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Abstract: Background: Virtual methodologies have become essential components of the drug 
discovery pipeline. Specifically, structure-based drug design methodologies exploit the 3D structure 
of molecular targets to discover new drug candidates through molecular docking. Recently, dual 
target ligands of the Adenosine A2A Receptor and Monoamine Oxidase B enzyme have been 
proposed as effective therapies for the treatment of Parkinson’s disease.  

Methods: In this paper we propose a structure-based methodology, which is extensively validated, for the 
discovery of dual Adenosine A2A Receptor/Monoamine Oxidase B ligands. This methodology involves 
molecular docking studies against both receptors and the evaluation of different scoring functions 
fusion strategies for maximizing the initial virtual screening enrichment of known dual ligands. 

Results: The developed methodology provides high values of enrichment of known ligands, which 
outperform that of the individual scoring functions. At the same time, the obtained ensemble can be 
translated in a sequence of steps that should be followed to maximize the enrichment of dual target 
Adenosine A2A Receptor antagonists and Monoamine Oxidase B inhibitors. 

Conclusion: Information relative to docking scores to both targets have to be combined for achieving high 
dual ligands enrichment. Combining the rankings derived from different scoring functions proved to be a 
valuable strategy for improving the enrichment relative to single scoring function in virtual screening 
experiments. 
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1. INTRODUCTION 

 Nowadays, Virtual Screening (VS) techniques have 
become an essential component of the drug discovery 
pipeline. It has been shown that employing VS can reduce 
the high requirements in terms of time and money of High 
Throughput Screening (HTS) approaches in drug discovery 
campaigns [1]. One of the benefits of incorporating VS 
approaches in drug discovery projects is that the obtained hit 
rates are higher than for HTS [2]. The successful application 
of VS methodologies has been documented elsewhere [3-8]. 
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 Two types of VS techniques can be employed: Structure-
Based VS (SBVS) and Ligand-Based VS (LBVS) [9]. SBVS 
comprises the modeling approaches requiring the knowledge 
of the three-dimensional structure of a molecular receptor. 
The three-dimensional structure of the molecular receptor is 
employed to study its possible interactions with a database of 
putative ligands. Several possible representations of the 
receptor-ligand interactions are possible and the choice of 
one more or less accurate representation is made considering 
the available computational capacities. Based on the chosen 
representation, an energetic score which estimates the 
stability of the receptor-ligand complex can be computed. 
These scores are then used to rank the compounds under 
investigation according to their probabilities of binding to 
the receptor. Molecular Docking and Molecular Dynamics 
are examples of well-known SBVS techniques [8]. 
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 Frequently, during a drug discovery campaign no 
structure is available for a molecular receptor of interest. It 
can also be the case that the drug discovery effort focuses in 
complex molecular processes for which a single molecular 
target cannot be identified. In addition, it is possible that 
large-scale SBVS cannot be reliably completed in a 
reasonable amount of time if there is a too large volume of 
chemical compounds to be processed. In these situations, 
LBVS tools such as Quantitative Structure-Activity 
Relationships (QSAR), Similarity methods, Pharmacophore 
modeling and Shape-based methods can be quite useful [9, 
10]. 

 The performance of Molecular Docking SBVS studies 
can be negatively affected by the accuracy of the scoring 
functions. Given that no scoring function can capture all the 
information relevant for the receptor-ligand binding process, 
the fusion of different scoring functions has been proposed 
as an alternative to improve the performance of SBVS 
methods [11, 12]. These applications range from general 
ones intended for obtaining the best consensus strategy for 
any SBVS problem [13-16] to others proposed for specific 
researches [17-19]. In all these reports the proposed 
ensemble (fusion) methods outperform the VS performance 
obtained with a single scoring fusion. 

 In addition, usually SBVS methodologies are evaluated 
employing only a small set of decoy molecules. In the case 
of the standard DUD-E database only 50 decoy molecules 
can be selected per ligand [20]. This ligands/decoys 
proportion is far from what is observed in a real screening 
scenario where the ratio of active molecules is ranges from 
0.01 to 0.14% [21]. To address this situation we have 
previously proposed a home-made algorithm for the 
generation of larger decoys sets resembling the ligands/ 
decoys ratio of a real screening campaign [22]. 

