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ABSTRACT

As knowledge of human genetic polymorphisms
grows, so does the opportunity and challenge of
identifying those polymorphisms that may impact
the health or disease risk of an individual person. A
critical need is to organize large-scale polymor-
phism analyses and to prioritize candidate non-
synonymous coding SNPs (nsSNPs) that should
be tested in experimental and epidemiological
studies to establish their context-specific impacts
on protein function. In addition, with emerging high-
resolution clinical genetics testing, new polymor-
phisms must be analyzed in the context of all
available protein feature knowledge including other
known mutations and polymorphisms. To approach
this, we developed PolyDoms (http://polydoms.
cchmc.org/) as a database to integrate the results
of multiple algorithmic procedures and functional
criteria applied to the entire Entrez dbSNP dataset.
In addition to predicting structural and functional
impacts of all nsSNPs, filtering functions enable
group-based identification of potentially harmful
nsSNPs among multiple genes associated with
specific diseases, anatomies, mammalian pheno-
types, gene ontologies, pathways or protein
domains. PolyDoms, thus, provides a means to
derive a list of candidate SNPs to be evaluated in
experimental or epidemiological studies for impact
on protein functions and disease risk associations.
PolyDoms will continue to be curated to improve its
usefulness.

INTRODUCTION

Single nucleotide polymorphisms in coding regions (cSNPs)
and regulatory regions have the potential to affect gene

function (1–3). Non-synonymous cSNPs (nsSNPs), which
change the amino acid sequence of proteins and are likely
to affect the structure and function of the proteins, are good
candidates for disease-modifying alleles. However, not infre-
quently molecular epidemiological studies have reported little
or no association between cSNPs and disease susceptibility
(4–6). Thus, as much as possible, it is essential to identify
nsSNPs most likely to have functional effects before under-
taking large-scale association studies. Established efforts to
predict whether an nsSNP can affect the protein function
and structure range from tools to visualize SNPs in their
three-dimensional context (7,8), and predict molecular effects
and potential impact of nsSNPs (4,9–13), to the recent
SNPs3D (14) which integrates a variety of relevant informa-
tion sources of nsSNPs [for additional details see the recent
review by Mooney (15)]. Most of these approaches and ana-
lytical methods, however, are divided across various data-
bases and interfaces, and users typically have to go through
several web sites to analyze a single nsSNP. To overcome
this, we have developed the PolyDoms resource to integrate
most of these resources and results for each nsSNP, collating
these data along with Gene Ontology, disease and other
protein functional annotations in a web-accessible query
interface.

DATA SOURCES

Table 1 and Figure 1 list the various types of data and their
sources used for building the PolyDoms database. PolyDoms
currently houses a total of 39 325 human RefSeq proteins,
representing 26 378 unique RefSeq genes of which 6567
have alternate spliced products. The public repository of
SNPs, NCBI’s dbSNP database Build 125 (16) is our cSNP
resource. We retrieved a total of 47 267 nsSNPs from
dbSNP Build 125. To maximize our coverage of potential
functional cSNPs, we included all the cSNPs from dbSNP
without limiting to validated cSNPs alone. Another reason
for this inclusion is that there are many reports of
non-validated nsSNPs in the clinical literature [e.g. G1120E
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in the APC protein in patients with gastric cancer (17)]. The
protein sequence data and all associated annotations were
extracted from NCBI’s Entrez databases. Other sequence
annotations and nsSNP-related information from various
sources (see Figure 1) were downloaded as text files from
original sources. Supplementary Data 1 summarizes the
current status of PolyDoms database.

DATA PROCESSING AND STORAGE

Data processing

The NCBI’s Entrez Programming Utilities (EUtils) (http://
eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html)

were used to download the protein (including protein domain
information) and the cSNP-related data. The results fetched
using EUtils XML mode were parsed using SAX parser
(available as part of J2SDK 5.0). For nsSNPs in genes with
more than one mRNA transcript, individual entries were
recorded for each unique transcript to reflect potential differ-
ences in amino acid numbering. Individual entries were also
recorded where more than one allele frequency submission
was available. For example, an nsSNP with three mRNA
transcripts and four different submissions resulted in a total
of twelve separate entries.

