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ABSTRACT Here, we present the complete genome sequence of the Bacillus subtilis
strain SP1. This strain is a descendant of the laboratory strain 168. The strain is suit-
able for biotechnological applications because the prototrophy for tryptophan has
been restored. Due to laboratory cultivation, the strain has acquired 24 additional
sequence variations.

he Bacillus subtilis strain SP1 is a descendant of the highly transformable laboratory

strain 168. After the creation of B. subtilis strain 168 by X-irradiation, the strain
developed genetic competence under laboratory conditions (1) and through this
became a model bacterium for basic and applied research (2, 3). The plasmid-free strain
was also subjected to genome reduction in order to identify the genes required for
growth under defined conditions (4-6). However, the X-ray treatment made strain 168
auxotrophic for tryptophan due to a 3-bp deletion in the trpC gene (7, 8). The trpC gene
encodes indole-3-glycerol phosphate synthase, which catalyzes an essential step in the
de novo synthesis of tryptophan. The tryptophan prototrophy in the B. subtilis strain SP1
was restored by transforming strain 168 with a DNA fragment containing the wild-type
trpC gene of the B. subtilis Marburg strain ATCC 6051 (9). The simplified medium
requirements make strain SP1 suitable for industrial applications like vitamin produc-
tion (9, 10) and basic research like examining the influence of substances that inhibit
the biosynthesis of the aromatic amino acids phenylalanine, tryptophan, and tyrosine
(11). To uncover all sequence variations between strain 168 and strain SP1 that might
have occurred during the construction of SP1 (9), we have sequenced its genome.

The chromosomal DNA was isolated from growing cells using a commercially available
kit (peqGOLD bacterial DNA kit; VWR International GmbH). lllumina (San Diego, CA, USA)
paired-end sequencing libraries were generated with the Nextera XT DNA sample prepa-
ration kit and sequenced with the MiSeq system and reagent kit v.3 (2 X 300bp) as
recommended by the manufacturer (lllumina). Base calling was performed with MiSeq
Control Software v.2.6.2.1. Default parameters were used for all software unless otherwise
specified. The paired-end reads obtained (2.4 million) were quality processed and adapter
trimmed with Trimmomatic v.0.39 (12). The 2.3 million high-quality paired-end reads
recovered were used for single-nucleotide polymorphism analysis with Geneious Prime
v.2020.0.5 (Biomatters, Ltd., Auckland, New Zealand) employing the genome of strain 168
(GenBank accession number NC_000964), as described (13, 14). Sequence deviations,
identified with an average coverage of 135-fold and a minimum variant frequency of
0.98, confirmed the recovery of the trpC locus in strain SP1, which is responsible for its
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TABLE 1 Sequence variations identified in B. subtilis SP1 with respect to strain 168

Position? Mutation Locus® Annotation

165748V165749 A1 bp HWV68_00950 — / — HWV68_00955 Intergenic

165749V165750 A1 bp HWV68_00950 — / — HWV68_00955 Intergenic

165824 +C HWV68_00955 — tRNA-Asn

166037 +T HWV68_00965 — / — HWV68_00970 Intergenic

166343V166344 A1 bp HWV68_00980 — / — HWV68_00985 Intergenic

557864 (T)5—6 HWV68_02905 — / — HWV68_02910 Intergenic

608214 (A)5—6 HWV68_03190 < / < HWV68_03195 Intergenic

1317153...1317154 +GT HWV68_06830 — / <— HWV68_06835 Intergenic

1317156 (T)5—6 HWV68_06830 — / <— HWV68_06835 Intergenic

2097084 (A)7—8 HWV68_10440 <— / < HWV68_10445 Intergenic

2271428 T—C HWV68_11655 «— UV damage repair protein (R78R [AGA—AGG])

2271509 C—T HWV68_11655 «— UV damage repair protein (V51V [GTG—GTA])

2271527 A—C HWV68_11655 < UV damage repair protein (D45E [GAT—GAG])

2374563...2374565 +AAT HWV68_12285 «— Indole-3-glycerol phosphate synthase (trpC)

2480653...2480654 2 bp—AT HWV68_12900 — / <— HWV68_12905 Intergenic

2480660V2480661 A1 bp HWV68_12900 — / <— HWV68_12905 Intergenic

2480672V2480673 A1 bp HWV68_12900 — / <— HWV68_12905 Intergenic

2581732 (Me6—7 HWV68_13485 < / <— HWV68_13490 Intergenic

3010788 G—A HWV68_15835 «— SDR family oxidoreductase (T2161 [ACA—ATA])

3391682 A—G HWV68_17820 — Spore germination receptor protein GerAA
(T299A [ACA—GCA])

3391691 T—C HWV68_17820 — Spore germination receptor protein GerAA
(S302P [TCC—CCC))

3770065 (A)8—9 HWV68_19710 < / < HWV68_19715 Intergenic

3935829...3935830 A1 bp HWV68_20570 — / <— HWV68_20575 Intergenic

4095817 C—T HWV68_21345 < GNAT family N-acetyltransferase (V9I [GTA—ATA])

4155397 (A)5—6 HWV68_21665 < / < HWV68_21670 Intergenic

@ Coordinates refer to the position in the genome sequence of B. subtilis SP1 (GenBank accession number CP058242.1). V indicates a deleted base between the
coordinates of the SP1 genome. Dots connecting coordinates indicate a range of inserted bases. Point mutations and single insertions are indicated with specific

coordinates.
b The arrows indicate the gene directions.

prototrophic phenotype, and revealed 24 additional genome modifications, which are
summarized in Table 1. The identified sequence deviations were applied to the genome
sequence of strain 168, which resembles the genome of strain SP1. The final genome
sequence of SP1 was extracted with Geneious Prime v.2020.0.5 (Biomatters, Ltd.) and
cross-verified with breseq v.0.35.1 (15) to ensure genome consistency and to confirm
the absence of structural rearrangements. The single circular genome of SP1 resembled
the genome of the ancestor strain 168 in all genetic properties except for the genome
size, which was 7 bp larger for SP1, with 4,215,613 bp. Automated gene annotation was
carried out by the Prokaryotic Genome Annotation Pipeline (PGAP) (16).

Data availability. The genome sequence of the B. subtilis subsp. subtilis strain SP1
has been deposited in GenBank under the accession number CP058242.1. The raw
sequence reads have been submitted to the NCBI Sequence Read Archive (SRA)
database (17) under the accession number SRR12076664. The BioProject accession
number is PRINA641411, and the BioSample accession number is SAMN15352467.
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