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A deterministic biologically based dose-response model for the thyroidal system in
a near-term pregnant woman and the fetus was recently developed to evaluate
quantitatively thyroid hormone perturbations. The current work focuses on conducting a
quantitative global sensitivity analysis on this complex model to identify and characterize
the sources and contributions of uncertainties in the predicted model output. The
workflow and methodologies suitable for computationally expensive models, such as
the Morris screening method and Gaussian Emulation processes, were used for the
implementation of the global sensitivity analysis. Sensitivity indices, such as main,
total and interaction effects, were computed for a screened set of the total thyroidal
system descriptive model input parameters. Furthermore, a narrower sub-set of the
most influential parameters affecting the model output of maternal thyroid hormone
levels were identified in addition to the characterization of their overall and pair-wise
parameter interaction quotients. The characteristic trends of influence in model output
for each of these individual model input parameters over their plausible ranges were
elucidated using Gaussian Emulation processes. Through global sensitivity analysis we
have gained a better understanding of the model behavior and performance beyond the
domains of observation by the simultaneous variation in model inputs over their range of
plausible uncertainties. The sensitivity analysis helped identify parameters that determine
the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and
their interactions, and contributed to an improved understanding of the systemmodeled.
We have thus demonstrated the use and application of global sensitivity analysis for a
biologically based dose-response model for sensitive life-stages such as pregnancy that
provides richer information on the model and the thyroidal system modeled compared
to local sensitivity analysis.
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Abbreviations: BBDR, Biologically Based Dose-Response Modeling; PBPK, Physiologically Based Pharmacokinetic;
HPT, Hypothalamus-Pituitary-Thyroid Axis; T4, thyroxine; fT4, free thyroxine; T3, tri-iodothyronine; rT3, reverse tri-
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Introduction

Computational modeling approaches, such as physiologically
based pharmacokinetic/pharmacodynamic (PBPK/PD) and
biologically based dose-response (BBDR) models, are currently
being well embraced for the study of the system-compound
interactions and are increasingly used in regulatory decision
making for both pharmaceuticals and environmental chemicals
(Zhao et al., 2011; Huang et al., 2013; McLanahan et al.,
2014). Sufficiently robust BBDR and PBPK/PD models that
are developed to include the key physiological traits of the
organism under study are able to describe the pharmacokinetic
disposition of compounds quantitatively and also provide
relevant mechanistic insights of the system-compound
interaction based on the biological mode-of-action. The
use of PBPK models includes the prediction of internal dose
metrics and target organ specific exposure levels that correspond
to a known external dose and/or exposure (Clewell et al., 2003,
2007; Merrill et al., 2005). Pharmacodynamic models allow
the characterization of relevant mechanism-based internal
dose response relationships (Andersen et al., 1997; Felmlee
et al., 2012; Gentry et al., 2014). BBDR models can encompass
multiple compound-specific PBPK submodels in addition to
the pharmacodynamic submodel components, linking external
exposure to a quantifiable biological response for an array
of doses (Conolly and Butterworth, 1995; Setzer et al., 2001;
McLanahan et al., 2008; Fisher et al., 2013; Lumen et al., 2013).
The application of these models range from supporting risk
assessment and public health decisions to identifying data gaps
and research needs to further basic science (Doerge et al., 2008;
Kenyon et al., 2008; Tan et al., 2012). Such models also offer
a useful framework for integrating available data from diverse
platforms, including in vitro and in vivo studies, and offer means
to scale and extrapolate across species to humans and to sensitive
life-stages, such as pregnancy.

Recently, we developed a BBDR model for the hypothalamus-
pituitary-thyroid (HPT) axis in an average near-term pregnant
woman and the fetus (Lumen et al., 2013). The model
described the disposition kinetics of dietary iodide during
pregnancy followed by the pharmacodynamic description of
the organification of inorganic iodide in the maternal and fetal
thyroid for the synthesis and secretion of thyroid hormones. The
BBDR-HPT axis model also described the physiologic disposition
of the thyroid hormones accounting for the placental transfer
of maternal thyroxine to the fetus in addition to inorganic
iodide transfer for the sustenance of the developing fetal thyroid’s
function and its neurodevelopmental needs. Disturbances in the
HPT axis during pregnancy have been shown to be associated
with neurodevelopmental effects in the fetus in utero and the
neonate after birth (Man et al., 1991; Haddow et al., 1999;
Kooistra et al., 2006; Taylor et al., 2014). Iodide deficiency
is a major cause for such disturbances, and exposure to
thyroid-active environmental chemicals, such as perchlorate,
thiocyanate, and nitrate, that competitively inhibit the thyroidal
uptake of iodide may predispose sensitive individuals to further
alterations in thyroid endocrine homeostasis. The mode-of-
action based model was used to predict quantitatively alterations

in maternal and fetal serum thyroid hormone levels at steady
state for combinatorial scenarios of iodide nutritional status and
environmental exposure levels for perchlorate, demonstrating its
utility as a risk assessment tool. The confidence in the model’s
ability to evaluate thyroid axis disruption due to perchlorate
exposure lies strongly in the robustness of themodel’s description
of the thyroid endocrine function and is the focus of our current
work.

