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ABSTRACT

Transposon sequencing is commonly applied for
identifying the minimal set of genes required for cel-
lular life; a major challenge in fields such as evo-
lutionary or synthetic biology. However, the scien-
tific community has no standards at the level of pro-
cessing, treatment, curation and analysis of this kind
data. In addition, we lack knowledge about artifac-
tual signals and the requirements a dataset has to
satisfy to allow accurate prediction. Here, we have
developed FASTQINS, a pipeline for the detection of
transposon insertions, and ANUBIS, a library of func-
tions to evaluate and correct deviating factors known
and uncharacterized until now. ANUBIS implements
previously defined essentiality estimate models in
addition to new approaches with advantages like not
requiring a training set of genes to predict general
essentiality. To highlight the applicability of these
tools, and provide a set of recommendations on
how to analyze transposon sequencing data, we per-
formed a comprehensive study on artifacts correc-
tions and essentiality estimation at a 1.5-bp resolu-
tion, in the genome-reduced bacterium Mycoplasma
pneumoniae. We envision FASTQINS and ANUBIS to
aid in the analysis of Tn-seq procedures and lead to
the development of accurate genome essentiality es-
timates to guide applications such as designing live
vaccines or growth optimization.

INTRODUCTION

Synthetic biology aims to rationally design living systems
for practical applications. Ideally, this requires a compre-
hensive understanding of the organism and a reduction

of its genome by removing dispensable genes to create a
so-called ‘chassis’ (1). Transposon mutagenesis is one of
the most informative methods for identifying non-essential
genes and understanding what is the minimal set of genes
required to sustain life. This technique relies on the random
disruption of genes to discriminate between those genes
that do not accept insertions and thus are required to sus-
tain life (‘essential’; E), those that when inactivated decrease
the fitness of the organism (‘fitness’; F), and those which
are dispensable under the study conditions (‘non-essential’;
NE) (2). Disruption of genes by transposable elements is
commonly driven by transposases (3). Transposases are en-
zymes able to randomly insert genetic material into genome
regions delimited by inverted repeats (IR) and they can be
classified in two types depending on insertion site prefer-
ences: Tc1/mariner transposases, that are able to disrupt
TA dinucleotide sites, and Tn-5 based transposases, which
are assumed to insert without sequence composition restric-
tions (4). After transforming the cells, the number of in-
sertion sites in the population, or ‘coverage’, should ide-
ally reach the maximum (i.e. every possible genome posi-
tion disrupted at least once). Then, mutant cells are selected
for by subsequent growth and serial passages. After sev-
eral rounds of division, cells in which an E gene has been
disrupted will disappear from the population and only NE
genes will have insertions. Remarkably, essentiality in an or-
ganism may vary between different genetic and/or environ-
mental conditions like during infection (5). Transposon in-
sertion sites are commonly identified by ultra-deep sequenc-
ing in a technique known as Transposon sequencing (Tn-
seq) (6–8). Unfortunately, analysis of Tn-seq data to deter-
mine gene essentiality is not straightforward and both bi-
ological and technical factors can result in errors. In ad-
dition, essentiality is not Boolean (E or NE); there is also
a third set of genes called fitness genes (F), in which the
probability to find insertions depends on the capability of
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mutants carrying these mutations to compete with the cul-
ture population. Hence, F genes can be defined as NE or
E depending on the rounds of passaging selection and ex-
perimental conditions (7). In E genes, it is common to find
insertions in the N- and C-terminal regions as these are not
expected to disrupt the functional core of the encoded pro-
tein (9–12). Presence of NE domains and high abundance
and long protein half-lives are also factors to consider (7).
For example, cells with an insertion in an E gene that en-
codes a protein with a long half-life will still survive until
the corresponding protein is not depleted through dilution
by cell division. Similarly, the gene of an essential metabolic
enzyme could have insertions until the metabolite produced
by the enzyme runs out. Finally, due to the high sensitiv-
ity of deep sequencing, it cannot be discarded that transpo-
son insertions occurring in E regions (not viable) could still
be detected if dead cells with those insertions remain in the
sample.

At the technical level, increased read counts for an inser-
tion position can be found because of PCR duplicates that
are produced during the transposon sequence enrichment
step (13) (see Supplementary Figure S1). Despite avail-
able software being able to count these duplicates as one
(14,15), the effect of removing the duplicates on essential-
ity assignment is still unclear. Also, in Tn-seq the exact in-
sertion position can be miss-mapped due to a high error
rate when sequencing specific regions such as homopoly-
mers (16). Miss-mapped insertions can also arise due to
chimeric sequences, which can be generated when combin-
ing chromosomal DNA with the inserted sequence, and that
by chance, may match another genomic locus (17). Further-
more, there can be issues regarding the transposon inser-
tion itself because different transposases prefer different nu-
cleotide compositions. For example, the Tc1/mariner trans-
posase only disrupts TA dinucleotides sites and as such, it
is necessary to correct for the GC content (18). Even the
Tn5-based transposases, which presumably do not present
this bias (19), have been reported to favor AT-rich regions
(7). Some transposases also produce staggered cuts that re-
sult in target site duplications (TSD) (20,21). The impact of
these factors on the analyses and interpretation of Tn-seq
data has not yet been addressed.

Finally, when running Tn-seq experiments it is also im-
portant to consider how essentiality is estimated. Multiple
approaches have been proposed and include different met-
rics, normalizations (22,23) and methods based on differ-
ent statistical models (9,24–26). A complete Tn-seq analysis
requires multiple parameters as well as the use of a train-
ing set of genes or ‘gold set’ that can introduce additional
biases depending on the assumptions taken. For example,
to define a NE gold set some models took genes not con-
served in closely-related species (7) while others use non-
coding regions (25). This problem is especially important in
organisms with little or no knowledge on their basic biol-
ogy. In general, software tools to extract insertion profiles
and posterior analyses of Tn-seq procedures are focused on
Tc1/mariner-based protocols (27–29) and are not really ap-
plicable for Tn5-based Tn-seq as they only account for TA
site disruption. Although a variety of methods have been
proposed, there is still no in-depth study aimed at under-
standing how the combination of data treatments with dif-

ferent assumptions and approaches impacts the extraction
of essentiality information.

To solve the above issues in an unbiased manner, we have
developed two software packages: (i) a pipeline for the de-
tection of transposon insertions called FASTQINS and (ii)
a framework for the ANalysis of UnBiased InSertions, or
ANUBIS (Figure 1A). Together, these packages take into
account the aforementioned issues that are ignored in cur-
rently available bioinformatic solutions (Figure 1B), and
create a benchmark to facilitate comparison, analysis and
assessment of genome essentiality. To test the methodol-
ogy we generated a Tn-seq dataset by transforming the
genome-reduced bacterium Mycoplasma pneumoniae with
the mini-transposon pMTnCat BDPr, which encodes the
Tn5-like transposase Tn4001 (Figure 1C). This microor-
ganism has a genome of ∼860 kb, 40% GC-content, 689
protein-coding genes and is an excellent systems and syn-
thetic biology model organism (30,31). In addition, M.
pneumoniae presents unprecedented high transposon trans-
formation efficiency rates that ensure a high initial inser-
tional coverage along the genome (1 insertion every ∼3 bp
in this study; 1 insertion every ∼4 bp in a previous study
(7)), preserved when only considering coding regions (two
insertions every ∼7 bp). Using this model, we analyzed mul-
tiple rounds of passage selection and the associated essen-
tiality estimates (Figure 1D). Using ANUBIS, we then com-
pared different essentiality landscapes by passage, process-
ing steps, and model estimates (Figure 1E).

In light of the increasing use and potential of Tn-seq, we
envision that our new tools will further the development,
implementation and understanding of this technique, and
help pave the way toward new and improved applications.
FASTQINS and ANUBIS will have a direct impact on con-
cepts related to essentiality, like genome reduction, essen-
tiality of genomic regulatory regions, and protein modular-
ity. Moreover, with the current global need for new vaccines,
accurate identification of virulence factors essential in the
pathogenic process but not for the cell viability, by using a
library of transposon mutants in animal models as inocu-
lum, could make possible the design of effective attenuated
vaccines.

