterogeneous membranes remains computationally challenging.
The key problem is the slow diffusion of phospholipids in the mem-
brane plane that prevents efficient mixing at time scales accessible
for Molecular Dynamics (MD). One approach to reducing the com-
putational cost is to use a coarse-grained description of lipids, such
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as the Martini model.12 On average, the Martini model represents
four heavy atoms as a single particle or a bead. The reduction in the
total number of particles compared to atomistic force fields leads
to a significant gain in speed. Moreover, the removal of the fast
degrees of freedom (e.g., vibrations of atomic bonds) enables the use
of larger time steps and diminishes thermal noise and friction. The
diffusion coefficient is D = kBT/γ, where kB is the Boltzmann con-
stant, T is the temperature, and γ the friction coefficient. Hence, the
diffusion is faster when the friction coefficient is smaller. The effec-
tive speedup of the diffusion within the Martini model (∼4–5 times
faster than in atomistic models and experiments) was documented
in the literature.12–14 However, even with the significant speedup
compared to atomistic models, reaching equilibrium of large het-
erogeneous membranes with classic MD and the Martini force field
is computationally expensive.

Recently, a sampling approach that combines MD with Monte
Carlo (MC) approaches in the grand canonical ensemble was pro-
posed. The method is particularly suitable for the simulation of
heterogeneous lipid membranes in which the different lipids are
quite similar.15 The system is sampled by alternating steps of (1) a
straightforward MD step in the microcanonical or canonical ensem-
ble and (2) an MC move that replaces a phospholipid by another
phospholipid of a different type. A random lipid is selected for such
an alchemical transformation. If the MC move is accepted follow-
ing the usual Metropolis criterion, the lipid molecule is modified
to its lipid counterpart (for example, from DPPC to DPPS). The
MD/MC approach is not bound by the slow lateral diffusion of
lipids, and phase separation and mixing are potentially sampled
more efficiently than straightforward MD. The challenge with the
MC approach is that the lipid types must be similar for the MC move
to be accepted with a reasonable probability. Because the accep-
tance is typically low in Monte Carlo with Molecular Dynamics
(MC-MD) in membranes, many trials are needed. To increase the
number of trials for a fixed number of force evaluations only a sin-
gle or a few MD steps separate two MC steps. The extraction of
kinetic information (such as the diffusion constant) is not possible
in this approach. The rapid transitions between MD and MC moves
may also lead to hysteresis, and the sampling may deviate from the
desired equilibrium. In addition, as the main goal of this approach
is to enhance the sampling of mixing lipids, the procedure has to
be more efficient than straightforward MD to be of any practical
use.

Optimizing trial MC moves to achieve higher acceptance prob-
abilities allows longer MD trajectories between the MC moves and
better relaxation to equilibrium. It also makes it possible to extract
short time kinetic information, such as local diffusion constant.
Therefore, a new algorithm was proposed: Molecular Dynamics with
Alchemical Steps (MDAS).16 Instead of performing the exchange in
a single MC move, we conduct a gradual growth of the two lipids
into their counterparts, relying on the Jarzynski equality,17 and the
algorithm for candidate Monte Carlo moves18 to obtain the correct
statistics. This exact approach significantly increases the acceptance
probability of the MC move. Instead of modifying a single phos-
pholipid, an exchange of a pair of phospholipids of different types
is considered, which ensures a fixed composition.

The MDAS algorithm generates steps that are more likely to
be accepted than conventional MC moves. However, if the interac-
tions of the exchanged phospholipids with their environments are

FIG. 1. DPPC and DPPS lipid molecules in the Martini model. On average four
heavy atoms with corresponding hydrogens are represented as one bead. Different
bead types are marked on the figure and highlighted with different colors. The only
difference between DPPC and DPPS lipid molecules in the Martini force field is the
type of one headgroup bead.

significantly different, the gradual modification of the molecules can
be inefficient. An example of a challenge for atomically detailed sim-
ulation, which is discussed in Sec. IV, is the pair of PS and PC
phospholipids. PC is neutral, while PS is negatively charged. There-
fore, the electrostatic interactions impact the rate of relaxation to
equilibrium, leading to many rejected MC-MD and MDAS steps.
This makes the efficient use of this procedure a challenge for atom-
istic simulations. However, this problem may not be present in
the coarse-grained model of Martini. The mutation of PS to PC in
Martini adjusts one bead (the head group) with only short-range
interactions (Fig. 1).