Although these models have certain strengths, they are usually
complex in nature with a large-set of input parameters that are
calibrated to available data sets for certain input conditions and
also involve simplifying assumptions of the biological system
that it emulates. Together, these contribute to uncertainties in
the model and model predictions. The model developed in
Lumen et al. (2013) is deterministic in nature. The current
work focuses on methodologies and their use for evaluating
the sources and contributions to uncertainties in the BBDR-
HPT axis pregnancy model. Typically, a sensitivity analysis is
employed to test the model robustness with respect to parameter
uncertainties and investigate the influence of input parameters on
model performance. Several different approaches can be followed
for performing model sensitivity analysis (Sobol, 1993, 2001;
Campolongo and Saltelli, 1997; Saltelli et al., 1999, 2004; Oakley
and O’Hagan, 2004; Loizou et al., 2008). The most commonly
used approach in such physiologically based modeling is the local
or one-at-a-time sensitivity analysis. Local sensitivity analysis
is performed by perturbing parameters one-at-a-time, typically
by increasing or decreasing values by a small percentage and
monitoring the effects on the model output relative to the
change in the input parameter (Plowchalk et al., 1997; Rietjens
et al., 2011). Local sensitivity analysis offers a more straight-
forward and computationally inexpensive means to perform
sensitivity analysis on these elaborate models. However, it does
not consider the effects of simultaneous variations in multiple
input parameters on model output and neglects any parameter
interactions (Sobol, 1993, 2001; Campolongo and Saltelli, 1997;
Saltelli et al., 1999, 2004; Oakley and O’Hagan, 2004; Loizou
et al., 2008). The underlying assumption of local analysis is
that the model parameters are independent of each other, an
assumption that is unlikely when representing a well-integrated
physiological system. Moreover, interpretations of the local
sensitivity analysis beyond the range of observed parameter
values assume linear dependence on model output, which may
not be accurate.

Global sensitivity analysis addresses the limitations of the
local sensitivity analysis by simultaneously examining the
model sensitivity over the entire range of uncertainty for all
parameters. It also accounts for model non-linearities and
parameter interaction effects within the defined ranges of
parameter uncertainty. Previously we have summarized the
need and utility of global sensitivity analysis in the field of
predictive toxicology, and have conceptualized a workflow for
global sensitivity analysis and demonstrated its use for PBPK
models in adult humans (McNally et al., 2011, 2012). Here we
present the implementation of a quantitative global sensitivity
analysis of the BBDR-HPT axis pregnancy model for normal
thyroid conditions at near-term, using an adaptation of the
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workflow developed inMcNally et al. (2011). Themethodological
adaptations address the challenges in the feasibility of conducting
such analyses for complex kinetic and dynamic models that are
computationally demanding. Global sensitivity analysis of the
BBDR-HPT axis pregnancy model allows for the ranking of the
most influential and least influential model input parameters
in addition to the characterization of their overall interaction
and pair-wise interaction effects on the model output. Such
systematic analyses help evaluate model behavior over a wide
range of input conditions that are experimentally untested.
It also aids in the future development of a probabilistic
framework for the BBDR-HPT axis pregnancymodel by reducing
significantly the number of parameter evaluations and by
increasing the confidence in the predictive potential of such
models.

Materials and Methods

Deterministic BBDR-HPT Axis Pregnancy Model
The schematic of the BBDR-HPT axis pregnancy model
developed in Lumen et al. (2013) is shown in Figure 1. The
comprehensive model includes a PBPK submodel for iodide
and simple pharmacokinetic submodels for thyroid hormone,
thyroxine (T4) and tri-iodothyronine (T3) in the mother and
fetus. The maternal PBPK compartments for the anions include
plasma, thyroid, placenta, and lumped rapidly and lumped
slowly perfused compartments, whereas for the fetus, the body is
described as one combined compartment, with separate plasma
and thyroid subcompartments. Thyroid hormone submodels for
T4 and T3 in themother and fetus are described as simple volume
of distributions. Maternal and fetal physiological parameters,
such as tissue volumes, volume of distributions, and blood flows,
are pre-defined in the model and are scaled to body weight
and cardiac output. Chemical specific parameters, including
partition coefficients, permeability area cross product terms,
clearance rates, and fractional conversion terms, are used to
describe the tissue distribution of anions and thyroid hormones.
The PBPK submodel for perchlorate shares a similar model
structure to the 8-compartment PBPK submodel for dietary
iodide in the pregnant mother and fetus as represented in
Figure 1.

The integrated BBDR model is structured and parameterized
to describe the whole body disposition kinetics of dietary iodide.
The model includes the sequestration of iodide into the thyroid
via secondary active (sodium iodide symporter, NIS) and passive
transport, followed by the intra-thyroidal organification and
production of T4 and T3, the extra-thyroidal de-iodination of T4
to T3 and reverse T3 (rT3). The inorganic iodides released by de-
iodination of T4, T3, and rT3 are described to circulate back into
the pharmacokinetic component of the model contributing to the
systemic iodide pool. The BBDRmodel accounts for the placental
transfer of iodide both in its inorganic form and in the form of
thyroxine during late gestation. First order kinetics is used in
the deterministic model to describe the individual rate processes,
such as modeling the thyroid function following the uptake of
anions, and also the renal and fecal elimination processes of the
inorganic and organic forms of iodide.

