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Abstract

Here we show that novel, energy-recycling stairs reduce the amount of work required for

humans to both ascend and descend stairs. Our low-power, interactive, and modular steps

can be placed on existing staircases, storing energy during stair descent and returning that

energy to the user during stair ascent. Energy is recycled through event-triggered latching

and unlatching of passive springs without the use of powered actuators. When ascending

the energy-recycling stairs, naive users generated 17.4 ± 6.9% less positive work with their

leading legs compared to conventional stairs, with the knee joint positive work reduced by

37.7 ± 10.5%. Users also generated 21.9 ± 17.8% less negative work with their trailing legs

during stair descent, with ankle joint negative work reduced by 26.0 ± 15.9%. Our low-power

energy-recycling stairs have the potential to assist people with mobility impairments during

stair negotiation on existing staircases.

Introduction

Stair negotiation is a demanding task that limits the independence of individuals with mobility

impairments such as muscle weakness, joint pain, or reduced sensorimotor control. Joint

moments in the knee are over 3 times greater during stair negotiation compared to level walk-

ing during both stair ascent and descent [1–3]. Stair negotiation is ranked among the top 5

most difficult tasks in community-residing older adults [4, 5]. Patients—such as those with hip

osteoarthritis—adopt altered joint movements to reduce pain during stair negotiation [6].

Moreover, even if they are capable of using stairs, people with mobility impairments often

avoid stair negotiation [5, 7].

Current solutions providing assistance in stair negotiation are costly, energy-consuming,

and do not help to retain the user’s ability to negotiate stairs independently. Elevators or stair-

lifts are often impractical to install because they require substantial household remodeling.

Further, an elevator can consume over 12,000 kWh annually [8], equivalent to 50% of the
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average household energy consumption in the United States in 2009 [9] and over 200% of that

in the United Kingdom in 2004 [10]. Perhaps more importantly, elevators or stair-lifts replace

the need to negotiate stairs altogether, regardless of a user’s level of motor function. Because

studies suggest that disuse of a specific motor function can further accelerate its loss [11–13], it

is important to provide motor assistance that allows users to retain their ability to use stairs

and to prevent further motor decline.

Cheap, low-power, yet effective human movement assistance is possible by applying the

principle of energy recycling [14]. Collins et al. showed that a simple exoskeleton with passive

springs can store and return energy at each step to assist joint motion during walking [15].

The exoskeleton takes advantage of the alternating braking and propelling action of the legs

during gait at the level of the ankle (Fig 1). During braking, the lower-leg exoskeleton stores

mechanical energy in a passive spring, reducing the negative work generated by the ankle to

brake the leg. The stored energy is later released to propel the body forward, reducing the posi-

tive work generated by the ankle for propulsion. Through appropriate detection and response

to gait events, the exoskeleton reduces the metabolic cost of walking by 7.2% without consum-

ing energy.

In contrast to level walking, storing and returning energy within each gait cycle cannot be

applied to stair negotiation. The legs produce predominantly positive work during stair ascent,

and predominantly negative work during stair descent [2]. Thus, a more effective approach for

energy-recycling in stair negotiation would be to store a large amount of energy cumulatively

during stair descent, and to then release that energy during stair ascent. Specifically, energy

recycling could be targeted to two phases where the greatest increase in joint power are

observed compared to level walking: the loading phase of stair ascent (TL) when energy is gen-
erated by the leading leg, and the unloading phase of stair descent (TUL) when energy is

Fig 1. Positive and negative work generation during walking and during stair negotiation. Blue represents the phases during which negative work

is generated by the right leg (braking). Red represents the phases during which positive work is generated by the right leg (propulsion). In walking, the

right leg both brakes and propels within one stride. In stair negotiation, however, the right leg generates predominantly negative work throughout stair

descent (TUL), and predominantly positive work throughout stair ascent (TL). The gait cycle during stair negotiation follows the definition in [1].

https://doi.org/10.1371/journal.pone.0179637.g001
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absorbed by the trailing leg (Fig 1). In the loading phase (TL), center-of-mass (CoM) elevation

occurs early in the gait cycle, between foot strike of the leading leg and into the mid swing

phase of the trailing leg. Sagittal knee joint power throughout TL is higher than in level walk-

ing, both in adults over 40 years old [3] and healthy young adults [2], with peak knee power of

roughly 2 times greater than in level walking [1, 2]. In the unloading phase (TUL), the center-

of-mass (CoM) is lowered as the trailing leg does negative work (absorbs energy) until toe-off.

In healthy young adults, knee joint power throughout TUL is higher than in level walking [2],

and peak knee joint power reaches 3.8 times that seen during level walking [1, 2]. Further, the

ankle joint generates large negative power in sagittal plane during TUL but negligible negative

power during overground walking. Based on previous findings [1–3], we hypothesized that

assistive stairs could store energy during TUL and release it during TL, reducing both positive

(ascent) and negative (descent) work generation in the legs during stair negotiation.

Therefore, our objective was to design, build, and test energy-recycling assistive stairs

(ERAS) that store energy during stair descent and return it to assist the user during stair

ascent. We built two prototype modular steps that can be placed on an existing staircase.

Energy is stored in passive springs and released based on gait events detected by pressure sen-

sors on each tread. We then measured the amount of work generated or dissipated by the leg

joints during assisted and unassisted stair negotiation in naive users. Our results show that

ERAS reduces positive work generation in the leading leg during ascent by 17.4 ± 6.9%. In par-

ticular, a 37.7 ± 10.5% reduction was observed in the knee, which is one of the main contribu-

tors of positive work during ascent. In addition, ERAS reduces negative work generation in

the trailing leg during descent by 21.9 ± 17.8%. In particular, a 26.0 ± 15.9% reduction was

observed in the ankle-sagittal degrees-of-freedom (DOF), which is one of the main contribu-

tors of negative work during descent. Together, our work demonstrates the feasibility of a low

power, modular, interactive device to assist those with difficulty in stair negotiation in their

homes.

Materials and methods

Energy-recycling assistive stairs

Each ERAS module is equipped with its own latch, sensor, and a set of springs (Fig 2). Each is

a single stair step designed to be placed on an existing stair with step height (17 cm) and depth

(28 cm). Customizable aluminum frames (80/201 Inc.), encase a movable tread, linear guides,

four extension springs, an electromagnetic latch, and a pressure sensor. The tread motion is

constrained to be vertical by linear guides with roller bearings (80/201 Inc.). Four extension

springs (Century Springs Corp.) connect the movable tread to the frame and are extended as

the tread is lowered. ERAS provides three choices of stiffness for each individual spring: 350

N/m, 560 N/m, and 910 N/m. The highest total stiffness is 3640 N/m, which allows users up to

122 kg to use the current ERAS prototype. When the tread is fully lowered, it contacts an elec-

tromagnetic latch at the bottom (Docooler H10054, 180 kg holding force). Pressure sensors

(Interlink Electronics1) detect foot placement during both ascent and descent. See S1 Video

for ERAS operation.