 On the other side, it has been reported that Parkinson 
Disease (PD) is the second commonest neurodegenerative 
disease. The symptoms of PD are related to the reduced 
levels of dopamine due to the death of dopamine neurons 
and they include bradykinesia, resting tremor and rigidity. 
PD is currently treated with levodopa which can reduce its 
efficacy over time and has many side effects [23]. This 
combination of side effects and loss of efficacy of levodopa 
makes urgent the finding of alternative therapies for PD. One 
of such alternatives is to employ the combination of different 
drugs. The drawback of multi-component therapies is that 
their pharmacokinetic and pharmacodynamics relationships 
are complex. In this sense, the discovery of molecules  
that simultaneously act on multiple receptors (multi-target) 
drugs has been proposed as alternative treatments for PD 
[24, 25]. 

 To develop multi-target drugs for PD is a recent approach 
in medicinal chemistry. These efforts have been guided by 
the combination of pharmacophore groups associated with 
the activity against different targets involved in a single 
pathology [26, 27]. One example of this kind of approach is 
the combination of the carbamate moiety of the cholinesterase 
inhibitor rivastigmine with the pharmacophore of the 
selective Monoamine Oxidase B (MAO-B) inhibitor  
 

rasagiline. This resulted in a molecule possessing MAO-B 
and cholinesterase inhibitory activities suitable for the 
treatment of PD. 

 One class of promising dual-target therapy for the 
treatment of PD is the combination of antagonism of the A2A 
adenosine receptors (A2AAR) and inhibition of MAO-B [28]. 
In this respect, the A2AAR antagonist (E)-8-(3-Chlorostyryl) 
caffeine (CSC) has been demonstrated to also inhibit MAO-
B activity at the same time that it has been shown to be 
effective in in vivo PD models [29, 30]. 9-deazaxanthine 
derivatives were also identified as dual A2AAR antagonists/ 
MAO-B inhibitors by Rivera et al., [31]. The 4H-3,1-
benzothiazin-4-one scaffold has been also explored for its 
dual target activity [32]. Hitherto, the exploration of structural 
families for dual A2AAR antagonism/MAO-B inhibition  
has been limited to 9-deazaxanthine, caffeine and 4H-3,1-
benzothiazin-4-ones scaffolds. Other structural scaffolds 
frequently used for the design of MAO-B inhibitors such as 
pyrazole, coumarin, 2-hydrazinylthiazole, chalcone, benzofuran 
and indole have not been explored for its dual-target activity 
[27, 33]. In consequence, it is needed to develop novel and 
diverse A2AAR antagonists having MAO-B inhibitory 
activity for the treatment of PD. 

 To the best of our knowledge, no theoretical study has 
been devoted to developing SBVS methodologies for the 
discovery of dual A2AAR antagonists/MAO-B inhibitors. In 
this paper we propose a structure-based methodology, which 
is extensively validated, for the discovery this type of 
molecules. The proposed methodology involves the 
molecular docking to both A2AAR and MAO-B of a set of 
25744 molecules containing 16 known dual target ligands 
and decoy molecules. The obtained docking poses are 
rescored using six different scoring functions for the two 
molecular targets. Then we investigate several aggregation 
schemes with the objective of maximizing the enrichment of 
known ligands at the beginning of the ranked list they 
produce. Finally, we show that the developed methodology 
provides high values of enrichment of known ligands, which 
outperform that of the individual scoring functions. At the 
same time, the obtained ensemble can be translated in a 
sequence of steps that should be followed to maximize the 
enrichment of dual target dual A2AAR antagonists and MAO-
B inhibitors. 

2. COMPUTATIONAL METHODS 

2.1. Receptor Preparation 

 The crystallographic structures of the A2AAR in complex 
with the antagonist ZM241385, PDB code 3PWH and of  
the MAO-B in complex with a coumarin inhibitor, PDB  
code 2V61, were obtained from the Protein Data Bank 
(www.wwpdb.org) database [34]. Receptor preparation was 
carried out with UCSF Chimera software [35]. During 
receptor preparation all water molecules and ligands were 
removed and hydrogen atoms and charges were added. For 
both receptors the ligand binding pocket was defined as any 
residue lying at a distance below 5Å from the crystallo- 
graphic ligand structure. 
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2.2. Ligand Preparation 

 Sixteen known dual MAO-B inhibitors- A2AAR Antagonists 
were compiled from the literature [32]. Three dimensional 
conformers for the compounds were generated using the 
OMEGA software [36]. A maximum of 500000 conformations 
per molecule were generated using an energy window of 100 
kcal/mol. All rotatable bonds were considered during the 
torsion search using the Merck Molecular Force Field 
(MMFF) and duplicate conformers were discarded based  
on a RMS value of 0.5 Å. A maximum number of 200 
conformers were saved for each compound. Afterwards, 
AM1-BCC charges were added to each conformer using the 
MOLCHARGE programs that is part of the QUACPAC 
package [37]. 