Here, we explore the use of the MDAS and MC-MD algorithms
specifically for the sampling of a lipid mixture with the Martini
force field. We test the performance of the algorithm with a binary
DPPC/DPPS mixture and benchmark it against straightforward MD
and MC-MD approaches. For comparison, we also carry out the
atomistic equivalent.

II. THEORY
A. MDAS and MC-MD

In the current paper, we use three approaches for the simula-
tion of the system—straightforward MD, MC-MD, and MDAS. The
MC-MD simulation is conducted as a series of alternating straight-
forward MD steps and MC lipid exchange moves. We randomly
select a pair of different types of phospholipid molecules (e.g., one
DPPC and one DPPS molecule) and change the chemical identity
of the two lipids. Then, we either accept or reject the proposed MC
move based on the Metropolis criterion,

Paccept = min[1, exp(−ΔU
kT
)],

ΔU = U(r1, . . . , ri, . . . , rj, . . .) −U(r1, . . . , rj, . . . , ri, . . .),
(1)
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where ΔU is the energy difference before and after the trial move, ri
and rj are the coordinates of the selected pair of lipids, respectively,
k is the Boltzmann constant, and T is the temperature. If the move
is accepted, we continue with an MD trajectory starting from the
new state. If the move is rejected, we go back to the state before the
exchange attempt and run a straightforward MD step.

The MDAS algorithm substitutes a single-step MC move with
a gradual adjustment, which is computed using an alchemical tra-
jectory (AT).16 During the AT, the selected phospholipid molecules
change into their counterparts (e.g., DPPC to DPPS and vice versa).
MDAS simulation consists of (1) straightforward MD trajectories
for sampling and (2) “alchemical” trajectories (AT) that modify the
phospholipids and generate candidate MC moves.18,19 The AT is
similar to the alchemical methods used to determine the free energy
difference between two states.20,21 Like in a free energy calculation,
the AT path is parameterized with λ ∈ [0, 1]. When λ = 0, we are at
the beginning of the attempted exchange, and when λ = 1, at the end
of it. The potential energy along the AT, U(R, λ), is a function (λ).
The dependence of the potential on λ is the choice of the user. The
simplest implementation is linear. For an exchange of a system A to
a system B, we have U(λ) = (1 − λ)UA + λUB. We conduct the AT as
follows: We run M steps of straightforward MD at a fixed value of λ
and then increase λ by a small Δλ in a single step. Starting with λ = 0,
the M steps and the increase in λ are repeated until λ is equal to 1.
The work done on the system during the entire AT is

w(λ = 0→ λ = 1) =∑i (Uλi+Δλ(xi) −Uλi(xi)), (2)

where xi are the system coordinates after i repeats of the M steps.
The total work is used in an acceptance–rejection criterion of the
AT move16,19 similar to Metropolis [Eq. (1)],

Paccept = min[1, exp(−w
kT
)]. (3)

If the move is accepted, we continue the simulation from the last
configuration of the state λ = 1 (the lipids are exchanged) and pro-
ceed with another segment of a straightforward MD trajectory. If
the move is rejected, we discard the AT and continue from the last
step of the previous straightforward MD segment. Thus, the entire
MDAS simulation consists of a series of short conventional MD tra-
jectories and exchange steps (AT) in between. We use only the con-
ventional MD segments to calculate the thermodynamic properties
of the system.

In the current paper, we use two force fields to study the
DPPC/DPPS lipid mixture—coarse-grained Martini force field and
atomically detailed CHARMM36 force field. In the simulations with
the Martini model, an exchange move consists of changing the
chemical identity of a single headgroup particle (bead) that corre-
sponds to the transition of the type P5 bead of DPPC to type Q0 bead
of DPPS (Fig. 1). The change is performed by the modification of the
VdW interaction parameters and charge without any particles van-
ishing or new particles appearing. With the atomistic CHARMM36
force field, an exchange move requires a swap between the choline
group of DPPC and the serine group of DPPS, which involves mul-
tiple atoms (Fig. 2). In contrast to the Martini case, this transition

FIG. 2. Structures of DPPC and DPPS lipid molecules with required alchemical changes in the atomically detailed MDAS simulations.
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involves appearance/disappearance of atoms. In both models, the
remaining parts of the lipid molecules are left unperturbed during
an exchange move.