MATERIALS AND METHODS

Generation of sample datasets for transposon insertion se-
quencing analysis

Wildtype M. pneumoniae strain M129 (WT) was grown in
modified Hayflick medium (31) at 37◦C under 5% CO2 in
tissue culture flasks. To generate M. pneumoniae mutant
libraries, 2 �g of mini-transposon plasmid DNA (pMT-
nCat BDPr) was electroporated as previously described
(32). The resulting transformants were selected during 5
days in 5 ml of culture medium supplemented with 20 �g/ml
of chloramphenicol, and then harvested in 1 ml of fresh
medium. This cell stock was referred to as passage 0 (P0).
To assess mutant fitness, transformants were serially cul-
tured through ten consecutive passages as follows. Hayflick
medium (5ml) supplemented with 20 �g/ml of chloram-
phenicol was inoculated with 25 �l of P0. After 4 days
of culture (∼10 cell divisions), transformants were scraped
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Figure 1. Graphical abstract. (A) Proposed workflow using FASTQINS to process raw sequencing files into insertion profiles and ANUBIS to explore
essentiality-related problems and provide estimates. (B) Graphical representation of the different issues that are not considered in previous essentiality
studies. Target site duplications can double the signal of a transposition event (the transposon in blue is flanked by two different chromosome positions
that are at a fixed distance equal to the duplication size). Reads derived from the PCR process can artifactually increase the signal of an insertion point
(symbolized as triangles). GC content biases can occur when a transposase shows preference for TA sites. At the level of the protein, 5% of the N’- and
C’-termini are arbitrarily not considered because they tend to accept insertions with no impact on essentiality. The differential essentiality of protein motifs
and a lack of mapping due to repeated motifs should also be considered. Finally, essentiality can be estimated by different models and assumptions. (C)
Saturating mutagenesis of M. pneumoniae with the mini-transposon pMTnCat BDPr, which includes a Tn4001-derived transposase and a Cat resistance
marker flanked by P438 promoters. With this approach, E and NE genes are expected to be disrupted in a random manner. (D) The library was selected
along 10 serial selection passages (10 cell divisions each). (E) Information was collected from seven different passages (n = 2) and degenerated by two types
of sampling. These samples were used to iterate and evaluate different combinations of corrections, essentiality models and criteria. Results were assessed
by comparing the level of agreement between estimates and a validated set of 84 genes of known categories.
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off the flask in the culture medium, and 1 ml of cell cul-
ture (P1) was used for genomic DNA isolation using the
MasterPureTMDNA Purification Kit (Epicentre, Cat. No.
MCD85201). In parallel, 25 �l of P1 was inoculated to
obtain the next passage, and this procedure repeated un-
til passage 10 (P10). Colony forming units (CFU) in the
samples used for genomic DNA isolation ranged between
1 × 108 and 1 × 109 CFU/ml. To account for any sam-
pling batch effect, cell passaging and sample collection were
performed in duplicate. The pMTnCat BDPr plasmid used
to obtain the transposon library is derived from the mini-
transposon pMTnCat (33), which encodes a cat resistance
marker. This mini-transposon was modified to include P438
promoters (34) at both ends of the cat resistance gene to
minimize any polar transcriptional effects after transpo-
son insertion. To perform these modifications, the cat gene
was amplified using the Pr cat F and Pr cat R primers, and
cloned by Gibson assembly into a pMTnCat vector opened
by PCR using primers p Pr F and p Pr R (see Table 1).

Library preparation

Between 10 and 500 ng of genomic DNA were fragmented
to 200–300 bp using a Covaris S2 instrument (Supplemen-
tary Figure S1). End repair and adaptor ligation was per-
formed using the E7370L NEBNext Ultra DNA Library
Prep kit for Illumina according to the manufacturer’s in-
structions, except that the adaptor used contained only the
read 1 adaptor sequence and not the standard Illumina Y-
shaped adaptor containing read 1 and read 2 adaptor se-
quences (Supplementary Figure S1). The adaptor ligated
was amplified with NEBNext Q5 Hot Start HiFi PCR Mas-
ter Mix in a 50-�l reaction with the R1 PA primer and Tn
select PA primer (0.2 �M final concentration) using the fol-
lowing PCR program: 98◦C, 30 s; 8 cycles of 98◦C, 10 s
and 65◦C 25 s; followed by a final extension of 5 min at
65◦C. The number of PCR cycles required for library am-
plification was estimated by preparing a 50-�l reaction of
qPCR NEBNext Q5 Hot Start HiFi PCR Master Mix and
adding SYBR Green I (10,000× in DMSO Sigma Aldrich)
to at a final concentration of 0.1×. PCR was performed in
a Roche Light Cycler LC480 for 30 cycles using the same
conditions as for the first PCR reaction. The first PCR (1
�l) was used as template and the Universal PCR Primer
(NEB) and R2 TN select nested primer mix were used at
a final concentration of 0.2 �M. The remaining 49 �l of
the first PCR were purified using 1.8 volumes of AMPure
XP beads (Beckman Coulter) according to the manufac-
turer’s protocol. The purified product was eluted in 48 �l
of EB buffer (Qiagen). A second PCR was performed us-
ing 15 �l of the purified PCR product (Supplementary Fig-
ure S1), with the number of cycles estimated from the pre-
vious qPCR (cycle number close to plateau minus 3 cycles
due to the increased amount of template). PCR conditions
were the same as in the qPCR using NEBNext Q5 Hot Start
HiFi PCR Master Mix in a 50-�l reaction and the Uni-
versal PCR Primer (NEB) and R2 TN select nested primer
mix were used at a final concentration of 0.2 �M, but with
SYBR Green I omitted. The second PCR was purified us-
ing 1 volume of AMPure XP beads and eluted in 20 �l of
EB buffer. To complete adaptor sequences and add sam-

ple barcodes, a third PCR was performed with NEBNext
Q5 Hot Start HiFi PCR Master Mix in a 50-�l reaction
using 19 �l of the second purified PCR as a template (Sup-
plementary Figure S1). The Universal PCR Primer and a
suitable NEBNext Multiplex primer for Illumina at a final
concentration of 0.6 uM (Table 1) were used. The PCR pro-
gram used was: 98◦C, 30 s; 4 cycles of 98◦C, 10 s and 65◦C
75 s; followed by a final extension of 5 min at 65◦C. Af-
ter the third PCR, libraries were purified using 1 volume
of AMPure XP beads and eluted in 20 �l EB buffer. Final
libraries were analyzed on a DNA High Sensitivity Bioan-
alyzer Chip (Agilent) and quantified using KAPA library
quantification kit for Illumina (Roche). Libraries were se-
quenced on a HiSeq 2500 using HiSeq v4 sequencing chem-
istry and 2 × 125 bp paired-end reads (primers are shown in
Table 1). The raw data was submitted to the ArrayExpress
database (http://www.ebi.ac.uk/arrayexpress) and assigned
the accession identifier E-MTAB-8918.

FASTQINS: a standardized pipeline for transposon insertion
mapping

We designed FASTQINS combining software tools gen-
erally used in nucleotide sequencing analysis to provide a
standardized and reproducible pipeline to process, filter,
and map insertions across a genome (Supplementary Fig-
ure S1). FASTQINS accepts randomly pooled transposon
libraries generated using either Tc1/mariner or Tn5-based
transposons and can analyze single-end or paired-end se-
quencing data. FASTQINS starts with an optional process-
ing step where read duplicates are removed using Fastuniq
(15). The next step involves the trimming of specific IRs in-
cluded in the raw reads (e.g. TTTTACACAATTATACGG
ACTTTATC, length = 26) that are associated with a trans-
position event. This sequence, which must be provided by
the user, is processed by FASTQINS to extract the shortest
subsequence that is not present in the genome of interest
(using the same previous example: TACGGACTTTATC,
length = 13). Trimming is required so that reads shorter
than the original read that was covering the transposi-
tion event can be selected. The following step consists of
mapping the reads to the reference genome selected using
Bowtie2 (35). Subsequently, FASTQINS filters the align-
ment with SAMtools to select paired reads mapped unam-
biguously with a minimum alignment quality (36). If a user
provides single-end reads or selects that option, the previ-
ous steps are identical except the condition of paired map-
ping is not considered and every mapped read is extracted.
The final step of the process uses basic shell text process-
ing tools (awk/grep/sed) paired to BEDTools (37) to sub-
set those reads that are shorter than the original read length
minus the shortest subsequence of the IR (expected read
length after removing the IR). From these reads, the ge-
nomic base position contiguous to the previously removed
IR is counted as the insertion point (see Supplementary Fig-
ure S1). The final output includes a file detailing the list of
position where an insertion is found and the read counts
associated with that position. Additionally, users can split
the mapped insertions by forward and reverse orientation,
which can be useful in cases like correcting TSD effect (see
Results). Finally, a log file that details settings and messages