2.3. Decoy Molecules Selection 

 Two different methods were employed for decoy 
molecules selection. The first method was de well-known 
DUD-E server (http://dude.docking.org/) [20]. The second 
method used for decoys selection was a home-developed 
algorithm that employs desirability functions for decoy 
selection. This second decoys selection algorithm has been 
previously employed in the validation of VS strategies [22]. 
Decoys were prepared following the same protocol above 
described for ligands. 

2.4. Molecular Docking 

 Molecular docking was performed with the DOCK v6.6 
software [38]. A maximum of 2000 orientations per ligand 
was explored allowing a maximum of two bumps between 
the ligand and the receptor. Bumps were defined as any pair 
of atoms closer than the 75% of the sum of their Van der 
Waals radii. The energy grid-based scoring function was 
selected for poses quality evaluation. The pose with the 
lowest score for each ligand conformer was saved, allowing 
for a maximum of 200 saved poses. 

 For interaction energies calculation, a grid was pre-
computed for the receptor binding pocket region. The grid 
spacing was set to 0.3 Å and the attractive and repulsive Van 
der Waals coefficients were set to 6 and 12, respectively. 
Calculations were performed considering an all-atoms model. 

2.5. Molecular Docking Post-processing 

 The molecular docking protocol described above results 
in 200 docked conformations of each compound being 
saved. For every compound the best scored conformation 
was selected for further rescoring using six scoring functions 
implemented in DOCK. The scoring functions used for poses 
rescoring were: PB/SA Score, AMBER Score considering 
the whole complex as rigid, AMBER Score considering the 
ligand as flexible, Hawkins GB/SA Score and Solvent 
Accessible Surface Area (SASA) Score. These rescoring 
calculations plus the previous grid-based scoring employed 
for poses evaluation and selection provide seven different 
ways of evaluating the ligand-receptor interaction energies. 
In addition to the raw docking scores, the scoring value of 
each compound was weighted by the number of heavy atoms 
on it. 

 The seven computed scoring functions were used for the 
implementation of a consensus ranking scheme. Instead of 
combining the raw scoring values coming from different 
scoring functions, the ranks produced by these scoring 
functions were combined following the procedure described 
next. Firstly, the rank derived from each scoring function 
was produced. Then, for a specific combination of scoring 
functions, a fused rank was computed as either the arithmetic 
or geometric mean of the compound’s rank in the individual 
models. 

2.6. Virtual Screening Performance Metrics 

 The VS performance of the explored models was 
evaluated employing the following metrics: Area under  
the Receiver Operating Characteristic Curve (ROC); Area 
Under the Accumulation Curve (AUAC); Enrichment factor 
(EF) and Boltzmann-enhanced discrimination of ROC 
(BEDROC) [39, 40]. Here the same definitions proposed by 
Truchon et al. are used [39]. In brief, let’s consider a ranking 
of N compounds containing n active samples, in that case to 
each active compound corresponds a ranking ri and a relative 
ranking xi = ri/N in the whole ranked list. Given these 
definitions, the area under the accumulation curve AUAC is 
computed as: 

     
(eq.1)

 
 It has also been shown that AUAC and ROC are related 
by the equation: 

    

(eq.2)

 
 From eq. 2 is straightforward that ROC ≈ AUAC when n 
<< N. For a perfect ranking ROC = 1 while ROC = 0.5 
corresponds to a uniform distribution of the actives in the 
ranked list. 

 Given a fraction of screened data of size 0 < χ ≤ 1, the 
EF metric measures how many times is that fraction enriched 
with active compounds relative to what is expected from a 
uniform distribution of actives in that fraction: 

    

(eq. 3)

 
 The maximum value that EF can take is 1/χ if χ ≥ n/N and 
N/n if χ < n/N and the minimum value is 0. 