The specific MDAS choice of Δλ = 1 and M = 0 is equivalent
to a single-step MC exchange. In MDAS, the role of the AT trajec-
tory is to allow the system to relax. A gradual exchange with Δλ ∼
0.001–0.01 yields significantly lower work compared to the direct
MC exchange, as it produces less steric overlap and corresponding
high energies. Therefore, the MDAS steps in the atomically detailed
models are accepted with a much higher probability than direct MC.
However, if the two types of phospholipids are similar (as DPPC and
DPPS are in Martini), the additional cost of computing AT vs direct
MC is not a priori an improvement and testing is required.

III. METHODS
The simulations were performed with the standard Martini 2.2

force field,22 with and without polarizable water.23 The electrostatic
interactions were modeled with the reaction-field method.24 The
screening constant was 15 and 2.5 for non-polarizable and polariz-
able water, respectively. The cutoff distance of the vdW interactions
was at 1.1 nm with a potential-shift modifier. All the simulations
were conducted at 335 K. The temperature was fixed with velocity
rescaling25 with 1.0 ps coupling constant and two separate coupling
groups for the membrane and the solvent. A semi-isotropic (xy and
z directions) Parrinello–Rahman barostat26 maintains a constant
pressure of 1.0 bar with the coupling constant of 12.0 ps. Integra-
tion was performed with the Verlet algorithm with a 20 fs time
step. Standard MD simulations were performed with GROMACS
2019.1.27,28

MDAS and MC-MD simulations were conducted with GRO-
MACS 2019.1. All of the required free energy code is already avail-
able in GROMACS and the only change in the code was a hard-
coded optimization to maintain lambda at the same value for n steps
instead of the default options of a constant lambda or a lambda
that changes linearly every step. For this proof of concept study,
GROMACS was called a new process for every MD part and a
number of scripts were used to parse the necessary energy and other

information. For production use, a more integrated code is devel-
oped. A 1:1 mixture of DPPC and DPPS (200 DPPC and 200 DPPS
molecules, 100 molecules of each type per monolayer) was consid-
ered. The system was solvated with 5815 Martini water beads and
265 Na+ and 65 Cl− ions were added to the system. Because the
differences in Martini between DPPC and DPPS are small (Fig. 1),
a short AT of 1000 steps was sufficient. The parameter λ is mod-
ified every ten steps, hence, Δλ = 0.01. After 1000 steps, the total
work is computed and the proposed move is accepted or rejected.
Then, we sample another 2000 steps of straightforward MD before
attempting another AT. The same approach was used for the MC-
MD sampling scheme, but the AT is a single step (Δλ = 1.0). To
compare different methods on equal footing, we consider the num-
ber of force evaluations used per number of sampled configurations.
The cost of a single attempt of MDAS exchange is 3000 force evalu-
ations (2000 straightforward MD and 1000 AT steps), and it is 2001
force evaluations for a single exchange attempt in MC-MD.

For comparison, we also run an atomistic MDAS simulation
for the DPPS/DPPC system using the program NAMD29 and the
CHARMM36 force field.30 We had considerable success in the past
in simulating a mixture of DOPC and DPPC,16 which only differ
in their tails. We show in Fig. 2 the required alchemical changes
in the atomically detailed MDAS simulations. There are 26 atoms
that require modifications, which is a considerably more complex
task than the single-particle exchange of Martini or our previous
DOPC/DPPC test case. As noted earlier, changes in the electrostatic
interactions within the atomic models pose an additional and signif-
icant challenge to MDAS. The assigned charges of the phospholipids
are of the CHARMM 36 force field31 that was used in the atomistic
simulations. We consider a 1:1 binary mixture of DPPC and DPPS.
The bilayer consists of 200 phospholipids and is solvated with TIP3P
water molecules.32 100 potassium ions were added to neutralize the
system. The entire system contains ∼50 000 atoms. The membrane
was first equilibrated in the NPT ensemble for 10 ns, which was
followed by 10 ns NVT simulation.

To examine the efficiency of MDAS, we conducted 100 AT
attempts. Each AT was for a total length of 100 ps with Δλ = 0.001.
During an AT, the system was simulated in the NVT ensemble with a

FIG. 3. Top view and side view of the DPPC/DPPS bilayer used as a test system. DPPC lipid molecules are shown in dark blue and DPPS lipid molecules in orange. Water
is represented as blue dots.
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FIG. 4. The evolution of max[g(r)] for the DPPS PO4 beads for the system
with non-polarizable Martini water. Orange line—system sampled with the MDAS
algorithm; turquoise—straightforward MD; light blue—MC-MD approach. Solid
dark green (MD), wine (MDAS), and blue (MC-MD) lines represent exponential
fits.