JAVA programs were written to parse and normalize other
downloaded text files (GO-gene associations, protein–protein
interactions, OMIM/SwissChange mutations, LS-SNP predic-
tions, mammalian phenotype gene associations) and uploaded
to PolyDoms database.

Prediction of nsSNP implication

We used two sequence homology-based tools, SIFT (Sort
Intolerant from Tolerant; version 2.1) (9) and PolyPhen (Poly-
morphism Phenotype; version 1.1) (4), to predict the potential
impact of nsSNP on protein function. Additionally, when
available, we have included the LS-SNP predictions (11).
LS-SNP predicts positions where nsSNPs destabilize proteins,
interfere with the formation of domain–domain interfaces,
have an effect on protein–ligand binding or severely impact
human health (11). In cases, due to data-related errors,
where an amino acid residue position in the dbSNP record
did not match with the amino acid residue at the same position
in the corresponding protein record from RefSeq database,
SIFT/PolyPhen analysis returned errors. For example,
rs11557865 denotes nsSNP Ser551Pro; but the corresponding
protein sequence (NP_061872; KIAA1128) has aspartic acid
at position 551. Similarly, rs10891338 represents nsSNP
Pro208Leu whereas the corresponding protein, BCDO2
(NP_114144), has lysine at position 208.

SIFT uses sequence homology among related genes and
domains across species to predict the impact of all 20 possible

Table 1. Data type and sources used in PolyDoms

Data type Source URL (Reference)

Gene/protein NCBI Reference Sequence http://www.ncbi.nlm.nih.gov/RefSeq/ (30)
cSNPs NCBI dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/ (16)
Protein domains NCBI CDD http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml (31)
Protein structure PDB http://www.rcsb.org/pdb/ (32)
Protein interactions NCBI Entrez Gene (file interactions.gz) ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/
Gene Ontology annotations NCBI Entrez Gene (file gene2go.gz) ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
Gene families HGNC Gene Families/Grouping

Nomenclature
http://www.gene.ucl.ac.uk/nomenclature/genefamily.html

Pathways KEGG
Biocarta
BioCyc
Reactome

http://www.genome.ad.jp/kegg/pathway.html (33)
http://biocarta.com/
http://www.biocyc.org/ (34)
http://www.genomeknowledge.org/ (35)

Mutations OMIM
SwissChange

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼OMIM
http://www.expasy.ch/cgi-bin/lists?humpvar.txt

Disease–gene association and
mammalian phenotype

OMIM
GAD
MGI

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼OMIM
http://geneticassociationdb.nih.gov/ (22)
http://www.informatics.jax.org/searches/MP_form.shtml (23)

Links to other external resources iHOP
MutDB
UCSC Proteome

http://www.ihop-net.org (36)
http://mutdb.org/ (7)
http://genome.ucsc.edu/cgi-bin/pbGateway (37)

Figure 1. Schematic representation of PolyDoms data resources, work-flow
and features.
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amino acids at a given position, allowing users to determine
which nsSNPs would be of most interest to study. The SIFT
algorithm has been shown to predict a phenotype for an
nsSNP more accurately than previously used substitution
scoring matrices, such as BLOSUM62, as these matrices
do not incorporate information specific to the protein of
interest (18,19). Another advantage of using SIFT is the
potential to analyze a larger number of nsSNPs than meth-
ods that are dependent on the availability of protein struc-
ture alone (19,20). The PolyPhen algorithm, such as SIFT,
takes an evolutionary approach in distinguishing deleterious
nsSNPs from functionally neutral ones. However, it also
takes into account the data from protein structure databases,
such as PDB (Protein Data Bank) and PQS (Protein Quar-
ternary Structure), DSSP (Dictionary of Secondary Structure
in Proteins), and three-dimensional structure databases to
determine if a variant may have an effect on the secondary
structure of the protein, interchain contacts, functional sites
and binding sites (4).

SIFT and PolyPhen analyses were performed on Ohio
Supercomputer Center’s (OSC) Itanium 2 Cluster (http://
www.osc.edu/hpc/computing/it2/), configured in shared
memory parallel running mode with a maximum of 10 proces-
sors and 32 GB RAM. Under this configuration, �50 SIFT or
�600 PolyPhen jobs can be processed in an hour. The LS-
SNP predictions were downloaded from the original source,
parsed and uploaded to PolyDoms database.