 Given that AUAC and ROC are based on the average 
position of the actives in the ranked list they don’t 
discriminate the early part of the rank-ordered list from the 
last part and hence these metrics are not appropriate to 
address the early recognition problem. Despite EF can be  
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employed to compare VS methods, this metric has the 
disadvantage of equally weighting all the actives contained 
in the considered fraction of screened data. That is, if five 
actives compounds are ranked at the first 1% of the VS  
list, EF will not discriminate one method placing these 
compounds at positions one to five from a second method 
placing the five compounds at the end of the 1% fraction of 
screened data. 

 Another metric used to evaluate the performance of 
virtual screening is the Robust Initial Enhancement (RIE) 
[41]. This metric is defined as: 

     

(eq. 4)

 
 The α parameter gives more weight to the actives ranked 
at the top of the ordered list than to those located at its tail, 
thus making the contribution of early-ranked compounds 
higher for the computation of the RIE metric. This parameter 
and the fraction of screened data (χ) considered for 
computing the EF are related: 1/α can be interpreted as the 
fraction of the ranked list where the weight is important. The 
advantage of the RIE metric is that, in contrast to the EF, it is 
able of addressing the early recognition problem. Its main 
drawbacks are that it is not bounded and that it is highly 
dependent on n and N. To deal with these disadvantages, the 
Boltzmann-Enhanced Discrimination of ROC (BEDROC) 
metric was proposed [39]. This metric is defined as: 

    (eq. 5) 

  and  are 
obtained from eq. 4 when all the active compounds are 
ranked at the beginning and at the tail of the ranked list 
respectively. 

 As for AUAC and ROC, the BEDROC metric is bounded 
between 0 and 1. The parameter α is derived from the 
equation: 

   (eq. 6) 

 This equation is interpreted as: what is the value of α that 
will contribute to the θ% of the total score at z% of the rank? 
In this research, for computing BEDROC, θ was set to 80% 
and the top 1%, 5% and 8% of the ranked lists were 
analyzed. Under these conditions α receives values of 160.9, 
32.2 and 20 respectively. 

3. RESULTS AND DISCUSION 

 The receptors, ligands and decoys were prepared  
for molecular docking calculations as described in the 
Computational Methods section. The validation dataset 
consisting of the combination of the 16 known dual MAO-B 
inhibitors- A2AAR Antagonists and decoy molecules was 
docked to both receptor structures following the protocol 
described in the Computational Methods. The structures of 

the 16 dual MAO-B inhibitors- A2AAR Antagonists are 
shown in Table 1 and the sets composed of ligands plus 
decoys are provided as Supporting Information in SDF 
format. 

 In all cases analyzed from here on, the best molecular 
docking protocol was selected as the scoring scheme 
providing the highest value of BEDROC among those 
achieving the maximum EF at three different selection sizes 
(1, 5 and 10 percent of screened data). We separately 
analyzed the results obtained for the raw and weighted by 
number of heavy atoms scores. Scoring schemes were 
produced by fusing the ranks derived from the scoring 
functions using either arithmetic or geometrical mean as 
described in the Computational Methods section. 

 Different Fusion Schemes (FS) were assayed in this 
investigation and they can be classified into two groups. The 
first group consisted in fusing the scoring functions 
maximizing the enrichment of dual ligands for the A2AAR 
and MAO-B enzyme separately. The application of the 
optimal scoring scheme of each target yields one fused 
ranking of compounds for each one. Then these two fused 
ranks were aggregated in one final rank. By employing this 
first fusion scheme we ensure that the final ranking will be 
based upon information derived from both the A2AAR and 
the MAO-B enzyme. This fusion scheme will be referred as 
Fusion Scheme 1 (FS1) from here on. 

 The second group consisted in evaluating the 
performance of all possible ensembles resulting from all 
possible combinations of the individual scoring functions 
ranks obtained for both targets at the same time. Since the 
number of scoring functions employed in this study is small, 
it was possible to evaluate all their possible combinations of 
size 1 to 2N, being N the number of computed scoring 
functions per target. For this second approach no constrain is 
imposed during the modeling process regarding the need of 
information from both targets in the final ensemble. 
Therefore, there is the possibility that, in opposition to the 
expected behavior, the best performing ensemble would 
contain information from only one of the two molecular 
targets. This fusion scheme will be referred as Fusion 
Scheme 2 (FS2) from here on. 