http://www.ebi.ac.uk/arrayexpress
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Table 1. List of primers used in transformation and sequencing (5′ – 3′)

pMTnCat vector primers
Pr cat F ACTTTATTAATTCTAAATACTAGGGCCCCCCCTCGAGGTC
Pr cat R ACTTTATTAATTCTAAATACTAGCGGCCGCTCTAGAACTA
p Pr F TAGTATTTAGAATTAATAAAGTTTTTACACAATTATACGGACTTTATCAGCTA
p Pr R TAGTATTTAGAATTAATAAAGTTTTTACACAATTATACGGACTTTATCTAGTC
Illumina sequencing primers (first PCR)
Tn-select-PA TTTTACACAATTATACGG
R1-PA ACACTCTTTCCCTACACGACGCTCTTC
PCR primers for enrichment (together universal Illumina primer), the nested mix was composed of an equimolar mixture of:
R2-Tn-select+1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTVTTTTACACAATTATACGGAC
R2-Tn-select+2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTVVTTTTACACAATTATACGGAC
R2-Tn-select+3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTVVVTTTTACACAATTATACGGAC
R2-Tn-select+4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTVVVVTTTTACACAATTATACGGAC

from the application is generated. To expand the applica-
tion of these tools, functionalities such as the control and
recovery of intermediate processes and subtask paralleliza-
tion have been added (38).

Definition of insertion maps from transposon sequencing
datasets

To generate the working dataset, we ran FASTQINS
pipeline over 20 different samples covering 7 different cell
passages (1, 2, 3, 4, 6, 8 and 10) with two biological repli-
cates (replicate identifiers 1 and 2) for each passage and two
technical replicates for passages 2 to 4 (replicate identifiers
3 and 4, related to replicates 1 and 2, respectively). We con-
sidered three different configurations: single-end, paired-
end keeping read duplicates, and paired-end leaving out
read duplicates (Supplementary Table S1). As an output,
we kept the log of the process with information like transpo-
son recovery rate, and three insertions files: two considering
each of the sequencing orientations and the merge. Finally,
we also included the de-stranded versions ‘fw’ and ‘rv’ for
forward- and reverse-mapped reads, respectively (all files in-
cluded in Supplementary Data 1).

ANUBIS: a Python framework to perform analyses of inser-
tion profiles in an unbiased manner

We developed a Python framework called ANUBIS (ANal-
ysis of UnBiased InSertions) to cover from loading to analy-
sis and visualization of data. ANUBIS is mainly supported
by the sample object. Each sample includes specific func-
tions to return basic statistics, parameters, and attributes,
such as associated annotation, training gene sets, metadata
like dilution, growth time, or passage. This information is
used by different inner functions to perform the analyses
required by the user (Figure 1D). The general flow of steps
is as follows:

i. Data load and definition: Data can be loaded as a
single sample or as a collection. Files generated by
FASTQINS, as well as those in WIG (wiggle) format,
are automatically recognized as single samples. ANU-
BIS also accepts samples in bulk, using a tab-delimited
file format that includes all the required information.

ii. Quality assessment: ANUBIS includes functions to ex-
plore the distribution of insertions, read coverage asso-
ciated to each position and correlation between repli-
cates.

iii. Pre-processing: This step includes processes like check-
ing sequencing and annotation biases. For example, the
user can detect and apply a correction for positions
prone to having artifactual signals like those derived
from GC biases at the level of the 4-mer, TSD, and
mismatch-derived insertions. Also, at the level of anno-
tation, N- and C- terminals, repeated regions (Supple-
mentary Data 2), and protein domains (either selected
by the user or automatically predicted) can be corrected
by using Change Point Detection algorithms from the
Python module ruptures (39). If CPD is asked, ANU-
BIS will use this tool to delimit regions with differential
linear density using a penalized kernel change point de-
tection as default.

iv. Custom read count filers: ANUBIS also includes three
filtering functions that can be applied or not depend-
ing on the needing of the user: (i) a read filter that ac-
cepts user-defined thresholds, useful to perform subset-
ting of insertion positions based on their read counts;
(ii) a filter to discard insertions with read counts in the
tails of the read distributions based on the assumption
that the right tail is composed by over-represented in-
sertions due to sampling (28) and the left tail counts for
poorly represented insertions usually associated to arti-
factual signals from dead cells and the mapping process
(7) and (iii) a filter for positions with read values in the
range of read counts mapped to E genes. This latter filter
is based on the assumption that a list of known E genes
should present a clean profile and any insertions within
the genes would therefore come from dead cells and/or
mapping process artifacts. In this filter, the 95th per-
centile of read counts for insertions mapped to E genes
in a gold standard set is calculated and later used as
the minimum value required to trust an insertion. In
ANUBIS, each of these filters can be applied with cus-
tom parameters defined by exploration of the data or
with a default based on their original reference (e.g. tail
filter set to remove the insertion with read count below
the 5th and above the 95th percentile of the read count
distribution).

v. Metric calculation, standardization and normalization:
In addition to general metrics (i.e. mean, standard devi-
ation, median, minimum, and maximum) and common
metrics in DNA/RNA sequencing (i.e. CPM or counts
per million of reads and RPKM or reads per kilobase
per million reads), ANUBIS also computes three spe-
cific metrics relative to a genomic region: transposon-
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inserted positions (I), read counts (R) and read counts
per transposon-inserted position (RI). In a region from
position n to m of the genome, I would be the count
of disrupted positions from n to m, R would be the
sum of reads from insertions found between n to m,
and RI would result from the ratio between R and I
(R/I). These values can be calculated for annotations
provided by the user and/or sliding windows, either
overlapping or not. When calculated for regions with a
different annotation length (i.e. genes), these values are
generally normalized by the length of the annotation.
When I is normalized in this way, we obtain the metric
known as linear density. Standardization methods such
as min–max scaling and z-standardization can also be
applied in ANUBIS.

vi. Sampling methods: These functions derive new datasets
from previous samples. This process can be performed
either randomly by removing a specific number of in-
sertions sites or based on read count (Figure 1E).

vii. Analysis and visualization: ANUBIS provides multiple
procedures to extract essentiality predictions with dif-
ferent methodologies (detailed below), perform differ-
ential insertion comparisons, and relate information
such as protein domains, repeated regions, and struc-
tural information with Tn-seq profiles.

All these processes can be executed independently or in
a combined and sequential manner through the protocol
class. Furthermore, ANUBIS also include additional func-
tions that can address issues during the design of a Tn-
seq experiment, such as defining the most suitable IR for a
specific genome, and defining the relationship between ex-
pected coverage, number of initial cells, and efficiency of
transformation based on a probabilistic model of insertions
(see Supplementary).

Gold standard and validation sets

Some of the methods required to predict essentiality cat-
egories rely on the definition of the center of each E and
NE linear density distribution to later predict the proba-
bility of deviating from the center (7,24,40). In these cases,
a ‘gold standard set’ is required as a reference and usually
includes a list of known E and NE genes for which an ex-
pected linear density for each category will be computed.
Alternatively, the reference center for NE annotations can
be calculated from non-coding regions (26) (although in
this case, regulatory or important structural regions of the
chromosome may be targeted). In this study, we used the
same gold standard set as in previous studies using M. pneu-
moniae as a model (7) (Supplementary Table S2). This list
includes 27 known essential genes, and comprises riboso-
mal RNA, tRNA synthetases, DNA and RNA polymerases
complexes, sigma 70 factor, and glycolytic enzymes required
for ATP production. Also includes 29 genes not found in
the very closely related species Mycoplasma genitalium as
NE genes. Additionally, we defined a validation set for per-
forming the accuracy assessment of each method. This vali-
dation set included the previously defined gold standard set
plus 29 genes that were successfully knocked out or deleted
(41) (n = 85). For these 29 genes, we also had phenotypic

growth information and information regarding transcrip-
tional changes. This information enabled us to define a set
of six genes that are potentially F genes because their dele-
tion resulted in a ‘slow’ growth phenotype (41) (Supple-
mentary Table S2). Accordingly, we added the remaining 24
genes (no phenotypic changes) to the validation set of NE
genes, leaving out the 6 genes that were likely to be F genes
for specific observations. Alternatively, non-coding regions
can be used as NE gold standard set (automatically defined
as genome bp not located in known annotations), this is a
common option when exploring essentiality based on linear
density using Gamma (24,40) and Gumbel (24,40) distribu-
tions.