Based on user feedback in pilot studies, we set the effective spring constant of each ERAS

tread to be knorm = 30.80 ± 1.3 N/m per kg of body weight. Using this weight-dependent spring

stiffness, η = 26.7 ± 1.1% of the potential energy lost while descending a step height of h = 17

cm (ΔEpotential [J/kg]), is stored in the extended spring (ΔEspring [J/kg]), such that

DEspring ¼
1

2
knormh2 ¼ Zgh ¼ ZDEpotential. Note that when the springs are removed or their

motion is locked, ERAS modules do not recycle energy (ΔEspring = 0) and are therefore equiva-

lent to a normal set of stairs.

Energy-recycling assistive stairs
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We prepared a staircase for human experiments with a top landing with a force plate, two

ERAS, and bottom landing (Figs 2 and 3). The first (top) ERAS module was elevated 17 cm

above the ground, while the second (bottom) ERAS module was directly on the ground. The

120-cm-long bottom landing was 9.2 cm above the ground to match the lowest position of the

movable tread on the second ERAS. The 170-cm-long top landing was 43.2 cm above the

ground to match the highest position of the movable tread of the first ERAS. A force plate

(AccuGait1, Advanced Mechanical Technology, Inc.) formed part of the top landing directly

adjacent to the first ERAS. This allowed the measurement of ground reaction forces (GRFs) on

the non-mobile top landing instead of on the movable tread, on which the force readings

would be affected by and interfere with tread movement. Note that our measures of joint work

were restricted to the loading or unloading phases of the gait cycle in the initial (descent) or

final (ascent) steps.

The ERAS was designed to be interactive with the user. The electromagnetic latches of the

ERAS are modulated based on the inputs from the pressure sensor using a simple binary con-

troller on a single Arduino1 Uno board. Prior to use (home-state), both latches on the first

and the second ERAS (L1 and L2, respectively, Fig 3) are off, with no load detected by the pres-

sure sensors on the force plate, the first ERAS, nor the second ERAS (S0, S1, and S2, respec-

tively, Fig 3). During stair descent, a user steps on S1 which triggers L1 to turn on, locking the

movable tread in the lowered position. On the next descending step, the user steps on S2

which then triggers L2 to turn on, latching the next movable tread in the lowered position.

During a subsequent stair ascent, stepping on S2 does not trigger an event. On the next ascend-

ing step, S1 is pressed which turns L2 off, releasing the movable tread on the second (lower)

ERAS. On the next ascending step, S0 is pressed which turns L1 off, releasing the movable

tread on the first ERAS. Hence after a stair descent followed by an ascent, the two ERAS are

returned back to their home-state and ready for the next descent to occur.

The ERAS was also designed to be modular, low-cost and energy-efficient. ERAS modules

can be customized in size and shape and installed on top of existing staircases. The nonstruc-

tural components of a single ERAS unit, i.e. sensor, latch, and springs, cost less than $50 and

Fig 2. Two ERAS modules with the top and bottom landings. A) Front view, B) Side view with a user ascending the ERAS. Each ERAS module

consists of its own set of extension springs, a pressure sensor, linear guide, movable tread and an electromagnetic latch. The two modules are operated

by a single Arduino board (not shown). A force plate at the top landing measures the ground reaction forces of a human user.

https://doi.org/10.1371/journal.pone.0179637.g002
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consumes less than 5 W of electricity when a latch is on, and no external power when the latch

is off.

Human experiment

We recruited healthy young participants with no prior knowledge of the ERAS (n = 9,

81.0 ± 4.5 kg, 31.1 ± 4.5 yrs old, 1 female, Table 1). All participants provided their written con-

sent to the experiment protocol, which was approved by the Institutional Review Board of

Georgia Institute of Technology. All methods, including the experiments, were performed in

accordance with the relevant guidelines and regulations of the board.

To measure how participants negotiated stairs without assistance, they first used the ERAS

with the treads immobilized, i.e. energy-recycling turned off, for 10 pre-assist control trials

(Fig 3). Next, the springs were connected to the treads which were allowed to move, thereby

allowing the springs to store and release energy. Participants were allowed two trials (not

Fig 3. Overview of ERAS human user experiment. A) Schematic of the ERAS setup. The pictured compression springs are physically implemented

in hardware using extension springs (see Fig 2). Participants start each trial on the top landing, storing energy in the springs as they descend the steps.

Energy stored in the springs is released back to the user as they ascend the steps. L1 and L2 are the electromagnetic latches, whereas S0, S1 and S2

are the pressure sensors. B) Positive work generated by the knee over TL in each trial over an entire experimental session. Each experiment consisted

of 10 pre-assist control trials (blue), 40 assist trials (red), 10 post-assist trials (green) and 10 speed-matched control trials (gray). Solid lines denote

mean and thin lines denote one standard deviation across all participants.

https://doi.org/10.1371/journal.pone.0179637.g003

Table 1. Participants’ gender, age, weight, total spring constant, and the weight-normalized spring constant of the ERAS used in the experiments.

Participant Gender Age Weight Total spring constant Normalized spring constant

(yrs) (kg) (N/m) knorm (N/m/kg)

1 M 30 79 2521.83 31.92

2 M 27 100 2942.13 29.42

3 F 37 46 1401.01 30.46

4 M 25 94 2942.13 31.30

5 M 31 83 2521.83 30.38

6 M 35 85 2521.83 29.67

7 M 33 86 2521.83 29.32

8 M 36 80 2521.83 31.52

9 M 26 76 2521.83 33.18

Mean ± STD N/A 31.1 ± 4.5 81.0 ± 15.1 N/A 30.80 ± 1.3

https://doi.org/10.1371/journal.pone.0179637.t001
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analyzed) to familiarize themselves with the operation of the ERAS. Following this, each partic-

ipant experienced 40 assist trials (30 trials for participant 6) with the springs adjusted to their

body weight (knorm, see Table 1). The springs were then removed in 10 post-assist trials to

wash out after-effects (if any) from using the ERAS before the next trials began. To ensure

comparison across similar stair negotiation speeds when using ERAS [16–18], participants

performed 10 additional trials with the springs removed in which they matched their step

duration of the last assist trial (speed-matched control trials). The beats-per-minute (BPM) of

the step cadence in the last assist trial was provided to the participant by and audio beat for

approximately 1 minute after the post-assist trials. The audio was turned off prior to the speed-

matched control trials to prevent participants from marching to the beat. In all other trials,

participants self-selected their gait speeds. To avoid averaging transient behaviors over multi-

ple trials during analysis, we selected only the last three pre-assist control trials (PRE), the last

three assist trials (ASSIST), as well as the last three speed-matched control trials (MATCH) for

analysis. The blocked conditions were designed to account for the possibility that subject

would adapt their stair negotiation strategy on ERAS over repeated exposure, a common phe-

nomenon observed when humans are exposed to novel environmental effects [19–21].