Data storage

The PolyDoms database is implemented in Oracle 9i. The
central table is ‘Gene’ that has an up-to-date list of all
human RefSeq genes. The Gene table is linked to several
other master tables. The cSNP table, apart from annotations,
contains the SIFT and PolyPhen predictions. Other tables
linked to the Gene table are as follows: the Transcript table
(RefSeq mRNAs); the Protein table (RefSeq proteins); the
ProbeSets; the Mutation table (OMIM and SwissChange)
the Disease tables (OMIM and GAD); Mammalian Pheno-
type; Pathway (KEGG, Biocarta, BioCyc and Reactome),
Protein–protein interactions (BIND, HPRD and Reactome);
and Protein function (GO).

ACCESS AND INTERFACE

The main access to PolyDoms is through its web interface at
http://polydoms.cchmc.org, by querying with sequence acces-
sion numbers, gene symbols, Entrez Gene IDs, rsSNP IDs,
description or probeset IDs (Illumina; Affymetrix). Addition-
ally, it is possible to retrieve a list of genes and associated
cSNPs using a GO term, disease term (OMIM or GAD), path-
way term (KEGG, Biocarta BioCyc or Reactome), mamma-
lian phenotype or gene family (Figure 1). The output of a
search presents the user with an option to view synonymous
SNPs or nsSNPs. cSNPs are represented graphically in the
context of protein sequence and domains (Figure 2). The
results of the SIFT and PolyPhen predictions along with the
LS-SNP extracted predictions for all nsSNPs of a protein are
provided as a table below the image. Where available the mut-
ant allele information from OMIM and SwissChange, and the
protein–protein interactions are also provided. Up-to-date

literature references implicating polymorphisms in disease
are also provided. An expandable list provides links to vari-
ous GO terms, pathways, diseases and phenotypes associated
with the queried protein. Apart from these, the resource
page is supplemented with cross-references to PDB, iHOP,
MutDB and the UCSC Proteome Browser. All cross-
references to data sources are hyperlinked enabling the
original data to be viewed.

UTILITY

We present the utility and various features of PolyDoms
through one case study using mammalian phenotype as an
example. Since knowledge of complex diseases is limited,
a comprehensive list of candidate genes and a method of
ranking those genes by their disease-relevance is important
in designing a good association study (14). Using NCBI’s
OMIM (21) and NIA’s GAD database (22) and the mamma-
lian phenotype (23), we provide a query interface through
which a user can select any disease/phenotype term and cre-
ate an nsSNP list based on the candidate genes associated
with that particular disease/phenotype term. Although, we
can assume the complexity of phenotype based on the number
of genes associated with it, it may also partly reflect the
current state of knowledge for that particular phenotype.
Additional examples illustrating the utility and contents of
database can be accessed through various case studies from
Supplementary Data 8.

Case study: using the mammalian phenotype to
investigate SNP–phenotype relationships

Aim: To obtain a list of human orthologous genes based on
mouse genes associated with the phenotype ‘abnormal
podocytes’.

(i) From the homepage, click on the ‘Phenotype Selector’
(under section ‘Search by disease, gene ontology,
pathway, or gene family’).

(ii) A new window (‘Search for Mammalian Phenotype’)
opens up. Enter the search term ‘abnormal podocytes’
(or ‘podocyte’) and hit ‘Search’. Select the term
‘abnormal podocytes’ from the search results window
and hit ‘use this phenotype for search’ button to populate
the ‘Phenotype already selected’ window. Click ‘Done’
to return to the PolyDoms query page.

(iii) Hitting the ‘Search’ button without selecting any of
the ‘Filter Options’ will return the human orthologous
genes (37 proteins, 19 unique in the current version)
of mouse genes associated with the phenotype ‘abnormal
podocytes’. At this stage, users can either download
the results as a spreadsheet by clicking on the link
‘Download the results’ or proceed to view the non-
synonymous or synonymous model of each of the
protein (see Figure 2 for a description of the output).
Selecting the download option presents the user with a
list of fields to select from and add to the spreadsheet.