Essentiality estimate models

ANUBIS implements a collection of previously defined
and novel methods (Figure 1E, Table 2). Firstly, we re-
implemented as estimate models in the framework methods
presented in previous studies based on Poisson (7), Gamma
(24,40) and Gumbel (24,40) distributions (italic names will
refer to a class object implemented in the framework). These
methods rely on the definition of a gold standard set to es-
timate the centers of each gene population (E and NE/non-
coding regions depending on the study; see previous sec-
tion), and then classify each gene based on their probabil-
ity of fitting the expected distributions. At this level, differ-
ent criteria have been applied to assign essentiality classes.
Poisson-based classification uses an ‘absolute’ criterion, as-
signing the labels E to genes with P (E) > 0 and P (NE) =
0, NE to genes satisfying P (E) = 0 and P (NE) > 0, and
F to any other cases (7). On the other hand, Gamma- and
Gumbel-based methods apply a ‘fold change’ approach and
consider E genes to be those with log2 (P (E)/P (NE)) > 2,
NE to be those with a log2 (P (E)/P (NE)) < 2, and F genes
to be those which fall in between (24,40). The final criterion
that can be applied is a probability ‘threshold’ for trusting
a probability or not, arbitrarily set to 0.01 in previous stud-
ies (25). While all three methods were implemented in the
ANUBIS framework so as to reproduce their original func-
tion, this was done in a more generalized manner to provide
the user the option of separately selecting the criteria.

Secondly, we developed a new version of a prediction
class based on Hidden Markov Models (HMM), taking into
account principles from Tn-HMM such as read depth asso-
ciated with each insertion (26). This feature is interesting as
it enables the detection of NE genes with minimal impact
or even advantage on fitness. We defined a new version of
Tn-HMM that maintains its basic functionality connected
to functions of ANUBIS, but also adapted its application
to Tn5-transposase studies and included additional param-
eterization options.

Thirdly, we implemented two novel methodologies based
on Gaussian Mixture Models (GMM) and Bayesian Gaus-
sian Mixture Models (BGMM). These two models share
most of the principles with the exception of the algorithm
used to fit the mixture-of-Gaussian models. While GMM re-
lies on Expectation Maximisation (EM) to maximize data
likelihood, BGMM extends that same EM algorithm to
maximize model evidence, including priors, allowing the au-
tomatic estimation of components (42). As an advantage,
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Table 2. Previously published methods included in the comparative

Distribution Reference Metric Priors Estimate Criteria

Poisson Defining a minimal cell: essentiality of small ORFs
and ncRNAs in a genome-reduced bacterium (2015).

Linear density Goldset for E
and NE

Probability fit Absolute

Gamma Defining the ABC of gene essentiality in streptococci
(Amelia R. L. Charbonneau, 2017)

Linear density Goldset for
E+intergenic
for NE

Probability fit Fold change

Gumbel Bayesian analysis of gene essentiality based on
sequencing of transposon insertion libraries.
Bioinformatics, 29 (6):695–703

Linear density Goldset for
E+intergenic
for NE

Probability fit Fold change

Hidden
Markov
Model

A Hidden Markov Model for identifying essential
and growth-defect regions in bacterial genomes from
transposon insertion sequencing data

Linear density
and read
values

Goldset States 3

these methods do not rely on a gold standard set and con-
sequently no prior knowledge about the expected essential-
ity of the organism is required. These methods enable eval-
uation by Akaike Information Criterion (AIC), which re-
wards goodness of fit, and Bayesian Information Criterion
(BIC), which penalizes the number of parameters, to de-
fine the best fitting for number of categories and return the
best model of essentiality (43). For example, we could ask
for three components as the three expected number of cat-
egories (e.g. 3 − E, F, NE; Figure 3B and C) and the model
will determine the three best gaussian distributions that fit
the observed data without requiring any gold standard set.
Finally, if the user prefers to perform an essentiality esti-
mate based on a visual exploration, ANUBIS includes a
Mixture method that allows the combination of Poisson,
Gamma, Gumbel and lognormal (44) distributions to fit each
subpopulation.

Method comparison

We ran essentiality estimates for all the samples in our
dataset with five different model-based methods, testing
corrections and parameterizations (Table 3, Supplemen-
tary Data 3). For previously described methods (Poisson,
Gamma and Gumbel), each method was run under differ-
ent parameters and class assignment criteria including the
parameters associated with their original reference (Supple-
mentary Table S3; more details at the end of this section).
For mixture models (GMM and BGMM), three different
component numbers (number of components: 2, 3 and 4)
were run. Each of these configurations were iterated with
four different filter modes as well as different preprocessing
parameters that included or excluded repeated regions and
removed different percentages of N- and C-termin. The four
filtering modes applied were: (i) no filtering, (ii) discarding
insertions with a read count lower than 3 (assumes of 1 and
2 are background of the sequencing process), (iii) filtering
out insertions with a read count <95th percentile of reads
mapping to E genes (assume E genes in the gold standard
set should be clean of insertions) and (iv) filtering out inser-
tions with a read count below the 5th percentile or over the
95th percentile.

We also developed a sampling analysis that evaluates the
robustness of a method and parameter set with the decay
in coverage (Figure 1E). We reduced the coverage by two
means: (i) randomly and sequentially eliminating 5, 25, 50,
75 and 95% of insertions in each samples (four replicates)

and (ii) with a gradual threshold to filter out 5, 25, 50,
75 and 95% of the insertions based on their rank in read
counts.

Each essentiality estimate task derived from one of the
described combinations of parameters was evaluated by two
different accuracy values: accuracy and NE Accuracy. The
first term is the total number of genes that were assigned
to the same category in the method and the validation set
(see previous section), divided by the total number of genes
in the validation set. The second term is computed in the
same way but also counts as matches those cases where the
model assigns an NE gene to the F class in the validation
set.

When referred as ‘default’, we consider the conditions ap-
plied in the reference studies (Table 3). In all cases, we per-
formed basic data processing removing the 5% N’- and C’-
termini regions of the genes and a >2 filter for read count
positions.

RESULTS

Extracting reproducible datasets from a high-coverage Tn-
seq library with FASTQINS

We generated a library of M. pneumoniae pMTnCat BDPr
mutants (Figure 1C) for which ten passages had been per-
formed (P0 to P10, each passage equivalent to approxi-
mately ten cell divisions, two biological replicas; see Mate-
rial and Methods). Of these passages, we used seven in to-
tal: P01 to P04, P06, P08 and P10. Samples were processed
using FASTQINS (Supplementary Data 1) under three dif-
ferent processing conditions: (i) single-end (U0 PE0, anal-
ogous to previously defined approaches (7)), (ii) paired-end
(U0 PE1) and (iii) ‘unique’ paired-end removing read du-
plicates (U1 PE1; see Materials and Methods). Different
mapping modes were evaluated by means of: (a) the recov-
ery rate (percentage number of reads covering each inser-
tion event), (b) the alignment rate of the mapping process
(percentage of raw reads mapping unambiguously to the
genome sequence) and (c) coverage (percentage of positions
disrupted). Comparing the three different methods, paired-
end processed samples (U0 PE1) showed improvement in
all metrics (Supplementary Table S1). Recovery rates, for
example, were significantly higher (Figure 2A; Wilcoxon
signed-rank test; P = 0.005 when compared to U0 PE0),
with improvements ranging from 3 ± 3% for P01 to 20 ±
10% for P10 when compared to U0 PE0. Similar improve-
ments were seen with respect to alignment rates (Figure
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Table 3. Processing and model estimate reference of conditions in the iterative study

Prefix Description Label Label description

I Ignore biases 0 No specific regions removed
1 Repeated regions removed, GC and TSD corrected

S N’ and C’-termini 0 No terminal sides removal
10 CPD defined terminals

F Filter of reads 0 No filter
3 Filter out positions with read count <3
E Filter out read <95th percentile of read counts on E genes gold set
T Filter out read count <5th percentile and read count >95th percentile

M Model Name Poisson, Gamma, Gumbel, GMM and BGMM
C Criteria Criterion Absolute, fold-change or threshold 0.01 (for Poisson, Gamma, Gumbel)

Components 2, 3, 4 Number of component (for GMM and BGMM)

2B; Wilcoxon signed-rank test; P = 0.0004 when compar-
ing U0 PE0 to U0 PE1). In terms of coverage, as expected,
no difference was found between removing or not removing
PCR-derived duplicates, but paired-end approaches per-
formed better than single-end, with a 5 ± 2% increase per
sample (Figure 2C; Wilcoxon signed-rank test; P = 0.004;
see Supplementary). These differences imply ∼40,000 addi-
tional insertions; a meaningful difference when looking for
specific disrupted positions. Based on these results, we used
the U0 PE1 processed samples for further analyses.