To measure GRFs on the top landing and body segment kinematics, we used a six-axis

force plate (AccuGait1, Advanced Mechanical Technologies, Inc.) synchronized with full-

body kinematics using a motion-capture system (Vicon1). The force plate provided the GRF

and the center-of-pressure (CoP) at 120 Hz, whereas the motion-capture system provided the

subject’s full-body kinematics in a motion-capture suit (53 markers), the location of the force

plate, and the location of the ERAS tread, also at 120 Hz.

Gait phases definition. We measured joint work for ascent during TL and that for descent

during TUL. The definitions of TL and TUL follow the gait cycle segmentation in [1] (see Fig 4).

During ascent, TL was identified as the time interval that began with the leading foot contact

on the force plate (0% of the gait cycle) and ended as the trailing foot was lifted to the height of

the leading foot (*32%), equivalent to the combination of “Weight Acceptance” and “Pull

Up” phases in [1]. During descent, TUL was identified as the time interval that began at the sec-

ond mid-swing of a gait cycle (*70%) and ended with the trailing foot toe-off (100%), equiva-

lent to the “Controlled Lowering” phase defined in [1]. Measurements from the force plate

and the motion-capture system were used to identify TL and TUL.

To test whether using ERAS affected stair negotiation outside of TL or TUL, we defined the

time interval TFCA (where FC stands for forward-continuance [1] and A stands for ascent) and

TFCD (where D stands for descent, Fig 4). TFCA began at the end of TL (at *32% [1]) and

ended at the end of the subsequence double-stance (63.6% [2]), making |TFCA|� |TL|. Note

that TFCA is equivalent to the “Forward Continuance” phase during ascent defined in [1]. TFCD

began at the foot contact (38.8% [2]) and ended at the beginning of TUL (*70% [1]) making

|TFCD|� |TUL|. Note that TFCD is equivalent to the combination of “Weight Acceptance” and

“Forward Continuance” phases during decent defined in [1]. During TFCA and TFCD, the treads

on the ERAS were not moving since there were no feet placed on the treads. With our mea-

surement, we identified TFCA and TFCD by identifying the beginning of TFCA and the end of

TFCD from foot markers and using the fact that |TFCA|� |TL| and |TFCD|� |TUL|.

Joint work calculation. To calculate joint moments and velocities and eventually the joint

work, we used inverse dynamics using an open source physics engine, DART [22, 23]. We

computed the joint moment and velocity from the recorded kinematics, GRF, and CoP. Joint

positions q were obtained by solving a standard inverse kinematics problem. Next, we derived

the joint velocities _q and accelerations €q by taking fourth-order central finite differences of the

joint trajectories. Lastly, we obtained the joint moments τ from the equations of motion:

MðqÞ€qþ Cðq; _qÞ ¼ tþ JTF, where q is joint positions, M is the inertia matrix, C is the Coriolis

Energy-recycling assistive stairs
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and gravity vector calculated by DART, J is a Jacobian matrix and F is the GRF. The mass dis-

tribution of participants was assumed to follow the adapted inertial parameters in the study by

DeLeva [24].

Joint power P was calculated by taking the inner product of the instantaneous joint moment

and velocity vectors of the leading leg joints during ascent and the trailing leg joints during

descent [16]. Positive work in a single DOF during TL was obtained by taking the integral of P
when it is positive during TL, denoted by the domain POS, such that

Wþ
joint ¼

Z

POS
Pdt; ð1Þ

where Wþ
joint is the positive work of a particular joint. Similarly, negative work in a single joint

during TUL was obtained by taking the integral of P only when it is negative during TUL,

denoted by the domain NEG, such that

W �
joint ¼

Z

NEG
Pdt; ð2Þ

where W �
joint is the negative work of a particular joint. To quantify the assistance provided by

the ERAS, we obtained individual joint positive work as well as the total positive work genera-

tion from all joint DOFs during TL, and individual joint negative work as well as the total nega-

tive work generation from all joint DOFs during TUL (Table 2). Specifically, we calculated the

positive work generated by each of the five DOFs of the leading leg (hip-sagittal, hip-frontal,

knee, ankle-sagittal, and ankle-frontal joints) during TL. Then, we summed up the positive

work generated by these five DOFs to find the total positive work generated by the leading leg

during TL (Wþ
TOT). In addition, we summed the positive work generated by the three sagittal

DOFs (i.e. by the hip-sagittal, knee and the ankle-sagittal DOFs) to find positive work genera-

tion in the sagittal plane only (Wþ
Sag). We also calculated the negative work generated by each

of the five DOFs of the trailing leg during TUL, the total negative work (W �
TOT), as well as the

Fig 4. Gait phases during stair negotiation. A) During ascent, TL begins with the leading foot contact (0%) and ends at mid-swing of the trailing leg

(*32%*). The forward-continuance phase, TFCA, begins at mid-swing and ends at the end of the double-support phase (63.6%†). B) During descent,

TUL begins at the second mid-swing of the leading leg (*70%*) and ends at the trailing leg toe-off (100%). The forward-continuance phase, TFCD,

begins with the foot contact (38.8%†) and ends at the mid-swing. *: as defined in [1]. †: as defined in [2].

https://doi.org/10.1371/journal.pone.0179637.g004
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negative work generation in the sagittal plane only (W �
Sag). We repeated these calculations in

three conditions; PRE, ASSIST and MATCH.

Statistical analysis. To quantify how much joint work was reduced by using ERAS, we

compared the total positive or negative work, the work by all sagittal DOFs, as well as the work

by individual DOFs. We compared the work metrics in three conditions (PRE, ASSIST and

MATCH) and 9 participants using ANOVA, with both “conditions” and “participants” as

fixed factors. Tukey HSD was used to test the mean differences among conditions with signifi-

cance at p< 0.05.