Langevin thermostat. To avoid the so-called end-point catastrophe,
we used a soft-core potential with the following form to treat the van
der Waals interactions during the exchange:33

Usoft(rij) = 4ελ
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, (4)

where δ = 5.0 nm2, and λ changes from 0 to 1 during the alchem-
ical step. Note that at λ = 1, the above expression turns into the
6-12 Lennard-Jones potential and the interaction vanishes at λ = 0.
The time step was 1 fs in all the atomistic simulations. In the all-
atom case, we used a dual topology scheme. We select a DPPS and
a DPPC randomly and replace them with a dummy molecule that
has a combination of PS/PC headgroups. Then, these molecules
are being evolved with MDAS to make the exchange between the
molecules. The velocities of the dummy atoms are selected randomly
from the Maxwell distribution according to the desired temperature
of the system. The bonded interactions of the dummy atoms do not
change the statistics of the system and do not contribute to the work.
If the move gets accepted, the dummy atoms and bonds are removed
and a regular MD simulation is conducted before trying the next
MDAS move.

IV. RESULTS
We use the 1:1 DPPC/DPPS lipid mixture as our test sys-

tem for sampling efficiency. We simulate the Martini model using
MDAS, mixed MD-MC, and straightforward MD. The atomically
detailed calculations were attempted with MDAS. The initial state
of the system was of separated DPPC and DPPS molecules (Fig. 3),
which is far from the equilibrium of a uniformly mixed mem-
brane. The radial distribution function g(r) of the PO4 beads
of DPPS (or DPPC) phospholipids monitors mixing as a func-
tion of time. We have shown in Ref. 16 that the highest peak
of the pair correlation function max[g(R)] is a good measure of
the relaxation and is comparable to the alternative measure of
mixing entropy.34 As the mixing occurs, max[g(r)] approaches
a constant value of the uniform mixing of the two phospho-
lipid types. To obtain a quantitative estimate of the relaxation
rate, the evolution of max[g(r)] is fitted with an exponential
function.

With the current choice of parameters for MDAS moves, the
acceptance probability is about 29%. Figure 4 shows the time evo-
lution of max[g(r)] for DPPS–DPPS PO4 beads as a function of the
number of force evaluations. The fit of an exponential function to the
evolution of max[g(r)] gives ∼11.3 ± 0.4 times speedup for the sys-
tem mixing compared to straightforward MD. If we use the mixed
MD-MC sampling scheme, which is equivalent to MDAS with an
AT of a single step, the acceptance probability is about 16%. An
exponential fit of max[g(r)] as a function of the number of force
evaluations suggests ∼10.1 ± 0.2 speedup of the mixing dynamics
compared to sampling by straightforward MD. Figure 5 shows snap-
shots of the top view of the lipid bilayer simulated with MD, MDAS,
and MC-MD. After 2 × 106 force evaluations in a straightforward
MD simulation, the bilayer is far from laterally homogeneous. At
the same time, after 660 MDAS steps or 1000 MC-MD steps, which
correspond to 2 × 106 force evaluations, the two lipid types are well
mixed.

To further explore the performance of the different sampling
schemes with different parameterization, we simulated the same
Martini system with polarizable water. As in the previous case, we
benchmark MDAS and MD-MC methods against straightforward
MD. With MDAS, we obtain 9% acceptance probability for the
DPPC/DPPS exchange move, which translates into ∼2.5 ± 0.1 times
speedup compared to straightforward MD (Fig. 6). After 10 000
attempts, we did not accept a single exchange move with MD-MC

FIG. 5. Top view of the DPPC/DPPS bilayer after 2 × 106 MD steps, 660 attempted MDAS moves, and 1000 MC-MD moves. DPPC lipid molecules are shown in dark blue
and DPPS lipid molecules in orange. Water molecules are not shown for clarity.
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FIG. 6. The evolution of max[g(r)] for the DPPS PO4 beads for the system with
polarizable Martini water. Orange line—system sampled with the MDAS algorithm;
turquoise—straightforward MD. Solid dark green (MD) and wine (MDAS) lines
represent exponential fits.

sampling. From the work values we estimate the average acceptance
probability as 8.8 × 10−5.