Using the U0 PE1 samples as a reference (for this and the
following Results sections), we first assessed the coverage
of our library. We had an initial genome coverage of 37.5 ±
8%, which corresponds to 1 insertion every ∼3 bp (2.8 ± 0.6
bp for P01, n = 2; Supplementary Table S1). When consid-
ering only coding genes in M. pneumoniae to measure satu-
ration (size considered = 697,457 bp), we observed a similar
coverage of 32.15 ± 7.8% (3.3 ± 0.8). These values increased
to 70.5 ± 11%, which corresponds to 1 insertion every ∼1.5
bp, when examining known NE genes from our validation
set (1.45 ± 0.2 bp in P01, n = 2; Supplementary Table S2;
see Materials and Methods). We then explored the effect of
cell passages at the gene level, comparing two metrics typ-
ically used to estimate essentiality: linear density (number
of insertions normalized by length) and read count per gene
(considered as reads per kilobase million, or RPKM, as a
normalization method; see Materials and Methods). With
respect to linear density, we observed a bimodal distribution
separating E and NE genes even at P10 (Figure 2D). Read
count distributions, on the other hand, presented a wider dy-
namic range, losing the bimodal distribution earlier (Figure
2E). This is important as a bimodal distribution is expected
in essentiality estimate models. In terms of reproducibility,
we observed that linear density was more reproducible than
RPKM when comparing between replicas. These results in-
dicate that linear density is a more convenient metric in con-
ditions of high selection or with low coverage samples (see
Supplementary, Supplementary Table S2 and Figure S2).

A decrease in the linear density associated with an E or
F gene is expected with each passage, at least until selec-
tion and/or sampling leads to a reduced number of mutants
with limited negative, no fitness effect or even positive fit-
ness. Thus, genes with a high RPKM are expected to have a
minimal fitness impact when disrupted, because cells with
insertions in these genes are the most represented clones
in the overall population after selection. For example, we

detected that both P01 replicas shared the gene mpn358 (a
hypothetical protein of 1,605 bp), with maximum percent-
age of bases disrupted and maximum read count (85 ± 7%
and 9,923 ± 233 RPKM, respectively). This indicates that
mpn358 could potentially be removed with no fitness impact
or even provide an advantage in growth terms (Supplemen-
tary Table S2). Supporting this, insertions in mpn358 were
still overrepresented at P10.

Estimates of essentiality using different methods and default
parameterization

We wanted to compare how gene essentiality changes when
different published methods are used with their default pa-
rameters (see Materials and Methods). We included models
that statistically fit linear density distributions (number of
transposon-inserted positions normalized by the length of
the genome region of interest, see Material and Methods),
including Poisson (7), Gamma (24,40) and Gumbel (24,40);
as well as HMM (26), which also considers the read counts
in the estimate. We also implemented and compared two
new models, that do not require prior knowledge on the es-
sentiality of the organism, based on linear density: Gaussian
Mixture Models (GMM) and Bayesian Gaussian Mixture
Models (BGMM; see Materials and Methods) (42). The
only parameter required for these new models is a number
of components, which we set to 3 (corresponding to E, F
and NE) to enable comparison with other estimates (sup-
ported below). To evaluate the accuracy of each method, we
used essentiality information on knockouts and deletions of
29 genes (41). These same genes are also used later as an
NE validation dataset together with a gold standard set of
E and NE genes (n = 56) previously described (7) (n = 85,
Supplementary Table S2; see Material and Methods). We
observed that accuracy (percentage of genes matching with
the validation set) and NE accuracy (percentage of genes
matching with the validation set considering F genes to be
NE; see Material and Methods) gradually decreased with
the number of passages due to NE genes being predicted as
part of the F or E categories (Figure 3A, left panels; Sup-
plementary Table S3). This effect became more prominent
in P08 and P10 indicating that at higher selection conditions
only a subset of NE genes, those with minor fitness impact,
will be detected as such. In terms of accuracy, Gumbel and
the newly proposed methods of GMM and BGMM, out-
performed Poisson, Gamma, and HMM. The former mod-
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Figure 2. Variability of different FASTQINS modes and reproducibility of detection. A-C, Line plots of the (A) recovery rate, (B) alignment rate and (C)
coverage (percentage of inserted positions in the genome; genome size: 816 394 bp) of FASTQINS modes run over seven points out of 10 cell passages.
The solid lines represent the average values of each metric and the shadows represent variability U0 PE0 (purple) is for samples processed as single-end,
and U0 PE1 (blue) and U1 PE1 (light blue) are for samples processed as paired-end, retaining PCR duplicates and filtering them out, respectively. D and
E, Distribution of linear density (D) and RPKM (E) associated with the M. pneumoniae annotated genes (Supplementary Table S3) by passage. Each side
of the violin plot corresponds to one replica (purple for replica 1; blue for replica 2). The R2 correlation factor between genes in replicas is shown at the
bottom of each violin plot. To facilitate evaluation, both metrics were min–max scaled.

els yielded accuracies of >75% up to P06, while Poisson re-
turned a similar accuracy only for P01 and Gamma, at best,
accurately assigned only 54% of the genes found in the val-
idation set. When considering NE accuracy (considering F
genes to be disruptible genes), all methods except for HMM
performed at over 75% in every passage. HMM became un-
reliable after P03 (the point at which RPKM lost its bimodal
distribution; Figure 2E) and did not perform accurately in
one of the two replicates for P01.

We accounted for the number of genes that were assigned
to each category along passages for each of the estimate
models (Figure 3A, center panels). In general, we observed
NE genes shifting to the F category, and consistency within
models up to P06 in terms of the number of genes classified
as E (Figure 3A, right panels; Supplementary Figure S3 and
Table S4).

Interestingly, the best prediction in terms of accuracy and
NE accuracy, (91 ± 6% and 97.6%, respectively; n = 2) oc-
curred for P01 when analyzed using GMM (Figure 3B). In
the two P01 replicas, 644 of the genes were identically as-
signed: 232 E (33.6%), 165 F (23.9%) and 247 NE (35.8%).

In contrast, there was a discrepancy for 45 of the genes
(16 changed from E to F (2.3%) and 29 changed from F
to NE (4.2%)). Additionally, the three components are sup-
ported by both the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC; see Materials and
Methods). Lower AIC and BIC values are associated with
models that have a better trade-off between goodness-of-fit
and model simplicity (penalizes number of parameters). We
observed that with three components, AIC and BIC started
to flatten (when the gradient stops decreasing there is no risk
of overfitting or underfitting; Figure 3C and Supplementary
Figure S4).

Important factors to consider when estimating essentiality

We explored factors that could contribute to erroneous in-
sertion signals, or artifacts. These factors were explored
through filtering/correction, visualization, and statistical
assessments using functions integrated into the ANUBIS
framework. We used the U0 PE1 data subset to evaluate
these factors at the level of the nucleotide base, the gene
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Figure 3. Comparison of accuracy and gene category assignment between reference and new essentiality estimate models. The methods used are labeled
on the left (GMM, Gaussian Mixture Model; BGMM, Bayesian Gaussian Mixture Model; and HMM, Hidden Markov Model). (A) left panel, Accuracy
(purple) and NE accuracy (light blue) in percentage values for each method per passage. center panel, Number of genes classified as E (purple), F (blue),
and NE (light blue). Error bars represent the standard deviation (n = 2). right panel, Number of genes classified E (purple) and NE (blue), with F and
NE genes grouped together. Error bars represent the standard deviation (n = 2). (B) An example of an essentiality estimate using the Gaussian Mixture
Model (GMM) with three components for P01, replica 1 (replica 2 in Supplementary Figure S4). The gene linear density (grey histogram) has been properly
fitted to the data using three Gaussian distributions (dashed lines: E (purple), F (blue) and NE (light blue)). (C) Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). The lower the AIC and BIC values, the better the balance between goodness-of-fit and model simplicity. The number
of components (i.e. 3, blue shadowing) represents the elbow of the line where there is a good trade-off between fitting and the number of parameters.
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Figure 4. Corrections of GC content bias. (A) Average frequency (line) and standard deviation (shadow) of each DNA 4-mer having a transposon insertion
as a function of GC content (X-axis). Data is presented for each passage of the U0 PE1 dataset and shows that insertion probability is higher for 4-mers
with lower GC content. (B) Boxplot representing the contribution of GC bias per passage, measured as the Pearson’s R2 correlation between available
4-mers and disrupted 4-mers. Raw profiles of insertions are shown in purple and ANUBIS-corrected profiles in blue. (C) Scatter plots (with histograms) of
linear density as a function of percentage of GC content for each annotated gene in M. pneumoniae, before (left) and after (right) correcting for GC bias by
Conditional Quantile Normalization. The legends is shared between the two panels, and a gradient from black to light green represents the following GC
content (% units) bins: <32, 32–38, 38–43, 43–48, 48–53, >53 (minimum number of bins with >25 genes each). Changes between essentiality categories,
as estimated by GMM with components, before and after correction are labeled with the following symbols: a dot for no change, a plus sign for F to E, a
cross for E to F, and a square for F to NE. The symbol size represents the difference in terms of linear density between the corrected and non-corrected
values.