Results

Operation of energy-recycling stairs

The ERAS stores energy during the unloading phase (TUL) in stair descent and subsequently

returns energy to the user during the loading phase (TL, Figs 1 and 4) in stair ascent. During

TUL, CoM lowering begins as the leading leg pushes the movable tread down and stores energy

in the extended springs (Fig 4B at *70%). Energy storage in the springs is complete when the

leading foot (and therefore also the leading movable tread) is fully lowered by the step height

(Fig 4B between 88.8% and 100%). As a result, TUL fully encompasses the time interval during

which the storage of energy in the springs would affect negative work during stair descent.

During TL, CoM elevation begins with the leading foot contact, which triggers the release of

energy from the springs of the lower tread to the trailing leg. Energy release begins shortly

after as the trailing foot begins to be elevated (Fig 4A between 0% and 13.6%). Energy release is

complete when the trailing foot (and therefore also the trailing movable tread) is fully elevated

by the step height (Fig 4A at *32%). As a result, TL fully encompasses the time interval during

which the release of energy in the springs affects positive work during gait ascent (See S1

Video).

Assessment of assistance provided during stair negotiation

All users—ranging from 46 to 100 kg (Table 1)—were successful in stair negotiation on the

ERAS. Participants had no prior knowledge about the ERAS, nor were they provided with any

information about the purpose of the ERAS during the experiment session. In over 360 trials

across 9 participants, no adverse events or concerns about safety were reported.

Table 2. Work metrics and their definitions.

Metric Description Obtained during

Wþ
TOT Total positive work generated by the leading leg in all DOF Ascent, TL

Wþ
Sag Total positive work generated by the leading leg in sagittal plane Ascent, TL

Wþ
hip Positive work generated by the leading-leg hip joint in sagittal plane Ascent, TL

Wþ
knee Positive work generated by the leading-leg knee joint Ascent, TL

Wþ
ank Positive work generated by the leading-leg ankle joint in sagittal plane Ascent, TL

W �
TOT Total negative work generated by the trailing leg in all DOF Descent, TUL

W �
Sag Total negative work generated by the trailing leg in sagittal plane Descent, TUL

W �
hip Negative work generated by the trailing-leg hip joint in sagittal plane Descent, TUL

W �
knee Negative work generated by the trailing-leg knee joint Descent, TUL

W �
ank Negative work generated by the trailing-leg ankle joint in sagittal plane Descent, TUL

https://doi.org/10.1371/journal.pone.0179637.t002
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During ascent, the step duration in the ASSIST condition was significantly longer than the

step duration in the PRE condition (ASSIST versus PRE, p< 0.001), but was not different

from the step duration in the MATCH condition (ASSIST versus MATCH, p> 0.5, Fig 5A).

During descent, the step duration during the ASSIST condition was not different from the step

duration in the PRE condition (ASSIST versus PRE, p> 0.5), but was significantly shorter

than the step duration in the MATCH condition (MATCH versus ASSIST, p< 0.001, Fig 5B).

In other words, in the ASSIST condition, stair ascent was slower than during normal stair

negotiation (PRE) but descent was at a comparable speed. This counter-intuitive observation

is discussed later in Discussion. Based on step duration, we used the MATCH condition as our

speed-matched control for the ASSIST condition during ascent, and used the PRE condition

as our speed-matched control for the ASSIST condition during descent.

ERAS did not qualitatively affect movement kinematics or CoM motion, consistent with

self-reports of the ERAS being easy to use. Fig 6 shows the joint angle and CoM trajectories of

a representative participant (#9). Sagittal plane joint angles of the hip, knee, and ankle were

qualitatively similar during TL between the ASSIST and the MATCH conditions, with the hip-

sagittal angle slightly higher and the ankle-sagittal angle slightly lower than in MATCH. The

CoM height from the ground also followed similar trajectories between ASSIST and MATCH

conditions (ascent) as well as between ASSIST and PRE conditions (descent). There was no

evidence of sudden lifts or drops of CoM.

Stair ascent. In speed-matched normal stair ascent (MATCH), the total positive work of

1.317 ± 0.134 J/kg was generated by the leading leg during TL (Wþ
TOT , Fig 7A). The sagittal-

plane DOFs (hip-sagittal, knee and ankle-sagittal) generated over 95.8 ± 2.1% (Wþ
Sag ,

1.262 ± 0.137 J/kg) of the total positive work. The hip-sagittal DOF generated 51.4 ± 8.1%

(Wþ
hip, 0.677 ± 0.107 J/kg), the knee DOF generated 40.0 ± 7.9% (Wþ

knee, 0.527 ± 0.104 J/kg), and

the ankle-sagittal DOF generated 4.2 ± 2.7% (Wþ
ank, 0.056 ± 0.036 J/kg) of the total positive

Fig 5. Step duration in different stair negotiation conditions. A) During ascent, step duration on the

ERAS was significantly longer than in normal stair negotiation (ASSIST versus PRE). No significant difference

was observed in the step duration between ERAS and normal stairs with slower, matched gait speed (ASSIST

versus MATCH). Thus, we compared the results (ASSIST) against MATCH (instead of PRE) during ascent.

B) During descent, step duration was not different on ERAS versus during normal stair negotiation (ASSIST

versus PRE). However, the descent steps in the MATCH condition were significantly longer than on ERAS

(ASSIST versus MATCH). Thus, we compared the results (ASSIST) against PRE (instead of MATCH). ***
refers to p < 0.001, * refers to p < 0.05, and N.S. refers to no significant difference.

https://doi.org/10.1371/journal.pone.0179637.g005
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work during TL. Contribution of frontal DOFs (hip-frontal and ankle frontal) to total positive

work was 4.4 ± 2.0%.

Using ERAS significantly reduced positive work generation during TL. When speed was

matched, using ERAS reduced Wþ
TOT by 17.4 ± 6.9% (ASSIST versus MATCH, p< 0.001,

Fig 7A). Wþ
knee was reduced by 37.7 ± 10.5% (ASSIST versus MATCH, p< 0.001). However,

Wþ
hip did not change significantly (ASSIST versus MATCH, p> 0.25).

During the forward-continuance phase of ascent, TFCA, positive joint work generated by

each DOF showed no difference between ASSIST and MATCH conditions, except for the hip-

sagittal DOF, which generated 0.142 ± 0.063 J/kg more positive work during ASSIST than in

MATCH (Fig 8). However, because the total positive work reduction during TL was

0.230 ± 0.094 J/kg, the total positive work during TL + TFCA = [0%, 64%] showed a trend of

reduction by 0.088 ± 0.108 J/kg (p< 0.2).