(iv) Alternatively, use the ‘Filter options’ to refine the query.
For example, from the ‘Filter options’ select ‘Occurring
in domain’, ‘Deleterious nsSNP’ and ‘Damaging nsSNP’
and hit ‘Search’. This will return 4 proteins (ARHGDIA,
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LAMA5, NCK1 and NPHS2), each of which has at least
one nsSNP that occurs in a conserved domain and
has been predicted as ‘Deleterious/Damaging’ by SIFT/
PolyPhen.

(v) The Supplementary Data 2 lists all the mammalian
phenotypes along with the associated genes and the
number of deleterious and damaging nsSNPs.

Prioritizing candidate nsSNPs

We screened a total of 44 641 (94%) nsSNPs associated with
14 967 protein sequences using SIFT and PolyPhen. Of these,
14 819 (33%) were predicted as ‘deleterious’ by SIFT and
14 622 (33%) as ‘damaging’ by PolyPhen. About 9021 nsS-
NPs (representing 5436 unique genes) were predicted as
both deleterious and damaging indicating a concordance of
�62% between SIFT and PolyPhen predictions (see Supple-
mentary Data 1 for additional details). Three studies (24–26)
thus far have combined both the SIFT and PolyPhen algo-
rithms to screen for deleterious nsSNPs. Xi et al. (26) and
Johnson et al. (24) reported a concordance of 62 and 73%
between these two programs analyzing the nsSNPs of genes
involved in DNA repair and steroid hormone metabolism,
respectively. In an earlier analysis of nsSNPs involved in
DNA repair, cell cycle regulation, apoptosis and drug meta-
bolism we used both SIFT and PolyPhen and identified 57
potentially deleterious nsSNPs (25). The Supplementary
Data 3 lists all the nsSNPs that have been predicted as dele-
terious and damaging by both SIFT and PolyPhen. The Sup-
plementary Data 4 and 5 list the disease/phenotype-associated
genes that have at least one nsSNP predicted as damaging and
deleterious by both PolyPhen and SIFT, respectively.

Although useful and widely used, both SIFT and PolyPhen
have certain limitations. First, both of these require homolog-
ous sequences. Second, both of these algorithms disregard the
impacts of a combination of variants (24,27). Third, SIFT and
PolyPhen predict the impact of cSNPs only whereas non-
coding SNPs (SNPs occurring in promoter or enhancer
regions or splicing junctions) can also affect protein levels
or protein function (24).

cSNPs resulting in premature stop codons and
protein truncation

cSNPs introducing premature termination codons (nonsense
SNPs) can alter the stability and function of transcripts and
proteins and thus are considered to be biologically important.
We retrieved a total of 965 nonsense SNPs (from 830 genes)
from dbSNP Build 125 and 416 out of 965 nonsense SNPs
affect an amino acid residue that is part of a functional pro-
tein domain. This led us to hypothesize that these cSNPs are
likely to affect gene/protein function, although their biologi-
cal relevance needs to be further investigated. However, we

have noticed that some of the nonsense SNPs in dbSNP
build 125 are either changed or removed from the dbSNP
build 126. For instance, in the dbSNP build the number of
nonsense SNPs affecting an amino acid residue which is
part of a functional domain is 367. These changes will be
reflected in our database when it is updated. Supplementary
Data 6 lists all the cSNPs (based on dbSNP build 125) result-
ing in premature stop codons and also includes a comparison
with the current dbSNP build 126.

KNOWN MUTATIONS VERSUS nsSNP
FUNCTIONAL PREDICTION

To assess the potential for functional consequences of the
PolyDoms defined intolerant nsSNPs, we downloaded 1338
SNPs from 611 candidate genes with known disease muta-
tions (ftp://ftp.ncbi.nih.gov/snp/Entrez/snp_omimvar.txt) and
subjected them to SIFT and PolyPhen analysis. Of the 1008
nsSNPs analyzed (330 out of 1338 nsSNPs were ignored
because some of them were either non-coding SNPs or had
erroneous annotations with mismatch of the residues), 568
(56%) nsSNPs showed concordance between SIFT and Poly-
Phen predictions and were classified both as ‘deleterious’ and
‘damaging’ (Supplementary Data 7). A total of 782 out of
1008 (78%) nsSNPs were either predicted as deleterious
or damaging or both. Apart from confirming the utility of
these prediction tools in prioritizing the candidate nsSNPs,
it also suggests that nsSNPs predicted as damaging and dele-
terious and already associated with a phenotype/disease (Sup-
plementary Data 4 and 5) represent a pool of candidate loci
that should be interrogated further in association studies.
We also noticed that only 34 out of the 568 nsSNPs predicted
as damaging and deleterious are validated (by frequency)
nsSNPs.