and/or essentiality estimate, to exemplify cases where a spe-
cific correction can be beneficial in terms of data reliability,
accuracy and/or NE accuracy (see Materials and Methods).
For the sake of simplicity, we only describe the effects on a
limited number of the default estimate models from the pre-
vious section (see Materials and Methods and last section
of Results).

PCR duplicates. We do not expect essentiality assign-
ments based on linear densities to show differences when
removing or not PCR duplicates because the positions in-
serted do not vary. However, essentiality estimates using
models like HMM can be affected by PCR duplicates. We
tested this using the P02 samples as a reference, and between
replica 1 and 2, observed that 10 and 65 genes changed cat-
egories for the U0 PE1 and U1 PE1 mapping, respectively
(Supplementary Table S5). Accuracy did not change be-
tween mapping methods for either replica. However, when
considering NE accuracy, we found that removing PCR du-
plicates was beneficial for replica 2 with the value increasing
from 66% to 75%. This improvement was entirely due to the
correct classification of seven validated NE genes (mpn307,
mpn329, mpn346, mpn493, mpn495, mpn560 and mpn653)
that were considered E in the U0 PE1 mapping mode.

Confidence detecting PCR duplicates in Tn-seq is prob-
lematic. This is because the probability of wrongly detecting

reads coming from a clone that is highly represented in the
population as PCR duplicates increases with the number of
passages (Figure 2A). The use of barcodes can provide re-
liability when approaches like HMM are applied, as they
allow for unique transposition events (45). However, a gen-
eral essentiality study based on linear density will not show
advantages when using barcodes and removing PCR dupli-
cates.

Sequence composition biases in Tn-seq. While insertions
are only expected to occur at TA-sites with Tc1/mariner-
based Tn-seq, when using Tn5 transposase, it is assumed
that insertions are uniformly distributed along the genome
with no significant biases (4,7,46). However, we found some
biases against GC sequences in our Tn5 dataset at the base
level (4,7,46). As such, we explored the relationship between
GC content of each available DNA 4-mer in non-coding M.
pneumoniae regions and the probability that each gets dis-
rupted. We found a lower frequency of insertions in GC-rich
4-mers (≥3 G or Cs) as well as a preference for TA-rich 4-
mers (4 A or Ts; Figure 4A). This effect was also observed
when replicating the approach using NE genes from our val-
idation set instead of non-coding regions, indicating that a
GC bias also affects annotation (Pearson’s R2 = 0.92 and
P = 0.00, when correlating the frequency of 4-mer disrup-
tions between validated NE and non-coding regions in M.
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Figure 5. Read count correlation at the nucleotide level. (A) Schema of how TSD causes read aligners to count for the same insertion twice. When we count
for regular paired-end reads mapping (first row), at the genome level (left column), the IR sequencing primer (green and purple arrows) extend from two
different positions. At the sequencing level (center column), aligners like Bowtie2 will assign the insertion to two positions with a distance that is equal to
the size of duplication. At the data level (right column line plots), we show the average Pearson’s R2 correlation between relative positions for each passage
(gradient of colors). The X-axes represent a relative insertion in the center and Y-axis correlation in R2 values to contiguous up- and downstream positions.
(B) Exploring the correlation at the level of read count percentile (X-axis) shows that Pearson’s R2 correlation (Y-axis) becomes relevant when the read
count of insertions falls above the 90th percentile for each passage (gradient of colors).

pneumoniae). Consequently, in ANUBIS we have included
a correction function to assess this bias and correct for the
linear relationship between available and disrupted k-mers
for each passage. We observed that the bias against GC was
more prevalent for later passages, suggesting that sampling
due to selection could increase this (Figure 4B). Finally, we
concluded that the Tn4001 transposase (Tn5 family) prefers
AT sites over GC ones despite being able to insert in GC-
rich sites as well (Supplementary Figure S5).

We also evaluated the impact of sequence composition
biases at the annotation level and on essentiality estimation
using P02, replica 1, as an example. When relating linear
density with GC content for each gene in M. pneumoniae
(genomic GC content of 40%; Figure 4C), we observed that
almost all genes with a GC content ≤30% had more than
75% of their positions disrupted (28 out of 31 genes pre-
sented an average linear density of 85%). For genes with a
GC content ≥50%, we observed significantly lower densities
(average linear density of 27%; Wilcoxon signed-rank test; P
= 0.00). While in the first case we do not expect an impact
on the essentiality estimation of AT-rich genes, we could be
underestimating the number of NE genes with high GC con-
tent. In fact, when running a sliding window approach com-
paring gene local linear densities, we observed a clear anti-
correlation with the percentage of GC (Supplementary Fig-
ure S6). ANUBIS implements a Conditional Quantile Nor-
malization (CQN) method, validated to correct biases in se-
quencing processes (47). This method corrects linear densi-
ties assuming full linear density for non-coding regions and
using quantile normalization conditioned by GC content
and linear regression correction. As changes between GC
bias-corrected and non-corrected linear density were small
(Pearson’s R2 = 0.95; P = 0.002), we observed few differ-
ences in the predicted categories when estimating essential-
ity (Supplementary Table S5). Looking at GMM with three
components for example, only 45 genes presented different
category estimations due to an increased linear density af-
ter correction. These genes have a high GC content (48–54%

and >54%). Fourteen genes were corrected from E to F and
31 from F to NE, indicating that their linear density values
without correction could have been underestimated. No dif-
ferences were observed in terms of accuracy or NE accuracy.
GC content can be very different depending on the model
organism and this kind of corrections could not be appro-
priate for those cases. However, this correction looks to en-
sure there are no unbalanced linear densities distributions
by GC content and it should be generally effective in other
models (see Supplementary).

Correlations at the base pair level: target site duplications
(TSD). Some transposases produce staggered cuts, and
as a result, cause duplication of a fixed number of nucleotide
bases during the repair process (20). For a given insertion
event, each of the flanking IR is followed by two differ-
ent chromosome coordinates, and apparently for short read
aligners, two different insertion positions. We evaluated bi-
ases at the nucleotide level by correlating read count values
(i.e. a representation of a clone in the library) between in-
sertion events and contiguous positions. The most notice-
able correlation was between positions n + 7 and n - 7, a
feature conserved in all passage conditions (Pearson’s R2

> 0.5, Supplementary Table S6; Figure 5A). This suggests
that the Tn4001 transposase produces a 7-bp TSD. Consid-
ering the typical primer for PCR enrichment, which is de-
signed to amplify the sequence from the IR to the contigu-
ous genomic region (see Material and Methods, see Sup-
plementary Figure S1), we deducted forward-oriented (fw)
mapped reads would always cover one side of the insertion
while reverse-oriented (rv) reads would cover the other. In
our case, insertions detected in rv reads corresponded to the
same fw profile but were shifted by +7 (Pearson’s R2 >0.8
for the position n + 7; Figure 5A). This effect is related
to the read count that is associated with each insertion be-
cause correlation with the +7 position became significant
for those positions with a read count over the 90th percentile
in the general read count distribution (Pearson’s R2 > 0.75;
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P < 0.005 in all passages, Supplementary Table S7; Figure
5B). This means that TSD are more probable to be detected
when transposition occurs at an NE position (i.e. clones
higher read count). In F regions, however, the read count will
be lower and one of the two insertions could be missing and
therefore only be counted one. Using the previous observa-
tions, we defined a correction that overlaps fw and rv inser-
tion profiles, but shifting the rv positions by +7 if their read
counts are over the 90th percentile (Figure 5A).