Stair descent. In speed-matched normal stair ascent (PRE), the total negative work of

−0.807 ± 0.179 J/kg was generated by the leading leg during TUL (W �
TOT , Fig 7B). The sagittal-

plane DOFs (hip-sagittal, knee and ankle-sagittal) generated 92.2 ± 4.2% (W �
Sag , −0.744 ± 0.169

J/kg) of the total negative work. The knee DOF generated 48.7 ± 18.8% (W �
knee, −0.393 ± 0.152

J/kg), the ankle-sagittal DOF generated 41.5 ± 15.3% (W �
ank, −0.335 ± 0.123 J/kg), and the hip-

sagittal DOF generated 1.9 ± 3.4% (W �
hip, −0.016 ± 0.028 J/kg) of the total negative work during

TUL. Contribution of frontal DOFs (hip-frontal and ankle-frontal) to total negative work was

7.9 ± 5.0%.

Using ERAS significantly reduced negative work generation during TUL. When speed was

matched, using ERAS reduced W �
TOT by 21.9 ± 17.8% (PRE versus ASSIST, p< 0.001, Fig 7B).

W �
ank was reduced by 26.0 ± 15.9% (PRE versus ASSIST, p< 0.001). However, W �

knee did not

change significantly (PRE versus ASSIST, p> 0.68).

Using ERAS did not change the total joint work during the forward-continuance phase

during descent, TFCD. Negative work generated by each DOFs, as well as the total of them,

were not different between PRE and ASSIST conditions.

Fig 6. Joint kinematics and center-of-mass trajectories of participant #9. A) Joint angle, moment, and power for the hip-sagittal, knee and ankle-

sagittal DOFs during TL (0%-32% of the gait cycle during ascent) for ASSIST (red) and MATCH (black) conditions. The solid line indicates the mean

trajectory and the dashed lines indicate one standard deviation. B) Center-of-mass height over time during TL (top), and during TUL (bottom). Blue

trajectories indicate PRE condition.

https://doi.org/10.1371/journal.pone.0179637.g006
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Discussion

Our energy-recycling assistive stairs recycle energy from human movement to assist stair

negotiation without the use of high-power actuators. Naive users with no prior exposure to

ERAS were able to safely and effectively use our stairs, which operates with a system of springs

and movable treads. We show that ERAS stores energy that is usually absorbed by the trailing

leg during stair descent. Although further investigation is required, this reduction in negative

work could possibly reduce the metabolic cost of stair descent, and also reduce muscle and

joint forces that cause pain [25, 26]. Similarly, stored energy in the ERAS is returned to users

during stair ascent, showing a trend towards reducing the amount of positive work generated

by the user. This could also lead to reduced metabolic energy as well as muscle and joint forces

during stair ascent.

Implications of ERAS as an assistive device

ERAS is the first non-wearable device that recycles human-generated mechanical energy to

provide motor assistance (Table 3). Several existing wearable energy-recycling devices convert

mechanical energy stored from human movement into electrical energy to power external

devices [14, 27–35]. However, converting mechanical energy to electrical energy is inefficient

and unnecessary for applications requiring mechanical energy output for movement assis-

tance. Wearable devices [14, 15, 28–33] are constrained in the amount of energy that can be

stored and released due to tight constraints on space and weight. By installing the energy recy-

cling mechanism on a staircase, the ERAS can use large (and possibly heavier) springs which

allow for a greater amount of energy storage, without the form factor constraints imposed by

wearable devices. As user compliance in wearing assistive devices can be limited, modifications

in the home environment may be more beneficial in providing greater independence, safety,

and mobility to those with difficulty with stair negotiation. Moreover, while all other existing

energy-recycling devices available target overground human locomotion such as walking or

running, ERAS is the only device tailored for assistance during stair negotiation.

Fig 7. Positive and negative work on ERAS. Work metrics in the ASSIST condition (shaded boxes, red dots) and in speed-matched control conditions

(MATCH for ascent, PRE for descent). Thin and dark gray lines connect each participant’s result in blue, red, and black dots. A) Ascent: Between

ASSIST and MATCH conditions,Wþ
TOT ,W

þ
Sag andWþ

knee were reduced by 17.4 ± 6.9%, 17.8 ± 7.3% and 37.7 ± 10.5%, respectively. PRE trials are also

shown for reference (white boxes, blue dots). B) Descent: Between ASSIST and PRE conditions,W �
TOT ,W

�
Sag andW �

ank were reduced by 21.9 ± 17.8%,

16.9 ± 21.3% and 26.0 ± 15.9%, respectively.W �
hip was also significantly reduced, but the absolute reduction is very small. MATCH trials are also shown

for reference (white boxes, black dots). Significance of p < 0.001 are noted as ***, p < 0.01 are noted as **.

https://doi.org/10.1371/journal.pone.0179637.g007
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Fig 8. Positive work generated during TFCA. Positive work generated by the hip-sagittal DOF was

significantly higher in the ASSIST condition (0.523 ± 0.119 J/kg) versus the MATCH condition

(0.381 ± 0.084 J/kg, p < 0.001). The total positive work generated during TL + TFCA was not significantly

different, with a trend towards slight reduction in ASSIST from MATCH (0.088 ± 0.101 J/kg, p < 0.2).

https://doi.org/10.1371/journal.pone.0179637.g008

Table 3. Current energy-recycling devices.

Non-wearable Wearable

Output: mechanical energy for human movement assistance ERAS (this work) Collins 2015 [15]

Output: electrical energy for external device operations Pavegen® [27] Niu 2004 [28],

Hayashida 2000 [29],

Paradiso 2005 [30],

Riemer 2010 [31],

Donelan 2008 [14],

Rome 2005 [32],

Granstrom 2007 [33]

Energy-recycling devices in the literature are categorized based on their configuration (wearable versus non-

wearable) and energy output (mechanical versus electrical energy). The underlined device is for stair

negotiation; all other devices are for level walking.

https://doi.org/10.1371/journal.pone.0179637.t003
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For people with reduced motor function who can still negotiate stairs with some assistance,

our modular and low-power ERAS is a low-cost and effective alternative to the existing high-

power and expensive options such as elevators, escalators or stair lifts. The modular design of

ERAS allows quick and easy installation (and removal, if necessary) on top of an existing stair-

case without expensive remodeling. The passive springs, low-power electromagnetic latches,

and a single Arduino board together require very little power compared to motorized devices,

thereby reducing the cost of use. The low-cost and low-power design allows ERAS to be more

affordable and practical to people with limited financial resources. The modular ERAS can eas-

ily integrate onto existing stairs, making homes and communities more suited for aging-in-

place [36].