The distribution of work for different setups with the Mar-
tini force field considered here are shown in Fig. 7. A break-
down of the contributions of the VdW and Coulomb interactions

to the total work for a typical MC-MD or MDAS exchange
step indicates that for MDAS without polarizable water, ∼67%
(0.43 kcal/mol) of total work comes from Coulomb interactions and
33% (0.20 kcal/mol) from VdW. MDAS with polarizable water gives
90% (3.49 kcal/mol) of work from Coulomb interactions and 10%
(0.36 kcal/mol) from VdW. With MC-MD, we see a similar trend
toward a significant increase in the weight of Coulomb interactions
in the total work during an exchange move: 16% (1.07 kcal/mol) of
work comes from Coulomb interactions and 84% (5.48 kcal/mol)
from VdW with the non-polarizable water model. With polar-
izable water, MC-MD work shows 95% (26.91 kcal/mol) contri-
bution from Coulomb interactions and 5% (1.38 kcal/mol) from
VdW.

For comparison, we also attempted to simulate the mixing
of the DPPC/DPPS system using an atomically detailed MDAS
model. We evaluated 100 AT steps of length of 100 ps (each) using
Δλ = 0.001. The length of the straightforward MD trajectories
between AT attempts was 100 ps as well. In Fig. 8, we show a
histogram of the work values obtained from the AT trajectories.
The distribution is broad and includes high work values, which
makes the acceptance probability less than 10−5 and impractical for

FIG. 7. Work distribution for different types of exchange moves: MDAS (left panels) and MC-MD (right panels). Top panels (a) are the non-polarizable water in the Martini
model and bottom panels (b) polarizable water.
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FIG. 8. Histogram of the work values evaluated from alchemical trajectories with
an atomistic force field.

the current AT path. For a typical exchange move, the Coulomb
interactions contribute ∼79% (16.2 kcal/mol) of the total work and
VdW contribution is 21% (4.3 kcal/mol).

For qualitative analysis, we have calculated time courses for the
relaxation of different energy terms in MDAS and in the atomically
detailed simulations (Figs. 9 and 10). For the atomistic model, the
electrostatic interactions are much slower to relax than the van der
Waals interactions (Fig. 9). For the Martini examples, we observe the
same trend—the electrostatic interactions decay much slower than
the van der Waals interactions with the AT trajectory length for both
non-polarizable (Fig. 10, top panel) and polarizable water models
(Fig. 10, bottom panel).

FIG. 9. Time evolution of work as a function of the AT length for the atomically
detailed model.

FIG. 10. Time evolution of work as a function of the AT length for the Martini model
with normal (top) and polarizable (bottom) water models.

V. DISCUSSION
The Martini model offers an efficient approach to sample mem-

brane configurations by reducing the number of particles and using
smoother energy landscapes compared to the atomistic models.
It enables the study of heterogeneous membranes, assembly, and
separation. However, the enormous diversity of biological mem-
branes and their sheer sizes pose a significant challenge for converg-
ing straightforward MD simulations, even with the Martini model.
MDAS enables a speedup of ∼1000 for specific atomistic systems.16

However, there are lipid compositions that are difficult to simulate
with atomically detailed MDAS models. The challenge in MDAS
simulations is the design of the AT such that the amount of work is
minimal and lead to significant acceptance probability. For example,
an efficient acceptance probability when using ∼100 ps trajectories
of straightforward Molecular Dynamics is about 10%. This design is
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difficult for the exchange of phospholipids with different charges, as
we illustrated in this manuscript for the DPPC/DPPS system. The
charge and the membrane electric field in atomically detailed mod-
els relax slowly to the new equilibrium imposed by the exchange.
Here, we have shown that the combination of Martini and MDAS
is promising. The simplified description of the electrostatic interac-
tions and the smaller differences between two different lipid topolo-
gies facilitate the design of exchange pathways and a high acceptance
rate of transformation steps (Figs. 7 and 8). The design of an effi-
cient AT for diverse pairs of phospholipids is a topic of ongoing
research.

We compared straightforward MD and MDAS calculations for
an atomistic model and the standard and polarizable Martini mod-
els. MDAS has the potential to be significantly advantageous com-
pared to straightforward MD (Figs. 4 and 6), in particular for the
standard Martini model. The efficiency of the MDAS algorithm can
be evaluated by the computed work distributions from exploratory
ATs (Figs. 7 and 8). An acceptance probability of the order of or
greater than 10% allows for straightforward MD trajectories of about
100 ps long between ATs. If the acceptance probability is below this
threshold, straightforward MD is likely more efficient.