The iodide and thyroid hormone aspects of the model consists
of 66 parameters and predicts the serum concentrations of
maternal and fetal thyroid hormones at steady state including,
total T4, free T4 and total T3 for various iodide intake conditions.
Over 80 parameters are involved when the model is expanded
to include the perchlorate submodel. In this current work we
focus on the iodide kinetics and thyroid function descriptive
submodels in the mother and fetus. The BBDR-HPT axis
pregnancy model was calibrated over a range of dietary iodide
intake for pregnancy, from 75 to 250μg/day, where TSH is
assumed not to be stimulated beyond its reference intervals. The
calibrated model predicted serum and urinary iodide levels that
were in concordance with observations and thyroid hormone
levels that were within trimester-specific reference ranges. In the
functional range of model evaluation for iodide intake, the model
behavior is described to be non-linear. Urinary clearance rates
of iodide were calibrated for a given iodide intake condition
to predict the measured non-linear profile of thyroidal iodide
stores with depleting iodide nutritional status. Physiological and
chemical specific adaptive responses to alterations in thyroid
hormone homeostasis and the maintenance of the serum levels
of active hormone T3 were also accounted for in the model by
iterative calibration of the de-iodination rate of T3 for varying
iodide intake conditions. Additional information on the BBDR-
HPT axis pregnancy model can be found in Lumen et al.
(2013).

Quantitative Global Sensitivity Analysis Methods
and Workflow
McNally et al. (2011) proposed a two-step approach to
implement global sensitivity analysis for physiologically based
pharmacokinetic models to reduce the computational burden.
The workflow began with preliminary screening using theMorris
method to eliminate the parameters with a negligible effect
on the model output. Quantitative global sensitivity analysis of
the selected subset of model parameters comprised the second-
step of the workflow and was performed using the extended
Fourier amplitude sensitivity test (eFAST) (McNally et al., 2011).
The eFAST technique is a variance-based global method that
is independent of any assumptions regarding model structure.
eFAST provides an estimate of the variance of the chosen
model output and the contribution of input parameters and
their interactions to this variance, given physiologically feasible
parameter ranges for inputs. The output of such an analysis are
the main effect and total effect sensitivity indices. The main effect
sensitivity index for a given parameter is the expected reduction
in output variance if the parameter is known. It should be noted
that, in general, summing the main effects across parameters may
not total 100% because the main effects only contribute a portion
of the variance and do not account for interaction effects. The
total effect variance represents the expected amount of output
variance that would remain unexplained (residual variance) if
only that variable were left free to vary over its range, the value
of all other variables being known. Total sensitivity indices are
generally used to identify non-essential variables (i.e., those that
have no importance either singularly or in combination with
others). Large values of total effect relative to main effect imply
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FIGURE 1 | BBDR-HPT axis model schematics for the near-term
mother and fetus including the iodide PBPK submodel and thyroid
hormone submodels for T4 and T3. Following an oral intake dose,
solid arrows with closed arrow heads (        ) connecting the individual
compartments in the anion PBPK submodel and the T4 volume of
distribution represent the blood flows. Thicker arrows with closed arrow
heads (        ) and thinner open arrows (        ) within the compartments
denote the NIS mediated active uptake and bidirectional passive diffusion
of anions across the thyroidal and placental sub-compartments,
respectively. The dashed and dotted lines show the link between the
PBPK submodels and the T4 and T3 submodels in both the mother and
fetus. Dashed lines leaving the thyroid tissue of the iodide PBPK
submodel in both maternal and fetal compartments into the hormone
volume of distribution denote hormone production. Dotted lines leaving the

hormone volume of distribution denote the recirculation of inorganic iodide
released due to hormone metabolism into the PBPK submodel for iodide.
The connector symbols from the maternal (        )     and fetal (        )     volume of
distribution for T4 and T3 with solid closed arrows (        ) represents the
metabolism of T4 to T3. The dotted open arrows (        ) in the PBPK
submodels and the thyroid hormone submodels represent the urinary (*)
and combined urinary and fecal (#) elimination of iodide and thyroid
hormones, respectively. PBPK submodel for perchlorate is similar to that
of the iodide submodel excluding the organification in the thyroid and the
subsequent links to the hormone volume of distributions. Perchlorate and
iodide PBPK submodels are connected based on the mode of action of
perchlorate and iodide to competitively inhibit each other at the sodium
iodide symporter. Figure is taken with permission, is view only and
permission must be obtained for any onward reuse (Lumen et al., 2013).

the presence of interactions among model inputs. McNally et al.
(2011) reported that sensitivity analysis of their relatively simple
PBPK model using eFAST for 19 varying parameters took 13 h to
execute. A single evaluation of this PBPK model took a fraction
of a second.

The Morris method is particularly well suited for models such
as the one evaluated in this current study with a large number
of input parameters. However, eFAST was considered to be
impractical due to the computational expense (a single evaluation
of the BBDR-HPT axis pregnancy model took approximately
6½min). A more complex, but vastly more efficient method of
quantitative global sensitivity analysis was adopted in the present
work. This involved the construction of a surrogate model,

referred to in the literature as an emulator, and performing
sensitivity analysis on the emulator. A workflow for the global
sensitivity analysis of consequence models using an emulator has
been described in Gant et al. (2013); a similar process has been
adopted in our work.

In this study, Morris screening and quantitative global
sensitivity analysis of the BBDR near-term pregnancy model for
the thyroid axis was conducted at euthyroid conditions, with
no perchlorate exposure and a dietary iodide intake dose of
200μg/day (Lumen et al., 2013). In Lumen et al. (2013), model
parameterizations and calibrations for the BBDR pregnancy
model were conducted at steady state, where periodicity in
model predictions for maternal serum thyroid hormone levels
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was achieved. Thus, the parameter screening using the Morris
method was conducted over a period where steady state is
expected to be achieved (2800–3000 h) and evaluating over
a period of 200 h within the model’s functional window of
periodicity. Alterations in maternal serum fT4 levels were used
as the relevant end point for disease state evaluations in Lumen
et al. (2013) and are also chosen as the model predicted output
for evaluation in the current work.