 As mentioned before, we tested the arithmetic and 
geometric means as fusion operators. FS1 contains three 
aggregation steps: the aggregation of A2AAR scoring 
functions, the aggregation of MAO-B scoring functions and 
the aggregation of the rankings obtained for both targets. In 
this case all possible combinations of both fusion operators 
were tested. That is, scoring functions were first aggregated 
using the same fusion operator, either arithmetic or geometric 
mean, for each target separately. Then in the second step the 
aggregated ranking for each target was fused using both 
aggregation operators. Considering that the aggregation 
experiments are conducted with the raw scores and with the 
scores weighted by number of heavy atoms, the proposed 
setup provides eight different variants of FS1. These variants 
are summarized in Table 2. 

 For FS2, since the scores derived for both targets are 
considered together, there is only one rankings fusion step. 
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Table 1. Sixteen known dual target ligands. 
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ID R1 R2 Z R3 IC50hMAO-B (nM) Ki A2A(nM) Refs. 

17cSR OMe H CH   370.2 390.5 [32] 

17eSR F H CH   174.6 423.4 [32] 

17fSR H Cl CH   200 260 [32] 

17gSR H CF3 CH   431.5 530.6 [32] 

17hSR H OMe CH   762.5 246.6 [32] 

17qSR H H CH   586.7 93.9 [32] 

25SR H Cl N   430.3 140.8 [32] 

2AS Cl H N  18.1 38.1 [32] 

8AS       -(CH2)2C6H5 17.6 80.9 [32] 

9AS       -OCH3′-(CH2)2C6H4-3 95.3 64.9 [32] 

14AS       -OCH3′-CH=CH-C6H4-3 470 62.4 [32] 

17AS       -(CH2)3C6H5 34.9 39.5 [32] 

18AS       -OCH3′-(CH2)3C6H4-3 389 115 [32] 

21AS       -CH2-CH=CH-C6H5 39.8 118 [32] 

22AS       -CH2-OCH3′-CH=CH-C6H4-3 238 91.8 [32] 

35AS 

S N

S

O

H
N

O

 

69.7 82.5 [32] 

 

Table 2. Variants of FS1 assayed. 

Fusion Schemea Scores Typeb Target Scores Fusionc Final Fusiond 

FS1.1 Raw Arithmetic Mean Arithmetic Mean 

FS1.2 Raw Arithmetic Mean Geometric Mean 

FS1.3 Raw Geometric Mean Arithmetic Mean 

FS1.4 Raw Geometric Mean Geometric Mean 

FS1.5 Weighted Arithmetic Mean Arithmetic Mean 

FS1.6 Weighted Arithmetic Mean Geometric Mean 

FS1.7 Weighted Geometric Mean Arithmetic Mean 

FS1.8 Weighted Geometric Mean Geometric Mean 
aFusion scheme identifier. 
bType of score the rankings are derived from, either the raw scores or the scores weighted by the number of heavy atoms. 
cFusion operator employed to fuse the rankings derived of each scoring function in each target. 
dFusion operator employed to aggregate the fused rankings obtained for each target. 
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Thus, considering that we studied the raw scores and the 
scores weighted by number of heavy atoms, four different 
setups were assayed. The different FS assayed in this 
scenario are summarized in Table 3. 

3.1. VS Experiments Employing the DUD-E Decoys 

 Fifty decoys per known ligand were provided by the 
DUD-E server, resulting in a dataset for docking validation 
of 816 molecules (16 known ligands and 800 decoys). This 
amount of decoys is far from resembling a real screening 
scenario [21], however the DUD-E server is a well-
established method for decoys selection. Thus, using DUD-E 
decoys for a preliminary validation of the virtual screening 
protocol could provide some insights and serve as a starting 
point for a more rigorous validation. 

 The performance of each individual scoring function was 
first investigated. The detailed VS performance of each 
individual scoring function on each target is provided as 
Supporting Information in Table TS1. In Table 4 we show 
the statistics for the scoring function achieving the best 
performance when the selection size is set to 1% of the 
ranked list. 

 The data presented in Table 4 shows that in the case of 
the A2AAR the best individual scoring function for a 
selection size of 1% of screened data is the GB/SA Score, 
while the primary Grid Score is the one achieving the best 
performance for the MAO-B enzyme. It should be taken into 
account that for all scoring functions but Grid Score the 
modeling process includes a primary scoring using the latter. 