One surprising outcome of ERAS is its ability to assist not only stair ascent, but also stair

descent. Perhaps counter-intuitively, stair descent can be as energy-demanding as stair ascent.

A person (body weight = mg) ascending a step (height = h) must generate net positive energy

in the legs of mgh. Similarly, descending a step requires a potential energy of mgh to be dissi-

pated by negative work generation in the legs and through collision. Hence, if energy lost

through collision is small, the negative work during descent can be of similar magnitude to

positive work in ascent. In fact, Fig 7 show that W �
TOT is comparable in magnitude to Wþ

TOT .

Moreover, the control of muscle braking is more challenging than generating positive work

with muscles, and is a focus of exercises to help frail older adults to better descend stairs and to

decrease the risk of fall [37].

While the current hardware prototype allows initial investigation of the assistance provided

by ERAS, future evolutions of ERAS could allow higher usability in practical settings. To use

the current prototype, a user needs to first descend and then ascend the ERAS modules in

order to store and then to return mechanical work. This constraint can be eliminated in the

future prototypes by incorporating additional mechanisms to configure the ERAS to either

“ascend-able” (treads down) or “descend-able” (treads up) positions, thereby also allowing

multiple users to consecutively ascend or descend the ERAS modules.

Experimental limitations and justifications

The mis-match in the descent step duration between ASSIST and MATCH conditions (Fig 5)

may be due to the verbal instructions to the participants as well as the tempo of the audio beat.

We informed the participants that they might walk more slowly in the following trials than

they would normally on normal stairs. This may have caused some participants to be predis-

posed to slow down during both ascent and descent compared to PRE trials. However, since

stair descent was not slower in ASSIST than in PRE, stair descent in MATCH turned out to be

slower than in ASSIST. Also, the audio beat we selected was similar to the speed of ascent of

the last ASSIST trial, but was too slow for the descent. Speed-match trials in future experiments

should be conducted with refined instructions and separate audio beat tempos for ascent and

descent to more accurately represent the step durations during ASSIST.

We only examined joint work as a first step, but further study on the specific effects of

ERAS on more physiologically-relevant metrics is warranted, particularly in mobility-limited

individuals. These could include joint range of motion [6], peak joint moment/power [1–3],

intra-articular joint forces [38], muscle co-activation [39, 40], net metabolic energy reduction

[15] or the amount of eccentric muscle contraction required [41]. As a first step, we assessed

the efficacy of the ERAS in providing assistance using measures of joint work. Although our

metrics demonstrate that mechanical work was stored and returned to the user, it is still possi-

ble that participants co-activated muscles to stiffen the joints when using the ERAS, which

could increase metabolic energy, muscle forces, and inter-joint forces; it is not clear whether
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such changes would increase or reduce joint pain. Factors specific to mobility limitations in

specific populations also need to be directly studied when considering the appropriateness of

ERAS in providing assistance in stair negotiation.

We were unable to measure the reaction forces on the movable stair treads, but believe that

measures from the top landing are comparable to those from intermediate steps on the ERAS.

Gait patterns are similar in stair ascent when stepping on the top landing as when stepping

onto the intermediate ERAS steps with the tread in the lowered position. Similarly, in stair

descent lowering the body from the top landing is similar to lowering the body on the ERAS

with the tread locked in the lowered position. Although the ideal case would be to measure

GRFs on the moving treads, this would require very light and thin force plates, or for the

ERAS modules to be isolated and mounted on stationary force plates [2].

Summary

Our promising results that show energy-recycling during stair negotiation in young healthy

participants motivate further refinement and optimization of the Energy-Recycling Assistive

Stairs to aid older adults and individuals with a wide range of mobility impairments. As

healthy users could safely benefit from ERAS without explicit instructions or training, more

effective user guidelines and practice could facilitate stair negotiation for those with muscle

weakness or joint pain. The physical design of the ERAS could be tailored to provide more

user-specific trajectories of energy storage and release. Further reduction in the net electrical

energy expenditure could also be achieved through a more refined mechanical design and well

as the harvesting energy from stair motion to power the system’s electronics. It is possible that

each ERAS could be operated independently without external power. In addition, future ERAS

could overcome the limitations of the current prototype, such as to provide assistance to multi-

ple users. Overall, our proof-of-principle demonstration provides a novel platform for interac-

tive, personalized, energy-efficient, and cost-effective devices for assisting stair negotiation to

suit a wide range of individuals with reduced mobility.

Supporting information

S1 Video. ERAS operation demonstration. A user descending and ascending a staircase with

two ERAS modules.

(MP4)

Acknowledgments

This work was supported by the National Science Foundation Grant EFRI-1137229. The

authors would like to thank Dr. Young-Hui Chang and Dr. Randy Trumbower for use of their

equipment.

Author Contributions

Conceptualization: YSS SH LHT CKL.

Data curation: YSS SH HH.

Formal analysis: YSS SH.

Funding acquisition: LHT CKL.

Investigation: YSS SH HH.

Energy-recycling assistive stairs

PLOS ONE | https://doi.org/10.1371/journal.pone.0179637 July 12, 2017 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179637.s001
https://doi.org/10.1371/journal.pone.0179637


Methodology: YSS SH LHT CKL.

Project administration: LHT CKL.

Resources: YSS SH LHT CKL.

Software: YSS SH CKL.

Supervision: LHT CKL.

Validation: YSS SH HH LHT CKL.

Visualization: YSS.

Writing – original draft: YSS SH HH LHT CKL.

Writing – review & editing: YSS LHT CKL.

References
1. McFadyen BJ, Winter DA. An integrated biomechanical analysis of normal stair ascent and descent.

Journal of biomechanics. 1988; 21(9):733–744. https://doi.org/10.1016/0021-9290(88)90282-5 PMID:

3182877

2. Riener R, Rabuffetti M, Frigo C. Stair ascent and descent at different inclinations. Gait & posture. 2002;

15(1):32–44. https://doi.org/10.1016/S0966-6362(01)00162-X

3. Nadeau S, McFadyen BJ, Malouin F. Frontal and sagittal plane analyses of the stair climbing task in

healthy adults aged over 40 years: what are the challenges compared to level walking? Clinical Biome-

chanics. 2003; 18(10):950–959. https://doi.org/10.1016/S0268-0033(03)00179-7 PMID: 14580839

4. Williamson JD, Fried LP. Characterization of older adults who attribute functional decrements to old

age. Journal of the American Geriatrics Society. 1996; 44(12):1429–1434. https://doi.org/10.1111/j.