What types of AT generate small values of work? In our experi-
ence, modifications of the hydrocarbon chain (lengths, or single and
double bond along the lipid chain) are good candidates for an MDAS
calculation in atomic detail. A modification of the head group is
more challenging for atomically detailed models, both compared to
standard MD and compared to Martini (Figs. 7 and 8). For phos-
phate head groups of different charges, an efficient AT is hard to
find. Similarly, an inefficient MC-MD move is found in the Mar-
tini model that incorporates electrostatics of water [Fig. 7(b), right
panel].

The DPPC/DPPS Martini system with polarizable water is an
interesting example in which the MC-MD algorithm (or a single step
AT) is not very efficient. In the non-polarizable case, the charged PS
headgroups interact electrostatically only with the ions as the water
beads in the Martini model are not charged. However, more electro-
static interactions are present when the polarizable water model is
used. The water model includes an induced dipole that interacts with
the charges of the head group. When we switch from PC to PS in a
single step, the electrostatic interactions of the PS groups with water
molecules contribute to a significant energy difference between the
exchanged states, which amounts to 95% (26.9 kcal/mol) of the total
work done during an exchange (see the breakdown of the different
contributions to the total work in Sec. IV). As a result, the average
acceptance probability in MC-MD is ∼8.8 × 10−5. However, if we
simulate the transition between the PS/PC headgroup gradually with
an AT, the work of the transition is reduced [Fig. 7(b), left panel],
which translates into a higher acceptance probability of the proposed
exchange move. The electrostatic interaction still contributes up to
90% of the total work in this case, but the contribution amounts to
∼3.5 kcal/mol in contrast to 26.9 kcal/mol with MC-MD for a typical
exchange move. The VdW contribution to the total work is increased
in the absolute value in the case of polarizable water for MDAS (from
0.20 kcal/mol to 0.36 kcal/mol) and decreased for MC-MD (from
5.47 kcal/mol to 1.37 kcal/mol), but the total work is still dominated
by the electrostatic interactions. As the only source of new charges
in the setup with polarizable water, compared to the non-polarizable
case, is the dipoles of the water beads, we attribute the difference

between work with MDAS and MC-MD to the ability of polarized
water molecules to readjust during AT and have sufficient time to
lose their transient dipoles.

An interesting application of the sampling methods of phos-
pholipid mixtures would be an investigation of the asymmetric lipid
bilayers. One can propose an AT that would exchange lipids between
different layers. Since the flip/flop movements between the bilayers
are an activated process with a significant barrier, such a move can
greatly increase the equilibration rate. Of course, one should keep
in mind that the membrane asymmetry is maintained in the bio-
logical systems by non-equilibrium processes, including ATP and
gradient-powered transporters, and a true equilibrium may not be
desired in such cases. However, for the investigation of synthetic sys-
tems, which may still be asymmetric, the MDAS algorithm and the
Martini model are promising.

VI. CONCLUSIONS
In the current paper, we explored the possibility of using the

exchange-based MDAS and MC-MD algorithms for the efficient
sampling of mixed lipid bilayers within the Martini and atomically
detailed models. The model system is a binary 1:1 DPPC/DPPS mix-
ture that illustrates how the advanced sampling approaches within
the Martini force field can significantly increase the sampling and
open new possibilities for simulations of large multi-component
lipid mixtures. For the relatively small system considered in this
paper (400 lipid molecules), the speedup factor can be as large
as 11. In the case of the Martini model with polarizable water,
the MC-MD approach yields low acceptance probabilities, mak-
ing sampling with this approach inefficient. However, the MDAS
method still provides up to 2.5 times speedup for the same setup.
For exchange moves with small energy modifications, the use of
the basic MC-MD sampling scheme might be a desirable approach.
However, for more complex exchange moves that require substan-
tial adjustments of the system, the MDAS algorithm is more efficient
compared to the MC-MD approach. The importance of the proper
design of an exchange move with the MDAS algorithm and the
particular advantage of a coarser representation of lipid molecules
in the Martini model is illustrated with the atomistic simulations
of a DPPC/DPPS mixture, where the energy modification during
an exchange move is significantly higher compared to the Martini
model.
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