We applied the correction for TSD to sample P02, replica
1, and estimated essentiality using the GMM model with
three components. We observed 19 genes changing cate-
gories after correction: four moving from F to E and 15
from NE to F (Supplementary Table S5). Interestingly, de-
spite not observing changes in terms of accuracy and NE
accuracy, we could be improving the estimate of F genes.
With no correction, GMM properly classified two out of six
genes that could be considered as F in our validation set be-
cause deleting them confers a ‘slow’ growth phenotype to
M. pneumoniae (see Materials and Methods; Supplemen-
tary Table S3). With the correction, all six genes were pre-
dicted as F.

Differential essentiality regions: N- and C-termini, repeated
regions and protein domains. It is known that some cod-
ing genes can tolerate transposon insertions in the extreme
N- and C-termini of their ORF because the insertions are
not expected to disrupt the functional core of the encoded
protein (9,11). Previous studies have corrected for this by
arbitrarily trimming 5% off each terminal region and con-
sidering only the inner 90% region (7,28). More aggressive
filters have been applied in some studies (e.g. removing 5%
from the N-terminus and 20% from C-terminus (48)). These
numbers are rather arbitrary and could impact essential-
ity estimates. We implemented a Change Point Detection
(CPD) algorithm in ANUBIS that automatically analyzes
the linear density of a gene by windows to detect signifi-
cant changes (39). This enables estimation of the best points
(change points) delimiting the NE N- and C-termini regions
of E genes that could have a different insertion profile to
the rest of the gene. For example, taking the annotation of
M. pneumoniae and all passages as input, we determined
the average change points to be at 8% from the N-terminus
and 10% from the C-terminus. In P10 for E genes, we de-
tected the average change points at 3% and 4% for N- and C-
terminal regions, respectively, indicating that they still con-
serve insertions at their terminal regions even after multiple
selection passages. In general, the extension of NE termi-
nal regions for E and F genes becomes shorter with each
cell passage. For example, mpn116 is predicted to be a F
gene (Poisson model, default) up to P06, at which point it
starts to be classified as E using the arbitrary threshold of
5% from each termini. We analyzed this specific case and
determined that, at P01, the first half of the protein is la-
beled as E while the second half is labeled as NE (Figure
6A). The differential NE region is maintained from P02 to
P06, where it becomes reduced to the last 18% of the gene;
being further reduced to 8% and 5% in P08 and P10, respec-
tively. This effect was also observed for other genes, both
in the N- and C-termini, indicating a progressive negative
trend when insertions are further away from the N- and C-

termini. Using P02 as a reference and the Poisson model as
an example, we evaluated the effect of not filtering the ter-
minal regions on predicting essentiality (arbitrary 5% cutoff
and CPD methodology). Using different filters, we observed
no difference in accuracy along passages. However, we did
observe 61 genes changing categories when comparing the
5% termini removal versus the CPD approach. For exam-
ple, genes like mpn154, mpn214 and mpn339 were labeled as
F when no filter or the arbitrary 5% cutoff filter was applied,
but labeled as E when using CPD (Figure 6B, Supplemen-
tary Table S5).

The CPD algorithm also enables the automatic detec-
tion of cases in which a protein comprises multiple differ-
ential essential domains. We hypothesized that E domains
within apparently NE genes could either be the result of
repeated loci in the genome preventing the mapping of in-
sertions (ambiguously mapped reads are generally counted
separately by read aligners like Bowtie2) or a specific func-
tional domain in the protein that, unlike the rest of the gene,
is essential (7). To test the first hypothesis, we generated a
reference of repetitive DNA sequences in M. pneumoniae
M129 and observed that mapping was efficient for repeated
regions shorter than 100 bases, independent of the passage
number (Supplementary Figure S7, Supplementary Data
2). Hence, repeated regions longer than 100 bases are ig-
nored by ANUBIS when calculating metrics such as linear
density. For the latter hypothesis about protein domains,
ANUBIS was designed to accept additional annotations
such as HMMER protein domain predictions (49) and re-
port differential essentiality assignments between those do-
mains and the general gene. We tested the impact of these
two types of regions on protein essentiality using the Pois-
son model along different passages. We observed minimal
differences along passages, with only 10–15 genes changing
category per passage. Despite most changes being between
the F and NE categories, some interesting cases arose in-
cluding mpn141 and mpn142 (Figure 6C). These genes were
predicted as E in every passage condition when including re-
peated regions but predicted as F after correction (Supple-
mentary Table S5). In fact, spontaneous mutants for these
cytadherence-related genes have been isolated, demonstrat-
ing they are dispensable for in vitro growth conditions (50).
Therefore, these results indicate that if repeated regions are
considered, specific disruptable genes in an organism could
be hidden. In addition, when looking for different essen-
tial HMMER domains, we found genes with apparent lo-
cal differences in terms of linear density. However, all these
cases could be explained by the protein having extended
N’ and C’-terminal NE regions, or E regions derived from
repeated regions. Interestingly, while mpn030 (168 amino
acids), which has structural homology to NusB proteins
(51), presented an enrichment in linear density from amino
acid positions 13–53, the rest of the protein (corresponding
to HMMER domain DUF1948) had no insertions. Inter-
estingly, mpn030 has an alternative start codon (GTG) after
that specific NE region, suggesting this gene is essential with
an NE N-terminal region not required for cell viability (Fig-
ure 6D). This is supported by the fact orthologs of mpn030
in other mycoplasmas do not present any extension. This
could be an effect derived from the acquisition during evo-
lution of an ATG start codon (preferred over GTG), which
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Figure 6. Insertion profiles for different genes. The genome coordinates of each gene are shown on the X-axis. Gene coordinates are delimited by start
(solid vertical grey line) and stop (solid vertical black line) codon positions and their respective shifted position in the 5% N- and C-terminals (dashed
lines). In every plot is shown the smoothed 20-bp distribution of read count per insertion (line) passed onto the CPD algorithm. Base-pair scales are shown
below the gene name. (A) Gene mpn116 at different passages, for passages 02, 06 and 08 (darker to lighter colors), presents and extended C-terminal of
50% (passage 1 and 2) that becomes shorter with selection (∼15% for P02–P06; for 5% P08 and P10). (B) E genes with extended NE N’ and C’-termini
at P02. Top profile represents mpn154, which present insertions (solid blue vertical lines) in an extended C-terminal covering 23% of its length (purple
box). In the middle, mpn214 has an extended N-terminal region covering 13% of the protein (blue box) and a C-terminal region of 7% (purple box). The
bottom profile represents mpn339, which has a shorter N-terminal region (3%) but a longer C-terminal region (18%). (C) Genes with repeated regions at P02.
Examples of potential F/NE genes (mpn141 and mpn142) that are predicted to be E when including repeated positions in the estimation (grey boxes). (D)
Mpn030 at P02. This gene is a NusB-like protein with a dispensable N’-terminal. Insertions before amino acid 58 still enable the expression of a functional,
shorter version of the protein because of an internal start codon (labeled with blue arrow) that still expresses the domain of the protein found conserved
by HMMER.

adds ∼50 amino acids without affecting the original protein
functionality.

Effect of coverage, methodology and corrections on predict-
ing gene essentiality

We performed a general evaluation of models by examining
how linear density is affected by transposon coverage and
different estimate parameters (Figure 1E and Supplemen-
tary Data 3; see Materials and Methods). This analysis is
important because in vivo essentiality studies, for example,
result in a much lower transposon insertion density than in
vitro studies due to stronger sampling and selection condi-
tions. Also, we could have lower coverages when we ana-
lyzing larger genomes like Escherichia coli (4,000 kb) where
transposon insertion saturation is harder to achieve. We first
explored how accuracy is related to the coverage reduction
that is produced by continuous selection (i.e. over passages).
We observed that a genome coverage of at least 10% (10 in-
sertions every 100 bp) is required to provide accurate es-
timates of both accuracy and NE accuracy. As described
above, estimates made by Gumbel, GMM, and BGMM out-
performed estimates made by Poisson and Gamma models
independently to the filters and processing steps had been
applied (Figure 7A and B).