1532-5415.1996.tb04066.x PMID: 8951311

5. Startzell J, Owens D, Mulfinger L, PR C. Stair negotiation in older people: a review. Journal of the Amer-

ican Geriatrics Society. 2000; 48(5). https://doi.org/10.1111/j.1532-5415.2000.tb05006.x PMID:

10811553

6. Hall M, Wrigley TV, Kean CO, Metcalf BR, Bennell KL. Hip biomechanics during stair ascent and

descent in people with and without hip osteoarthritis; 2016.

7. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Müller V, et al. Duration and frequency of

every day activities in total hip patients. Journal of biomechanics. 2001; 34(7):873–881. https://doi.org/

10.1016/S0021-9290(01)00035-5 PMID: 11410171

8. ThyssenKrupp elevator energy consumption calculator. https://www.thyssenkruppelevator.com/Tools/

energy-calculator; (accessed November, 2016).

9. U S Energy Information Administration Annual Energy Review. http://www.eia.gov/totalenergy/data/

annual/pdf/sec2_17.pdf; 2011.

10. Firth S, Lomas K, Wright A, Wall R. Identifying trends in the use of domestic appliances from household

electricity consumption measurements. Energy and Buildings. 2008; 40(5):926–936. https://doi.org/10.

1016/j.enbuild.2007.07.005

11. Bloomfield SA. Changes in musculoskeletal structure and function with prolonged bed rest. Medicine

and science in sports and exercise. 1997; 29(2):197–206. https://doi.org/10.1097/00005768-

199702000-00006 PMID: 9044223

12. Bodine SC. Disuse-induced muscle wasting. The international journal of biochemistry & cell biology.

2013; 45(10):2200–2208. https://doi.org/10.1016/j.biocel.2013.06.011

13. Dolbow DR, Gorgey AS. Effects of Use and Disuse on Non-paralyzed and Paralyzed Skeletal Muscles.

Aging and disease. 2016; 7(1):68. https://doi.org/10.14336/AD.2015.0826 PMID: 26816665

14. Donelan JM, Li Q, Naing V, Hoffer J, Weber D, Kuo AD. Biomechanical energy harvesting: generating

electricity during walking with minimal user effort. Science. 2008; 319(5864):807–810. https://doi.org/

10.1126/science.1149860 PMID: 18258914

15. Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered

exoskeleton. Nature. 2015; 522(7555):212–215. https://doi.org/10.1038/nature14288 PMID: 25830889

Energy-recycling assistive stairs

PLOS ONE | https://doi.org/10.1371/journal.pone.0179637 July 12, 2017 15 / 17

https://doi.org/10.1016/0021-9290(88)90282-5
http://www.ncbi.nlm.nih.gov/pubmed/3182877
https://doi.org/10.1016/S0966-6362(01)00162-X
https://doi.org/10.1016/S0268-0033(03)00179-7
http://www.ncbi.nlm.nih.gov/pubmed/14580839
https://doi.org/10.1111/j.1532-5415.1996.tb04066.x
https://doi.org/10.1111/j.1532-5415.1996.tb04066.x
http://www.ncbi.nlm.nih.gov/pubmed/8951311
https://doi.org/10.1111/j.1532-5415.2000.tb05006.x
http://www.ncbi.nlm.nih.gov/pubmed/10811553
https://doi.org/10.1016/S0021-9290(01)00035-5
https://doi.org/10.1016/S0021-9290(01)00035-5
http://www.ncbi.nlm.nih.gov/pubmed/11410171
https://www.thyssenkruppelevator.com/Tools/energy-calculator
https://www.thyssenkruppelevator.com/Tools/energy-calculator
http://www.eia.gov/totalenergy/data/annual/pdf/sec2_17.pdf
http://www.eia.gov/totalenergy/data/annual/pdf/sec2_17.pdf
https://doi.org/10.1016/j.enbuild.2007.07.005
https://doi.org/10.1016/j.enbuild.2007.07.005
https://doi.org/10.1097/00005768-199702000-00006
https://doi.org/10.1097/00005768-199702000-00006
http://www.ncbi.nlm.nih.gov/pubmed/9044223
https://doi.org/10.1016/j.biocel.2013.06.011
https://doi.org/10.14336/AD.2015.0826
http://www.ncbi.nlm.nih.gov/pubmed/26816665
https://doi.org/10.1126/science.1149860
https://doi.org/10.1126/science.1149860
http://www.ncbi.nlm.nih.gov/pubmed/18258914
https://doi.org/10.1038/nature14288
http://www.ncbi.nlm.nih.gov/pubmed/25830889
https://doi.org/10.1371/journal.pone.0179637


16. Donelan JM, Kram R, Kuo AD. Simultaneous positive and negative external mechanical work in human

walking. Journal of biomechanics. 2002; 35(1):117–124. https://doi.org/10.1016/S0021-9290(01)

00169-5 PMID: 11747890

17. Keller T, Weisberger A, Ray J, Hasan S, Shiavi R, Spengler D. Relationship between vertical ground

reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics. 1996; 11

(5):253–259. https://doi.org/10.1016/0268-0033(95)00068-2 PMID: 11415629

18. Routson RL. The Effects of Varying Speed on the Biomechanics of Stair Ascending and Descending in

Healthy Young Adults: Inverse Kinematics, Inverse Dynamics, Electromyography and a Pilot Study for

Computational Muscle Control and Forward Dynamics. The Ohio State University; 2010.

19. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task.

Journal of Neuroscience. 1994; 14(5):3208–3224. PMID: 8182467

20. Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve

walking symmetry post-stroke. Brain. 2007; 130(7):1861–1872. https://doi.org/10.1093/brain/awm035

PMID: 17405765

21. Welch TD, Ting LH. Mechanisms of motor adaptation in reactive balance control. PLoS One. 2014; 9

(5):e96440. https://doi.org/10.1371/journal.pone.0096440 PMID: 24810991

22. DART. Dynamic Animation and Robotics Toolkit, http://dartsim.github.io/; 2016.

23. Liu CK, Jain S. A Short Tutorial on Multibody Dynamics. Georgia Institute of Technology, School of

Interactive Computing; 2012. GIT-GVU-15-01-1.