Parameter Ranges
A summary of the model parameters (physiological and
biochemical) and their ranges for input for the screening analysis
is listed in Table 1. Point estimates of model parameters obtained
from the literature and estimated in the deterministic model were
used as the mean value of the distribution. The lower and upper
bounds of the individual parameters were set to 2.5th and 97.5th
percentile of a Gaussian distribution with parameter-specific
variability, unless otherwise noted. A comprehensive literature
search was conducted to survey the available information on
variability and uncertainty around the mean for a given model
parameter. Available information for life-stage-, thyroid axis
system-, and chemical- specific model parameter variability was
gathered and tabulated as shown in Table 1. When multiple
studies characterizing variability were available for a given
parameter, the data were combined using methodology adopted
by Abduljalil et al. (2012). Where necessary, data were extracted
from figures in original references using digitizing software.
Coefficients of variation were calculated using values derived
from literature searches and they are expressed for each as the
ratio of standard deviation to the mean. Where information
regarding variability in thyroid function is scarce for the
near-term gestational time point being modeled, comparable
information gathered from published studies involving non-
pregnant individuals was used as initial estimates in the
analysis. Coefficients of variation were assumed to be 30%
for parameters with no variability or uncertainty information,
unless specified otherwise. For lumped compartments, model
re-parameterization as described in Gelman et al. (1996) was
adopted to prevent the sampling of unrealistic values and to
ensure that mass balance is maintained in compartments and
blood flows to tissues (Gelman et al., 1996).

The Morris Screening Method
The Morris method, as described in McNally et al. (2011), was
adapted for use as a screening test for the BBDR-HPT axis
near-term pregnancy model parameters. Sixty-six maternal and
fetal model input parameters, inclusive of physiological, iodide-
and thyroid-hormone specific parameters, were screened. The
model runs were allowed to reach periodicity for evaluating the
predicted output of maternal fT4 levels. The interference factor
and the number of re-samplings were set to 4 and 1, respectively,
as recommended in Saltelli et al. (1999). In Morris screening,
the influence of each parameter is assessed with two sensitivity
measures: μ, which measures the overall influence of a variable
and σ, which estimates the interaction propensity or non-
linearity effect. Parameters were evaluated using an input space
represented by 100 Morris optimized trajectories. A total of 100

elementary effects was sampled from the finite distributions of
each parameter, from which μ and σ were derived (Campolongo
et al., 2007). Due to the stochastic nature of the Morris method,
the screening analysis in its entirety was repeated three times
and the consistency in the parameter ranking was compared
across runs. Results of the screening analysis were analyzed by
ranking model parameters in descending order of μ and σ for
the individual iterations. Results based on Morris screening were
compared to those obtained from one-at-at-time local sensitivity
analysis.

Gaussian Process Emulation
Model parameters selected by the Morris method were used
as input for the quantitative global sensitivity analysis, which
was performed using Gaussian Emulation Machine (GEM)
software. In contrast to a method like eFAST, which can be
executed in a single script file and with no user interaction
or expertise required, the method used in our work requires
some mathematical expertise and greater interaction with the
user. A concise description of the process is provided here.
However greater technical detail, sufficient to replicate our work,
is provided in Supplementary Material. The efficiency of this
technique arises from the use of an emulator, which is a statistical
approximation to the BBDR model. The emulator used in this
work was based upon a Gaussian Process regression model that
has certain properties that are suitable for use with deterministic
models (Oakley and O’Hagan, 2004; Kennedy, 2005; Gant et al.,
2013). The emulator was built by using a relativelymodest sample
of model evaluations. The maximum and minimum values for
each of the parameters were input into GEM and the software
generated a 250 runmaxi-min Latin hypercube design (Kennedy,
2005). Each run of the design corresponds to a unique set of
parameters in the BBDR-HPT axis pregnancy model. The models
were run and the output saved. The emulator was built using
the input and output files. Once built, the emulator was highly
efficient and could be used to approximate the model output
(and quantify the uncertainty in this estimate) at untried inputs:
this was computed in a fraction of a second compared with the
6½min to run the BBDR-HPT axis pregnancy model itself. It
was important to assess the quality of fit of the emulator, which
was done by cross validation; this was essentially a comparison
of known model outputs against the emulator predictions. If
cross validation errors are small the emulator can be regarded
as a reliable surrogate for the BBDR model (see Supplementary
Material for greater technical detail). The output generated by
GEM was used to assess the quality of fit of the emulator. This
process of model evaluation suggested the ranges of some of the
model parameters were too wide because the output from the
BBDR-HPT axis pregnancy model was physiologically irrelevant
at values close to the specified minimum and maximum values.
The parameter ranges were revised until this unusual behavior
was eliminated.

Software
The BBDR-HPT axis pregnancy model was scripted and solved
using advanced continuous simulation language (acslX) version
3.0 (The AEgis Technologies Group, Inc., Huntsville, AL). Data
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extraction from plots was performed using the graph digitizing
software DigitizeIT 1.5 (Share It, Braunschweig, Germany).
Model simulations were run on a Dell laptop computer equipped
with Intel R© Core™ i5-3210M@2.5GHz processors andWindows
7 operating system. Morris screening analysis was performed
on a Dell workstation equipped with Intel R© Xeon R© CPU
@3.47GHZ (2 processors) and Windows 7 operating system.
Sets of 250 model runs were run as batch processes in parallel
using the high performance scientific computing laboratory
clusters at the FDA/Center for Devices and Radiological Health
(CDRH)/Office of Science and Engineering Laboratories (OSEL).
One cluster comprised 110 IBM System x3650M2 8-core diskless
compute nodes, whereas the other comprised 252 IBM iDataPlex
dx360 M2 8-core diskless compute nodes. The run scripts
for the Morris method were provided by Dr. George Loizou
(Health and Safety Laboratory, Buxton, UK). GEM software v1.1
(http://www.tonyohagan.co.uk/academic/GEM/index.html) was
used for quantitative global sensitivity analysis. Lowry plots were
created in R using scripts provided in the appendix of McNally
et al. (2011).