Other interesting observation is that for MAO-B the EF 
when 1% of screened data is selected is twice of its value for 
the A2AAR. In addition, only the GB/SA scoring function is 
able of retrieving more than one ligand in the first 1% of its 
ranked list. The values presented in Table 4 will be used as 
reference for the evaluation of the quality of the assayed FS. 

 The detailed results obtained with DUD-E decoys using 
the variants of FS1 and FS2 are provided as Supporting 
Information in Tables TS3, while in Table 5 are presented 
the enrichment metrics obtained for all FS when the 
selection size is set to 1% of screened data. The best 
performing FS is highlighted in gray. 

 From the data presented in Table 5 it can be concluded 
that fusing the rankings derived from the raw scores provides 
better VS performance than fusing those derived from  
the weighted scores. This conclusion arises when the 
performance if FS1.1 to FS1.4 is compared with the 
performance of FS 1.5 to FS1.8 and when comparing FS2.1 
and FS2.2 with FS 2.3 and FS2.4. The difference between 
these groups of FS is which type of scores, either raw or 
weighted by the number of heavy atoms, are employed to 
generate the rankings of the each scoring function. 

 When the performance of arithmetic and geometric 
means FS for the 18 different scenarios under investigation 
are analyzed (see Supporting Information Tables TS2 and 
TS3), it can be seen that geometric mean fusion outperforms 
the first approach in only 3 experiments. More important, 
BEDROC is higher in all the 18 different scenarios for the 
arithmetic mean FS, which means that even for identical or 
slightly lower EF values, known actives are retrieved closer 
to the beginning of the ranked list when this FS is employed. 

 One of the most relevant results derived from these 
analyses is the fact that, no matter if the fused scores are 
derived using arithmetic or geometric means, for every 
selected fraction of screened data the best scoring scheme  
is obtained when the docking scores for MAO-B and  
A2AAR are considered together during the fusion process 
(highlighted in gray in Table 5). These best scoring schemes 
for every selected fraction of screened data include scoring 
values coming from both targets. This last observation could 
seem obvious, however it supports the importance of good 
binding to both targets in order to achieve an adequate dual-
target activity. 

Table 3. Variants of FS2 assayed. 

Fusion Schemea Scores Typeb Final Fusionc 

FS2.1 Raw Arithmetic Mean 

FS2.2 Raw Geometric Mean 

FS2.3 Weighted Arithmetic Mean 

FS2.4 Weighted Geometric Mean 
aFusion scheme identifier. 
bType of score the rankings are derived from, either the raw scores or the scores 
weighted by the number of heavy atoms. 

Table 4. Individual scoring functions achieving the best VS performance on each target. 

EF %a EF %a 
Scoring Function 

1 5 8 1 5 20 
ROCc 

A2AAR 

GB/SA Score 5.67 3.73 3.73 0.20 0.18 0.21 0.73 

MAO-B 

Grid Score 11.33 6.22 4.98 0.15 0.28 0.35 0.85 
aEnrichment factor of the model at selection sizes of 1%, 5% and 8% of screened data. bBEDROC for values of the α parameter of 160.9, 32.2 and 20. cArea under the ROC curve. 
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 Summarizing, the best scoring schemes are obtained 
when the docking scores to MAO-B and A2AAR are 
considered together during the scoring fusion procedure. 
Furthermore, scores fusion using arithmetic mean provides 
better results than fusion using geometrical mean. The 
obtained results provide a set of approaches from which we 
can select the optimal one for the virtual screening of 
databases of chemical compounds in the search of dual 
MAO-B inhibitors- A2AAR Antagonists. For example, if we 
were to select the appropriate virtual screening protocol for 
screening a database of chemicals and select 1% of data for 
further analysis, we should follow this procedure: 

1 Dock the database to both MAO-B and A2AAR. 

2 Select the best pose of each compound in each 
target according to the grid-based scoring function. 

3 Rescore the best poses in MAO-B using the 
SA_Descriptor Score and Continuous Score scoring 
functions. 

4 Rescore the best poses in A2AAR using the PB/SA 
Score, GB/SA Score and Amber (flexible ligand) 
scoring functions. 

5 Generate the individual ranking produced by the 
scoring functions Grid Score, SA_Descriptor Score 
and Continuous Score for MAO-B and PB/SA Score, 
GB/SA Score and Amber (flexible ligand) for A2AAR. 