Secondly, we artificially produced a sampling effect by
randomly removing insertions from a profile in a sequen-
tial and controlled manner (Figure 1E; see Materials and
Methods). We were able to randomly remove up to 75% of
the insertions in a dataset without losing accuracy. This in-
dicates that sampling effects that occur during passages (i.e.
dilution of cell populations performed between each pas-
sage) do not account for large differences in essentiality es-
timates (Figure 7C) but it could affect specific annotations
(e.g. short ones, see Supplementary). Additionally, we ex-
plored with a sampling method based on subsequently in-
creasing a read count threshold (Figure 1E). We found that
positions with a read count below the 5th percentile are re-
quired for proper estimation of essentiality based on our
validation set. In each sample, the 5th percentiles corre-
sponded to a read count of 3–4, indicating that most of these
low read insertions are real despite the fact that they can
be caused by artifactual factors such as the ones described
above (Figure 7D). However, it is common to find insertions
with a read count of ≤2 in E genes. Thus, we considered three
different types of read filters in the comparative iterations:
(i) removing positions with a read count of ≤2, (ii) trimming
5% of the read count distribution from the top and bottom
(i.e. ‘tails’) (28) and (iii) filtering out insertions with read val-
ues in the range of read counts mapped to know or validated
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Figure 7. Comparison of essentiality estimates for different passages and different parameterizations. (A) Line plots representing accuracy and (B), NE
accuracy for each coverage found in our dataset). Solid lines represent the average accuracy of each model (different gradient colors) and shadows represent
the expected variability as standard deviation. (C) Impact of randomly removing insertions on accuracy. The X-axis represents the sampling level, or the
percentage of inserted positions in the sample that are randomly removed. Solid lines represent each of the samples (different gradient colors) and shadows
represent the expected variability as standard deviation. (D) Same as panel c but with the sampling method based on read count values (e.g. at 75% we
consider only those insertions with a read count >75th percentile of the total read distribution).

E genes (i.e consider those insertions as ‘noise’ derived from
dead cells or mismapped positions, see Materials and Meth-
ods).

Lastly, we explored the variation in accuracy produced by
each preprocessing mode, including models, the three differ-
ent read threshold filters mentioned above, corrections for
repeated, TSD, N- and C-terminal extended regions, crite-
ria used for assigning essentiality categories, and definitions
of expected NE linear density from the gold standard set
or non-coding regions (Supplementary Figure S8). As al-
ready mentioned, Gumbel, GMM and BGMM models pre-
sented the best overall accuracy, with BGMM showing con-
siderably less variability than other Materials and Methods.
With respect to filtering by read counts, we observed that re-
moving insertions with a read count smaller than 3 was ben-
eficial when estimating essentiality, improving estimation of
E genes and F genes in the validation set, but at the cost
of accuracy in detecting NE genes. The accuracy in detect-
ing NE genes also decreased, albeit more aggressively, when
applying filters based on E genes or removing tails (Supple-
mentary Figure S8). Correcting for repeated regions, TSD
artifacts, and the use of a CPD-based definition of N- and
C-termini did not improve overall accuracy (Supplementary
Figure S8). However, we already described how these cor-
rections were beneficial for specific genes. Similar as when
correcting for GC biases, these corrections should be specif-
ically applied at the gene level. Finally, for Poisson, Gumbel

and Gamma models we evaluated different gold standard
sets, and class criteria definition (see the last two sections in
Material and Methods; see Table 3). We found that the best
criterion for estimating essentiality with these models is the
fold change (FC) between E and NE probabilities, where
log2FC<2 = NE and log2FC>2 = E (Supplementary Fig-
ure S8). For GMM and BGMM models, we found that two
components provided the best accuracy, although this is at
the cost of losing the F category. With respect to the gold
standard set, estimating the expected linear density of NE
genes from non-coding regions provided more accurate es-
timates than using a user-defined gold standard set (Supple-
mentary Figure S8).

Overall, estimation of essentiality is a complex task that
requires multiple evaluation steps and consideration of fac-
tors that, despite not introducing dramatic changes in the
general assessment of essentiality, can lead to the incorrect
estimation of a specific set of genes. ANUBIS includes all
the necessary functions to run Tn-seq data analyses from
scratch so that the user can visually and analytically explore
the impact of each of the introduced corrections.

DISCUSSION

Here, we first presented FASTQINS, a pipeline able to ex-
tract transposon insertion profiles from sequencing data.
FASTQINS considers available experimental and design
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conditions, accepting multiple input types to deliver results
in a standardized format. We complemented it with ANU-
BIS, a Python standalone framework that helps to detect
and correct factors that can cause deviations in essential-
ity estimates. ANUBIS combines, in a single tool, state-
of-the-art Tn-seq analysis approaches, with new correc-
tions for previously unconsidered factors, and novel mod-
els that do not require any previous knowledge on the es-
sentiality of the organism considered. We have discussed
factors that greatly affect essentiality estimates, including
TSD, PCR duplicates, GC bias, differential domains, and
essentiality estimate models. We conclude that Tn-seq is a
highly sensitive protocol that requires additional process-
ing steps (compared to techniques such as DNA-seq and
RNA-seq) and controlled supervision to retrieve accurate
estimates. In this respect, ANUBIS provides routines and
visualizations to guide along the best processing steps to
use before predicting essentiality. Additionally, the user ex-
perimental design makes necessary specific considerations
and correction/processing steps. For example, users can ex-
plore profiles at the level of insertion read counts (e.g. using
HMM). If this is the case, we recommend performing mini-
mal passages (≤30 cell divisions in our case) and PCR dupli-
cates, GC content bias and TSD are highly recommended to
be considered. When a more general perspective is desired
(e.g. in gene essentiality studies), we found that to obtain
good estimates a minimum genome transposon coverage of
10% is required, and that repeated regions and limits for
NE N- or C-terminal regions should be properly assigned.
ANUBIS also provides all the necessary tools to statistically
and visually evaluate whether a gene can be removed from
an organism or not, thereby aiding in the rational design
of genome reductions. Ultimately, ANUBIS collects func-
tions to fit, predict, report, and visualize the estimation re-
sults using different models. It implements previously de-
scribed estimators based on Poisson, Gumbel, Gamma and
HMM models allowing the user to run previously described
essentiality models. While these models have been proved to
be useful in their original references, they present the lim-
itation of depending on training sets, not always accessi-
ble for an organism of interest. This motivated us to imple-
ment unsupervised models based on mixture models such as
GMM and BGMM that we believe can be useful in organ-
isms with little knowledge about gene essentiality and/or
gene function. Altogether, we envision ANUBIS as a com-
putational and customizable framework that can perform
Tn-seq data treatments, benchmark essentiality studies or
be integrated into larger analysis pipelines. Essentiality es-
timation is a complex task where multiple factors have to
be taken into consideration and the requirements of the
user can be very different. Thus, in ANUBIS all the cor-
rections are optional and is the user who decides which of
them have to be applied supported by visual and statistical
exploration. However, it also includes specific procedures to
automate these corrections based on statistical assumptions
for those users with little background in essentiality studies.
Both tools have been developed integrating available bioin-
formatic standards as well as general statistical assumptions
that makes it possible to apply them to other organisms.
This is important as factors presented here could present
different impacts depending on the study species. Nowa-

days, in the era of Synthetic Biology, a Tn-seq experiment
processed by FASTQINS and explored and analyzed using
ANUBIS, provides a perfect starting point to define the es-
sential core machinery and elements that can be removed
from a model organism in a sensitive and accurate manner.
This, coupled together with targeted editing methodologies
(e.g. CRISPR/Cas9 system), can represent a step forward in
the rational design of genome-reduced organisms and bio-
logical chassis that have important biotechnological and/or
biomedical applications.

DATA AVAILABILITY

The code and manuals for the two tools presented in this
study can be downloaded as standalone applications or
as Python packages from https://github.com/CRG-CNAG/
fastqins and https://github.com/CRG-CNAG/anubis.

Tn-seq raw data files have been deposited in the Ar-
rayExpress database at EMBL-EBI, under accession num-
ber E-MTAB-8918, and are accessible from the follow-
ing link: http://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-8918.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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30. Güell,M., van Noort,V., Yus,E., Chen,W.-H., Leigh-Bell,J.,
Michalodimitrakis,K., Yamada,T., Arumugam,M., Doerks,T.,
Kühner,S. et al. (2009) Transcriptome complexity in a
genome-reduced bacterium. Science, 326, 1268–1271.

31. Yus,E., Maier,T., Michalodimitrakis,K., van Noort,V., Yamada,T.,
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