Results

Parameter ranges and the corresponding coefficient of variations
for the 66 model parameters, as shown in Table 1, were input
variables for the Morris screening analysis. Figure 2 shows
a scatterplot of the two sensitivity indices μ and σ for a
representative run. In this figure, parameters with relatively
high μ and σ are labeled individually, as densely as legibility
permits. The sensitivity indices μ and σ calculated for all three
iterations of the Morris method screening analysis are presented
in Supplementary Table 1. The input parameters of the euthyroid
BBDR-HPT axis pregnancy model to predict maternal thyroid
hormone levels were ranked by each sensitivity measure and
compared across stochastic runs as shown in Supplementary

FIGURE 2 | Morris screening analysis results identifying the most
influential parameters on model predicted output of maternal fT4
levels at steady state. Mean sensitivity indices, μ and σ, for each model
input parameter are as denoted.
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TABLE 2 | Comparison of parameter ranking results of Morris screening
and Local Sensitivity Analysis.

Parameters Morris screening Local sensitivity analysis

KPRODT4F_MI 1 17

KDEGT4F_MI 2 4

FRCONVT4_MI 3 3

BW_M 4 1

VDFT4_MI 5 5

CLF_UIM 6 2

KMNIS_I 7 6

VMAXNISF_THY_MI 8 7

CLFT4_MI 9 12

FRCONVT4_FI 10 13

QFTHY_MI 11 10

VDFT4_FI 12 14

PFT4PLC_MI 13 18

VMAXNISF_THY_FI 14 23

PAFPLCTTOB_MI 15 21

PPLCPF_MI 16 22

PPLC_MI 17 20

PAFT4PLCF_MI 18 25

QFC_MI 19 11

KDEGT4F_FI 20 15

PAFPLCBTOT_MI 21 24

KPRODT4F_FI 22 35

QFC_FI 23 32

QFRP_MI 24 8

QFTHY_FI 25 31

VMAXNISF_PLC_MI 26 27

KPRODT3F_MI 27 16

BW_F 28 19

QFROB_FI 29 50

QFSP_MI 30 9

QFPLC_MI 31 39

IODSTORES_MG_FI 32 60

KDEGT3F_MI 33 29

CLFT3_MI 34 28

KPRODT3F_FI 35 34

VFRP_MI 36 38

VDFT3_MI 37 30

VFPLC_MI 38 42

VFPLCT_MI 39 26

VFSP_MI 40 37

PRP_MI 41 40

PAFTHY_MI 42 41

VFPLCB_MI 43 33

PSP_MI 44 36

PROB_FI 45 46

VFPLS_MI 46 44

TLEN_I 47 43

PAFTHY_FI 48 47

KDEGT3F_FI 49 57

VFPLS_FI 50 51

(Continued)

TABLE 2 | Continued

Parameters Morris screening Local sensitivity analysis

VFROB_FI 51 45

VFTHY_MI 52 48

VFTHYB_MI 53 49

VFTHY_FI 54 54

CLF_BIND_MI 55 52

VFTHYB_FI 56 55

PTHY_MI 57 53

CLF_BIND_FI 58 58

PTHY_FI 59 59

VFTHYT_FI 60 62

VFTHYT_MI 61 61

IODSTORES_MG_MI 62 56

VDFT3_FI 63 65

VURINE 64 66

PAFPLC_MI 65 63

PTT4PLC_MI 66 64

Table 2. Based on the semi-quantitative criteria of having
distinctively higher μ (overall influence of a variable) and higher
σ (parameter interaction potential or non-linearity effect of a
variable), a sub-set of 26 model parameters were screened for
quantitative global sensitivity analysis with μ greater than 6e-4.
The maternal thyroidal iodide store parameter was also included
in the screened set of parameters for the verification of the
influence of initial values of thyroidal iodide stores in the BBDR-
HPT axis pregnancy model. Given the steady state nature of
the deterministic model, the Morris screening test was run to a
pre-defined time period where periodicity in maternal thyroid
hormone levels is expected to be achieved. The computational
run time for each Morris screening test of the model at steady
state and for all 66 input parameters evaluated was approximately
72 h on a Dell computer workstation. A comparison of the
parameter ranking based on the computed main effect or overall
influence on model output by the Morris method and one-at-a-
time local sensitivity analysis are tabulated in Table 2.

Table 3 summarizes the domain of the screened input
parameters and numerical results of the global sensitivity analysis
using GEM. Prior to interpreting the sensitivity indices produced
by GEM it is important to assess the quality of fit of the emulator.
Unless the emulator is an adequate surrogate for the BBDR-
HPT axis pregnancy model, the sensitivity analysis based upon
the emulator might be unreliable. Accuracy of the emulator was
assessed by an analysis of cross validation errors. Checks are
analogous to those on the residuals from a multiple regression
model: the predictions and model outputs should lie on a 1-
to-1 line (i.e., the emulator is unbiased) with errors that show
no discernable trend with model output or any model inputs.
Figure 3 demonstrates that the emulator was a reasonable fit
to the simulation results. There was an indication that the
emulator may have a small degree of bias, spanning the range
of the deterministic model calibration, for maternal free thyroid
hormone levels that are close to zero. This bias should only
have a minor impact on the sensitivity indices; however, it does
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TABLE 3 | Global sensitivity analysis parameter inputs and quantitative
output indices.