6 Fuse the obtained individual rankings using arithmetic 
mean. 

 According to our validation results, the above steps 
would conduct to a virtual screening strategy capable of 

enriching the top 1% of the final fused ranking with 22.67 
times more active compounds than what is expected from a 
uniform distribution of the actives in the database. 

 Despite the DUD-E server is able to create a set of 
tailored decoys for a set of known ligands, it only provides 
50 decoys for each ligand. That would result in a validation 
dataset for virtual screening containing 2% of known actives, 
which is more than 10 times the fraction of actives usually 
found in a real screening experiment [21]. Thus, the 
validation of virtual protocols using only DUD-E decoys 
would suffer from the saturation bias. For this reason we 
repeated the same virtual screening validations employing a 
larger set of decoys obtained with our previously described 
home-made protocol [22]. 

3.2. Desirability-based Decoys 
 For each known ligand, 1607 decoys were selected 
following the procedure described in our previous publication 
[22]. This amount of decoys provides a ratio of active to 
decoy compounds of 0.06%, which resembles a real screening 
scenario [21, 42]. The VS performance of each individual 
scoring function on each target is provided as Supporting 
Information in Table TS2. In this case the maximum EF that 
any of the individual scoring functions can achieve is when 
the selection size is set to 1% of the ranked list is 6.23. 

 The results obtained for this set of decoys are 
summarized in Table 6 and the detailed results are presented 
in Table TS4 of the Supporting Information. The best 
performing FS is highlighted in gray. 

 The results obtained for this second set of decoy 
molecules follow the same pattern observed for the DUD-E 

Table 5. Enrichment metrics for the different FS with the DUD-E decoys. 

FS Methoda EFb BEDROCc AUACd Fused Scoring Functionse 

FS1.1 11.33 0.23 0.83 A2AAR: 3 7 / MAO-B:1 3 4 

FS1.2 11.33 0.20 0.90 A2AAR: 3 7 / MAO-B:1 3 4 

FS1.3 11.33 0.10 0.81 A2AAR: 3 7 / MAO-B: 1 2 3 4 5 

FS1.4 11.33 0.12 0.87 A2AAR: 3 7 / MAO-B: 1 2 3 4 5 

FS1.5 5.67 0.06 0.85 A2AAR: 3 / MAO-B:1 3 4 

FS1.6 0.00 0.02 0.89 A2AAR: 3 / MAO-B:1 3 4 

FS1.7 0.00 0.00 0.83 A2AAR: 3 / MAO-B: 1 3 4 5 

FS1.8 0.00 0.00 0.85 A2AAR: 3 / MAO-B: 1 3 4 5 

FS2.1 22.67 0.22 0.87 A2AAR: 2, 3, 7 / MAO-B: 1, 4, 5 

FS2.2 17.00 0.19 0.83 A2AAR: 3, 7 / MAO-B: 5 

FS2.3 5.67 0.19 0.75 A2AAR: 4 / MAO-B: 3 

FS2.4 5.67 0.09 0.82 A2AAR: 1, 2, 3 / MAO-B: 4 
aEmployed fusion method. See Tables 2 and 3 for the detailed setup of each method. 
bEnrichment Factor for the best scoring scheme. 
cBEDROC for the best scoring scheme. Alpha value is set to 160.9. 
dArea Under the Accumulative Curve for the best scoring scheme. 
eScoring functions fused in the best scoring scheme. The following numbering is employed for scoring functions: 1) Grid Score; 2) PB/SA Score; 3) GB/SA Score; 4) SA_Descriptor 
Score; 5) Continuous Score; 6) Amber Score, everything rigid and 7) Amber Score, flexible ligand. 
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decoys and the same general observations hold. That is, the 
best scoring schemes are obtained when the docking scores 
to MAO-B and A2AAR are considered together during the 
scoring fusion procedure and scores fusion using arithmetic 
mean provides better results than fusion using geometrical 
mean. For this set of decoys, in only one occasion the 
scoring fusion based on geometrical mean outperforms that 
based on arithmetic mean. Also, in all the examined cases 
the best scoring scheme obtained with the raw docking 
scores outperforms that obtained fusing the scores weighted 

by the number of heavy atoms. It should also be noted that in 
almost every case, the best enrichment is derived from more 
than one scoring function through their fusion. 