24. De Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal of biomechan-

ics. 1996; 29(9):1223–1230. https://doi.org/10.1016/0021-9290(95)00178-6 PMID: 8872282

25. DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers during gait. Journal of

applied physiology. 2000; 88(5):1804–1811. PMID: 10797145

26. Kaufman KR, Hughes C, Morrey BF, Morrey M, An KN. Gait characteristics of patients with knee osteo-

arthritis. Journal of biomechanics. 2001; 34(7):907–915. https://doi.org/10.1016/S0021-9290(01)

00036-7 PMID: 11410174

27. Pavegen. http://www.pavegen.com/; (accessed November, 2016).

28. Niu P, Chapman P, Riemer R, Zhang X. Evaluation of motions and actuation methods for biomechanical

energy harvesting. In: Power Electronics Specialists Conference, 2004. PESC 04. 35th Annual. vol. 3.

IEEE; 2004. p. 2100–2106.

29. Hayashida JY. Unobtrusive integration of magnetic generator systems into common footwear. MIT

Media Lab; 2000.

30. Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive com-

puting. 2005; 4(1):18–27. https://doi.org/10.1109/MPRV.2005.9

31. Riemer R, Shapiro A, Azar S. Optimal gear and generator selection for a knee biomechanical energy

harvester. In: 1st International Conference on Applied Bionics and Biomechanics; October; 2010.

p. 14–16.

32. Rome LC, Flynn L, Goldman EM, Yoo TD. Generating electricity while walking with loads. Science.

2005; 309(5741):1725–1728. https://doi.org/10.1126/science.1111063 PMID: 16151012

33. Granstrom J, Feenstra J, Sodano HA, Farinholt K. Energy harvesting from a backpack instrumented

with piezoelectric shoulder straps. Smart Materials and Structures. 2007; 16(5):1810. https://doi.org/10.

1088/0964-1726/16/5/036

34. Riemer R, Shapiro A. Biomechanical energy harvesting from human motion: theory, state of the art,

design guidelines, and future directions. Journal of neuroengineering and rehabilitation. 2011; 8(1):1.

https://doi.org/10.1186/1743-0003-8-22

35. Schertzer E, Riemer R. Harvesting biomechanical energy or carrying batteries? An evaluation method

based on a comparison of metabolic power. Journal of neuroengineering and rehabilitation. 2015; 12

(1):1. https://doi.org/10.1186/s12984-015-0023-7

36. Pynoos J, Caraviello R, Cicero C. Lifelong housing: the anchor in aging-friendly communities. Genera-

tions. 2009; 33(2):26–32.

37. LaStayo PC, Ewy GA, Pierotti DD, Johns RK, Lindstedt S. The positive effects of negative work:

increased muscle strength and decreased fall risk in a frail elderly population. The Journals of Gerontol-

ogy Series A: Biological Sciences and Medical Sciences. 2003; 58(5):M419–M424. https://doi.org/10.

1093/gerona/58.5.M419

38. McLaughlin P, Chowdary P, Woledge R, McCarthy A, Mayagoitia R. The effect of neutral-cushioned

running shoes on the intra-articular force in the haemophilic ankle. Clinical Biomechanics. 2013; 28

(6):672–678. https://doi.org/10.1016/j.clinbiomech.2013.05.008 PMID: 23768976

Energy-recycling assistive stairs

PLOS ONE | https://doi.org/10.1371/journal.pone.0179637 July 12, 2017 16 / 17

https://doi.org/10.1016/S0021-9290(01)00169-5
https://doi.org/10.1016/S0021-9290(01)00169-5
http://www.ncbi.nlm.nih.gov/pubmed/11747890
https://doi.org/10.1016/0268-0033(95)00068-2
http://www.ncbi.nlm.nih.gov/pubmed/11415629
http://www.ncbi.nlm.nih.gov/pubmed/8182467
https://doi.org/10.1093/brain/awm035
http://www.ncbi.nlm.nih.gov/pubmed/17405765
https://doi.org/10.1371/journal.pone.0096440
http://www.ncbi.nlm.nih.gov/pubmed/24810991
http://dartsim.github.io/
https://doi.org/10.1016/0021-9290(95)00178-6
http://www.ncbi.nlm.nih.gov/pubmed/8872282
http://www.ncbi.nlm.nih.gov/pubmed/10797145
https://doi.org/10.1016/S0021-9290(01)00036-7
https://doi.org/10.1016/S0021-9290(01)00036-7
http://www.ncbi.nlm.nih.gov/pubmed/11410174
http://www.pavegen.com/
https://doi.org/10.1109/MPRV.2005.9
https://doi.org/10.1126/science.1111063
http://www.ncbi.nlm.nih.gov/pubmed/16151012
https://doi.org/10.1088/0964-1726/16/5/036
https://doi.org/10.1088/0964-1726/16/5/036
https://doi.org/10.1186/1743-0003-8-22
https://doi.org/10.1186/s12984-015-0023-7
https://doi.org/10.1093/gerona/58.5.M419
https://doi.org/10.1093/gerona/58.5.M419
https://doi.org/10.1016/j.clinbiomech.2013.05.008
http://www.ncbi.nlm.nih.gov/pubmed/23768976
https://doi.org/10.1371/journal.pone.0179637


39. Childs JD, Sparto PJ, Fitzgerald GK, Bizzini M, Irrgang JJ. Alterations in lower extremity movement and

muscle activation patterns in individuals with knee osteoarthritis. Clinical biomechanics. 2004; 19

(1):44–49. https://doi.org/10.1016/j.clinbiomech.2003.08.007 PMID: 14659929

40. Preece SJ, Jones RK, Brown CA, Cacciatore TW, Jones AK. Reductions in co-contraction following

neuromuscular re-education in people with knee osteoarthritis. BMC Musculoskeletal Disorders. 2016;

17(1):372. https://doi.org/10.1186/s12891-016-1209-2 PMID: 27568007

41. LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contrac-

tions: their contribution to injury, prevention, rehabilitation, and sport. Journal of Orthopaedic & Sports

Physical Therapy. 2003; 33(10):557–571. https://doi.org/10.2519/jospt.2003.33.10.557

Energy-recycling assistive stairs

PLOS ONE | https://doi.org/10.1371/journal.pone.0179637 July 12, 2017 17 / 17

https://doi.org/10.1016/j.clinbiomech.2003.08.007
http://www.ncbi.nlm.nih.gov/pubmed/14659929
https://doi.org/10.1186/s12891-016-1209-2
http://www.ncbi.nlm.nih.gov/pubmed/27568007
https://doi.org/10.2519/jospt.2003.33.10.557
https://doi.org/10.1371/journal.pone.0179637