Parameters Lower bound Upper bound Variance (%) Total effect

CLF_UIM* 7.87E-02 2.11E-01 17.60 23.00

KMNIS_I* 1.33E+04 4.46E+04 12.00 15.70

VMAXNISF_THY_MI* 1.22E+03 5.64E+03 12.00 17.00

KDEGT4F_MI* 1.03E-04 2.52E-04 10.20 13.60

FRCONVT4_MI* 5.67E-05 1.14E-04 8.03 10.10

BW_M* 5.69E+01 8.33E+01 7.57 10.20

VDFT4_MI 7.69E-02 1.63E-01 6.45 8.05

QFTHY_MI 5.43E-03 2.66E-02 5.58 9.23

QFC_MI 9.48E+00 2.17E+01 2.15 3.76

CLFT4_MI 5.66E-05 3.13E-04 1.77 3.34

KPRODT4F_MI 6.85E-07 4.21E-06 0.44 0.67

FRCONVT4_FI 1.56E-05 2.24E-04 0.43 1.24

VDFT4_FI 1.21E-01 5.99E-01 0.33 0.64

KDEGT4F_FI 2.13E-03 5.47E-03 0.24 0.42

QFRP_MI 4.51E-01 8.37E-01 0.18 0.31

PFT4PLC_MI 5.93E-01 2.29E+00 0.14 0.25

PPLCPF_MI 1.65E-01 6.35E-01 0.09 0.25

PAFT4PLCF_MI 1.12E-04 4.48E-04 0.08 0.19

PAFPLCBTOT_MI 3.04E-02 1.30E-01 0.06 0.13

PPLC_MI 1.65E-01 6.35E-01 0.06 0.12

VMAXNISF_THY_FI 9.75E+02 6.82E+03 0.06 0.13

BW_F 2.53E+00 4.27E+00 0.03 0.09

PAFPLCTTOB_MI 3.04E-02 1.30E-01 0.02 0.04

KPRODT4F_FI 8.24E-05 3.18E-04 0.00 0.00

IODSTORES_MG_MI 6.81E+00 2.24E+01 0.00 0.00

VMAXNISF_PLC_MI 2.85E+02 1.22E+03 0.00 0.00

*Parameter ranges optimized for physiologically plausible sampling space for global
sensitivity analysis.

identify the unique behavior of the BBDR model at maternal
thyroid hormone levels that are close to zero. Model parameters
with variances and/or total effect greater than 0.5% were noted
to be influential variables and were thus identified as the best
subset of model input parameters. The contributions of main
and total effects for each parameter are illustrated in a Lowry
plot (Figure 4). The vertical bars depict the main and the total
effects of each of the parameter, ranked in descending order of
main effect. The ribbon on the top is a confidence band for the
cumulative sum of model output variance. The analysis shows
that the top 9–11 parameters contribute 80–100% of the output
variance, suggesting that there is some indication of higher order
interactions. Plots of the main effects, which show the trend in
maternal thyroid hormone levels if the parameter is varied over
its simulation range from minimum to maximum values, are
shown for the ninemost important parameters in Figure 5. These
are an additional output available from GEM that alternative
variance-based methods cannot compute.

Maternal urinary clearance rate of iodide ranks highest in
the estimates of main and total effect and shows a negative
correlation with maternal thyroid hormone levels (Figure 5).
The model parameters of the following three ranks have similar
main and total effect contributions. Two of the three parameters

are Michaelis-Menten enzyme kinetic parameters, Km (affinity
constant of iodide) and Vmax (maximal reaction rate of
thyroidal iodide uptake) of the sodium iodide symporter in the
thyroid, with negative and positive correlations with maternal
thyroid hormone levels, respectively. The third parameter is
a thyroid hormone-specific parameter which is a first order
de-iodination rate constant of maternal thyroxine determining
the release of inorganic iodide from its organic forms and shows
negative correlations with maternal thyroid hormone levels. The
subsequent parameters contribute less than 10% to total output
variance.

Urinary clearance rate of iodide, theMichaelis-Menten kinetic
parameters, and the blood flow to the maternal thyroid show
the highest parameter interaction quotients. GEM also allows the
calculation of specific two-way parameter interaction variances.
The interactions accounting for greater than 0.5% of variance
were between affinity constant of iodide to NIS and the maternal
urinary clearance rate of iodide; affinity constant of iodide to NIS
and blood flow to the maternal thyroid; maximal reaction rate
of NIS and the maternal urinary clearance rate of iodide; and
maximal reaction rate of NIS and blood flow to the maternal
thyroid. Lack of fit of the emulator (in particular for predictions
close to zero) can account for some of variance apportioned to
interactions; therefore, the weaker interactions should be viewed
with some caution.

Discussion

The biologically based dose-response model for the
hypothalamus pituitary thyroid axis constitutes a complex
network of anion kinetic submodels and thyroid hormone
specific submodels. The model is first of its kind to describe the
disposition of iodide following dietary intake and to capture its
subsequent biosynthesis and secretion of thyroid hormones in
the mother and fetus for near-term pregnancy conditions. A
considerable yet identifiable set of physiological-, iodide- and
thyroid hormone-specific parameters were used to configure
the model structure for whole body iodide kinetics and thyroid
function (Lumen et al., 2013). Global sensitivity analysis as
opposed to one-at-a-time local sensitivity analysis, are capable of
investigating the nature of parameter influence and quantifying
their individual and interaction effects on a chosen model
output. Maternal thyroid hormones play a crucial role in fetal
neurodevelopment, hence perturbation of serum levels of
maternal fT4 was chosen as the relevant endpoint and model
output for analysis.