 The agreement of the results obtained with both sets of 
decoys support the selection of the best virtual screening 
protocol, for any of the studied fractions of screened data, as 
the one consisting in the fusion of the rankings derived from 
a set of scoring function coming from both targets using the 
arithmetic mean. As previously discussed, the desirability-
based decoy molecules provide a better estimation of the real 

Table 6. Enrichment metrics for the different FS with the desirability-based decoys. 

FS Methoda EFb BEDROCc AUACd Fused Scoring Functionse 

FS1.1 0.00 0.02 0.88 A2AAR: 3 7 / MAO-B: 1 3 

FS1.2 12.47 0.05 0.90 A2AAR: 3 7 / MAO-B: 1 3 

FS1.3 6.23 0.03 0.91 A2AAR: 2 3 / MAO-B: 1 3 

FS1.4 6.23 0.06 0.90 A2AAR: 2 3 / MAO-B: 1 3 

FS1.5 0.00 0.00 0.76 A2AAR: 3 4 6 7 / MAO-B: 1 3 

FS1.6 0.00 0.00 0.77 A2AAR: 3 4 6 7 / MAO-B: 1 3 

FS1.7 0.00 0.00 0.82 A2AAR: 3 / MAO-B: 1 3 

FS1.8 0.00 0.00 0.81 A2AAR: 3 / MAO-B: 1 3 

FS2.1 31.17 0.11 0.87 A2AAR: 3, 5, 6 ,7 / MAO-B: 3, 4 

FS2.2 18.70 0.10 0.86 A2AAR: 2, 3, 7 / MAO-B: 3 

FS2.3 6.23 0.07 0.84 A2AAR: 3 / MAO-B: 4 

FS2.4 6.23 0.05 0.76 A2AAR: 3 / MAO-B: 4 
aEmployed fusion method. See Tables 2 and 3 for the detailed setup of each method. 
bEnrichment Factor for the best scoring scheme. 
cBEDROC for the best scoring scheme. Alpha value is set to 160.9. 
dArea Under the Accumulative Curve for the best scoring scheme. 
eScoring functions fused in the best scoring scheme. The following numbering is employed for scoring functions: 1) Grid Score; 2) PB/SA Score; 3) GB/SA Score; 4) SA_Descriptor 
Score; 5) Continuous Score; 6) Amber Score, everything rigid and 7) Amber Score, flexible ligand. 
 

 

Fig. (1). Accumulative curves obtained for the best virtual screening protocol when 1%, 5% and 8% of screened data are selected for further 
analysis. A) Complete curves. B) Curves for the first 10% of screened data. 



Fusing Docking Scoring Functions Improves the Virtual Screening Current Neuropharmacology, 2017, Vol. 15, No. 8    1115 

virtual screening performance of the investigated methods. 
In consequence, the selection of a final virtual screening 
protocol should be guided by the enrichment metrics 
obtained using this decoys set. 

 For the current validation setup the maximum values that 
the EF can reach are 100, 20 and 10 when 1%, 5% and 8% of 
screened data are selected respectively. Taking this into 
consideration it can be seen that if 1% of the screened data is 
selected for further analyses the resulting virtual screening 
protocol is able to be achieving 31.17% of the theoretical 
maximum enrichment. Following the same reasoning,  
when the 5% and 8% of screened data are selected the 
corresponding virtual screening tools achieve 75% and 
87.5% of the theoretical maximum of the EF respectively. 
Last but not least, the BEDROC values obtained for  
these virtual screening protocols are away from random 
(BEDROC=0). The accumulative curves corresponding to 
the three optimal virtual screening protocols are presented in 
Fig. (1). 

CONCLUSION 

 In this paper we investigated different variants of 
docking scores fusion for maximizing the enrichment of dual 
target ligands of the Adenosine A2A Receptor and the 
Monoamine Oxidase B enzyme in virtual screening 
experiments. Our results show that for achieving high values 
of dual ligands enrichment, information relative to docking 
scores to both targets have to be combined. In addition, no 
single scoring function can be employed for achieving good 
virtual screening performance. Instead, combining the 
rankings derived from different scoring functions proved to 
be a valuable strategy for improving the enrichment relative 
to single scoring function in virtual screening experiments. 
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