RELATED WORK

Although it is beyond the scope of the current article to
compare PolyDoms with other resources of similar nature
(see Introduction), some of the features that are unique to
PolyDoms are related to the management of sets of nsSNPs—
the ability to refine, export nsSNP sets as a whole and to cre-
ate sets of cSNPs through complex queries (such as using
pathways or Gene Ontology or mammalian phenotype classes
described earlier and in the Supplementary Data 8). The goals
of the recently published SNPs3D (14) are similar to ours: to
integrate all of the available data relevant for assessing the
likely role of particular genes and nsSNPs in a disease and
help the researchers in making informed judgments. Addi-
tionally, the PolyDoms filter options make the data-mining
process and compiling a ‘hit-list’ of nsSNPs relatively easy.

Figure 2. PolyDoms feature displays. (A) PolyDoms image of a nsSNP model of the protein KCNH2. Numbers in the image indicate the amino acid residue
positions from the corresponding RefSeq protein sequence. The pink, yellow and green blocks over the protein sequence represent the three known domains
derived from the NCBI’s CDD. Vertical lines represent nsSNPs. The color codes indicate the predictions—gray represents an nsSNP predicted as deleterious and/
or damaging; yellow indicates mutation (based on OMIM/SwissChange); orange indicates an nsSNP that has been predicted as deleterious and/or damaging and
also reported as a mutation. (B) The summary view gives the basic sequence annotations along with an expandable list of diseases, GO terms, mammalian
phenotypes and Pathways associated with the queried gene. (C) Tabular description of nsSNP predictions based on PolyPhen and SIFT analysis and LS-SNP
annotations (refer to B above for descriptions of color codes). (D) Tabular list of allelic variants derived from OMIM and SwissChange. (E) Top five relevant
abstracts, when available, related to queried gene polymorphisms and disease association. The list is generated dynamically and therefore is up-to-date with
current literature. (F) List of protein–protein interactions (from NCBI Entrez Gene).
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CONCLUSION

We have classified and catalogued the predicted functionality
of nsSNPs in human genes to facilitate sequence-based asso-
ciation studies. The current version of PolyDoms however
has some limitations. First, the current version of PolyDoms
does not contain information on SNP co-occurences, complex
haplotype or other relationships among the SNPs. Therefore,
one of our future goals is to incorporate the SNP haplotype
data (28). This will facilitate retrieving genotype and fre-
quency data, picking tag-SNPs for use in association studies,
viewing haplotypes graphically and examining marker-to-
marker LD patterns. Second, since PolyDoms is built using
multiple sources, keeping it up-to-date and synchronized
with external resources, taking into account the different
data formats, or the changes in their formats is tedious. How-
ever, we will strive to automate this process as much as pos-
sible. Third, PolyDoms does not still provide the complete
range of analysis tools that can be useful in evaluating and
characterizing cSNPs in terms of their potential effects (e.g.
relative solvent accessibility of the variant residue). We are
in the process of filling this gap using the SABLE server
(29). Finally, PolyDoms does not include information about
other SNPs (human non-coding SNPs or SNPs from other
species). In conclusion, the use of PolyDoms and other
resources similar to select functional nsSNPs for epidemiol-
ogy studies can be an efficient way to explore the role of gen-
etic variation in disease risk or altered response to therapeutic
regimens, and to contain cost. However, it should be noted
that deleterious effects on protein stability alone may not
be sufficient conditions for disease predisposition.

AVAILABILITY

The PolyDoms database can be accessed freely at http://
polydoms.cchmc.org.

SUPPLEMENTARY DATA

Supplementary Data are available at http://polydoms.cchmc.
org/polydoms/supplementary/

DISCLAIMER

The purpose of this resource is to distribute functional
annotations of human cSNP data. These cSNPs and their
annotations are meant to be used as guidelines for basic
research. Do not use these results to make clinical decisions.
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