Parameter evaluation ranges were derived for each model
input parameter as available in the literature and reasonable
assumptions were made on likely ranges where data were not
available. Where appropriate, a meta-analysis was conducted to
derive a pooled estimate of the variabilities and uncertainties
on parameters with datasets from multiple studies. The point
estimates of the parameters calibrated in the deterministic model
served as the parameter means around which the deduced
distributions were developed. The coefficient of variation was
used to quantify dispersion for each variable and the lower
and upper limit of expression captured 95% of the Gaussian
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FIGURE 3 | Cross validation errors and predictions from the emulator plotted against the BBDR-HPT axis pregnancy model output of maternal free
thyroxine levels (pmol/L).

distribution. These distributions for each of the 66 model input
parameters were inputs to the Morris Screening analysis of the
model at steady state. Qualitative ranking of model parameters
following theMorris screening analysis was reasonably consistent
among stochastic iterations (McNally et al., 2011). Of the 66 input
parameters, the 26 that had distinguishably higher sensitivity
indices were screened for quantitative global sensitivity analysis.
These 26 parameters included mostly of maternal iodide and
thyroid hormone specific parameters with few physiological
and fetal parameters. In addition, the robustness of the
overall screening analysis was noted when consistent results
were obtained when the analysis was repeated for alternate
representative time intervals for steady state and lower bound
dietary iodide intake level of 75μg/day (simulations not shown).
As expected, a considerable degree of concordance based on the
main effect can be noted amidst the top-ranked and bottom-
ranked parameters computed by the Morris screening analysis
compared to that of the local sensitivity analysis.

Quantitative global sensitivity analysis is computationally
expensive requiring many thousands of model evaluations.
Computational cost and efficiency plays a crucial role in
decisions regarding modeling approaches for global sensitivity
analysis, particularly for complex systems with a large number

of parameters and a long runtime for each simulation (McNally
et al., 2011; Gant et al., 2013). An emulator based upon a
Gaussian Process regression model was chosen over eFAST
primarily due to computational efficiency: eFAST was not
computationally feasible. The emulator also provides richer
model output compared with eFAST in the form of main effect
plots and the computation of specific two-way interactions
(Gant et al., 2013). However, there is an additional tier
of complexity in assessing the fit of the emulator, and the
methodology requires greater user engagement in generating
the Latin Hypercube design, running the simulations, and then
reading in input and output data to perform the sensitivity
analysis. The Latin Hypercube design used in this work was
particularly useful since it allowed the efficient sampling of high
dimensional parameter space. We were thus able to quantify
the range of maternal thyroid hormone levels predicted by the
BBDR-HPT axis pregnancy model that were consistent with
outputs as expected for input parameter ranges specified. In the
modeling process we learned that some input ranges were too
large because they corresponded to physiologically unrealistic
maternal thyroid hormone levels and the parameter ranges
were subsequently reduced. For the 26 screened parameters,
analysis of the 250 BBDR pregnancy model runs using the
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FIGURE 4 | Lowry plot of the quantitative global sensitivity
analysis results of Gaussian Emulation processes. The total
effect of a parameter comprised the main effect (black bar) and
any interactions with other parameters (gray bar) given as a
proportion of variance. The ribbon, representing variance due to

parameter interactions, is bounded by the cumulative sum of main
effects and the minimum of the cumulative sum of the total effects
for model predicted levels of maternal free thyroxine levels at
steady state. Red line denotes the model parameters with variances
and/or total effect greater than 0.5%.

GEM software had a run time of less than 40min. While
the screening analysis of 60+ parameters using the Morris
method at steady state was computationally expensive, this
step was critical in identifying the most influential parameters
and achieving computational efficiency in the global sensitivity
analysis phase.

In summary, global sensitivity analysis quantified 11
parameters with main and total effects higher than 0.5%.
Interestingly, the Gaussian emulation process ranked maternal
iodide-specific parameters equally as high as maternal thyroid
hormone-specific parameters in their contribution to the total
variance of themodel predictedmaternal thyroid hormone levels.
The iodide-specific parameters with relatively high sensitivity
indices include maternal urinary clearance rate of iodide and
the Michaelis-Menten enzyme kinetic parameters, Km and
Vmax of the sodium iodide symporter and the blood flow to
the maternal thyroid. The thyroid hormone related parameters
include maternal thyroxine production rate, degradation rate,
urinary clearance rate, thyroxine volume of distribution, and the
fractional conversion factor that determines the unbound free

fraction of T4 in the serum. These identified sensitive model
parameters support the conceptual framework underpinning the
factors that affect iodide kinetics and thyroid function, and hence
the maternal thyroid hormone levels. Although ranked lower, a
few of the fetal thyroid hormone-specific parameters were also
determined to be influential, such as the volume of distribution
of thyroxine in the fetus and the free fraction of fetal thyroxine
as determined by the thyroid hormone binding proteins in the
fetus.

The three highest ranking parameters identified by global
sensitivity analysis include the urinary clearance rate of iodide
and the Michaelis-Menten parameters, Km and Vmax that
determine the sodium iodide symporter mediated thyroidal
uptake of iodide. The main effects of these three variables
and their pair-wise interactions as identified by the global
sensitivity analysis succinctly summarize the interplay between
the two kinetically competing mechanisms, renal elimination
of iodide and sequestration into the thyroid, that influence the
circulating levels of inorganic iodide in the pregnant woman.
Inorganic iodide is the main and limiting substrate for thyroid
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FIGURE 5 | Gaussian Emulation process outputs. Trend plots of the main effects on model predicted output for the nine parameters identified as most influential
varied over its simulation range from minimum to maximum value.

hormone biosynthesis. The thyroid hormone-specific parameters
identified as influential, such as thyroxine degradation rate,
volume of distribution, and the fractional conversion term for
serum thyroid hormone and protein binding, can also directly
modulate the serum concentrations of the maternal fT4 levels.
Intra-thyroidal production rate of thyroxine was also captured
as a sensitive parameter but was ranked lower compared to the
aforementioned parameters.

Identification of blood flow to maternal thyroid as a sensitive
parameter in addition to the deduced parameter interaction
coefficients with the sodium iodide symporter parameters (Km
and Vmax) emphasizes the flow-limited nature of the system
and the importance of local availability of iodide as substrate
for thyroidal uptake. In addition to blood flow, maternal body
weight, to which several model parameters are scaled, was
not surprisingly identified as a crucial physiological parameter
contributing to model output variance. Collectively these results
indicate that the maternal intra-thyroidal iodide stores play a
pivotal role in linking the inorganic iodide substrate kinetics
of NIS mediated thyroidal uptake of iodide to the dynamic
aspects of thyroid hormone production and alterations in serum
thyroid hormone levels at steady state. It can be noted that the
sustenance of the thyroidal iodide stores is the rate limiting
step in the thyroid hormone production and not the rate of
thyroxine production itself. The findings of this analysis highlight
the need for future studies focusing on determining intra-
thyroidal iodide stores and serum inorganic iodide levels in
sensitive sub-populations such as pregnant mother and fetus to

provide information on iodide nutritional and thyroid function
status, in addition to the common biomarker measurements
such as urinary iodide and serum thyroid hormone levels.
Although the contribution of parameter interactions to total
output variance is lesser than its main effects, identification of
the interacting parameters aided in the better understanding
of the true descriptors of the thyroidal system and verifies the
models ability to emulate the functional aspects of the biological
system under study, in these sensitive life-stages. Moreover, the
systematic identification of influential model parameters due to
not only their main effects but by interactions as in the case of
the urinary clearance rate of iodide and blood flow to the thyroid
among others, stresses the potential use of global sensitivity
analysis in prioritizing future research through a holistic system
evaluation approach.

Additional study outcomes including parameter in-sensitivity
may help inform and refine our understanding of the model
and of the modeled system. For example, as discussed above the
thyroidal iodide stores are found to play a crucial role in this
dynamic system but the importance of its parameter initialization
is found to be minimal. Other relatively lower-ranked maternal
parameters include tissue partition coefficients of fT4 that might
influence the circulating levels of serum thyroid hormone levels.
Parameters that drive the placental transfer between the mother
and the fetus, such as permeability area cross product terms
and enzyme kinetic parameters for both fT4 and iodide, were
screened and identified to be influential but to a lesser degree.
Post-calibration estimates in the deterministic model suggest
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that 20% of the fetal thyroxine levels are maternal in origin
via trans-placental contributions, with the remaining 80% due
to fetal intra-thyroidal production at near term. Parameters
such as volume of distribution and degradation rate of fetal
thyroxine, fractional conversion terms between total and free
fetal thyroxine, and sodium iodide symporter mediated thyroidal
iodide uptake parameters in the fetal thyroid were all identified
as sensitive parameters but are ranked lower in comparison to
equivalent parameters in the mother. These findings suggest that
the fetal submodel structure taking into account its functionality
does not completely act as a sink to the maternal submodel as the
fetal thyroid develops in utero.

This study offers a good example of the application of
quantitative global sensitivity analysis for a BBDR-HPT axis
pregnancy model and its use in the understanding of the
fundamental principles of an intricate biological system, stressing
the importance of the work in its methodological and science-
based applications. The study also helped identify sources of
uncertainties in the BBDR-HPT axis model output and quantify
their contributions as main, total, and interaction effects. The
Lowry plot offers a visually comprehensible means to present
the outcomes of the global sensitivity analysis for such complex
models, facilitating communications between model developers
and application-orientated researchers (McNally et al., 2011). The
knowledge gained in this study sets the stage for conducting
a computationally efficient probabilistic analysis of the BBDR-
HPT axis pregnancy model using the identified sub-set of
model input parameters with their contributions to model
uncertainties quantified. Whilst the methodology for the global
sensitivity analysis utilized in this work was developed in 2004
and has been applied to a diverse range of models, there
are relatively few applications of the methodology outside
specialist literature on statistics and computer models (Oakley
andO’Hagan, 2004). To our knowledge this is the first application
of global sensitivity analysis based upon an emulator in the
toxicology/pharmacology literature. More than ever in recent
times where the acceptance and application of computational
models are rapidly increasing, it is of importance to continue
investing in the science of modeling and current practices as

needed in support of its advancement. The demonstration of
the computational feasibility of quantitative global sensitivity
analysis for larger biological models using cross-disciplinary
methodologies as shown in this work provides current and
future modelers with a workflow for use and application
as they deem fit. The impact of such modeling practices
extends beyond its use in the development of framework
for risk assessment into aiding in the use computational
models as diagnostic tools for identifying data gaps and
areas of future research to address some of the true model
uncertainties.
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