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Abstract

Metabolites play a key role in plants as they are routing plant developmental processes

and are involved in biotic and abiotic stress responses. Their analysis can offer important

information on the underlying processes. Regarding plant breeding, metabolite concentra-

tions can be used as biomarkers instead of or in addition to genetic markers to predict

important phenotypic traits (metabolic prediction). In this study, we applied a genome-

wide association study (GWAS) in a wild barley nested association mapping (NAM) popu-

lation to identify metabolic quantitative trait loci (mQTL). A set of approximately 130

metabolites, measured at early and late sampling dates, was analysed. For four metabo-

lites from the early and six metabolites from the late sampling date significant mQTL

(grouped as 19 mQTL for the early and 25 mQTL for the late sampling date) were found.

Interestingly, all of those metabolites could be classified as sugars. Sugars are known to

be involved in signalling, plant growth and plant development. Sugar-related genes,

encoding mainly sugar transporters, have been identified as candidate genes for most of

the mQTL. Moreover, several of them co-localized with known flowering time genes like

Ppd-H1, HvELF3, Vrn-H1, Vrn-H2 and Vrn-H3, hinting on the known role of sugars in flow-

ering. Furthermore, numerous disease resistance-related genes were detected, pointing

to the signalling function of sugars in plant resistance. An mQTL on chromosome 1H in the

region of 13 Mbp to 20 Mbp stood out, that alone explained up to 65% of the phenotypic

variation of a single metabolite. Analysis of family-specific effects within the diverse NAM

population showed the available natural genetic variation regarding sugar metabolites due

to different wild alleles. The study represents a step towards a better understanding of the

genetic components of metabolite accumulation, especially sugars, thereby linking them

to biological functions in barley.
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Introduction

The importance of metabolites in different areas of life is essential. Metabolomics (parallel to

the terms genomics, transcriptomics and proteomics) means the investigation of the metabo-

lome of a living organism and includes the identification and quantification of metabolites,

as well as their interactions [1]. Modifications in genes and proteins change the metabolite

profile of an organism [2]. Application of metabolomics is wide: from pharmacology over

human disease diagnosis to plants [2]. They are used as biomarkers in medicine, for example,

to detect lung cancer where certain metabolites show significant differences between healthy

and ill individuals [3]. Like for other omics, high throughput methods for metabolite screen-

ing are available, for instance, a combination of gas chromatography and mass spectrometry

(GC-MS) [4]. Estimates for the total number of metabolites in plant kingdom vary from

200,000 to 1,000,000 [5]. In the field of plant breeding, metabolites play an increasingly

important role as predictors of phenotype expression in several crop plants, where metabo-

lites are used instead of or in addition to classical genetic markers like SNPs. Different exam-

ples are the prediction of complex agronomic traits like yield, heading date and plant height

in rice, maize, potato and barley [6–10]. Furthermore, they are involved in abiotic and biotic

stress response [11, 12]. For instance, the expression of threhalose-6-phosphate synthase 1

increases drought tolerance in potatoes [13]. Proline plays a key role regarding drought and

salt tolerance in different plants [14, 15], phenylpropanoid-polyamine in defence against

insect herbivores in Nicotiana attenuata and flavonoids for UV light protection [16]. The

metabolites built through those stress responses are classified as secondary metabolites,

whereas primary metabolites are responsible for plant development. Primary metabolites are

controlled by several loci with small effects. In contrast, secondary metabolites underlie the

control of a few loci with large effects [17–21]. The increasing investigation of metabolites in

plant breeding requires a deeper understanding of the genetic control and the involved genes

in metabolite accumulation. Therefore, detecting metabolic quantitative trait loci (mQTL)

and candidate genes (CGs), which control the accumulation of specific metabolites, is of

great interest [21]. Besides in model plants like Arabidopsis genome-wide association studies

(GWAS) on metabolite accumulation were successfully applied in the important crop plants

rice, wheat and maize with metabolite data from leaves [20, 22, 23] or grains [24]. All studies

report a complex genetic architecture of the metabolome, highly influenced by environmen-

tal effects [18].

With an acreage of 48.1 m ha in 2017/18, barley (Hordeum vulgare L.) is the fourth most

important crop worldwide after wheat, maize and rice [25]. Previous studies in barley aiming

to find mQTL were focused on stress responses. Drought-adapted genotypes reduced the car-

bon metabolism in the flag leaf significantly stronger than non-adapted lines [12]. Another

study observed changes in ferulic and sinapic acid derivatives as well as acylated glycosides of

flavones under drought stress [11]. In both studies, mQTL for different antioxidant metabo-

lites were found. Another study linked the fusarium head blight (FHB) resistance in barley to

metabolites belonging mainly to the chemical groups of phenylpropanoids, hydroxycinnamic

acid amides, flavonoids, fatty acids, terpenoids and alkaloids [26].

Among metabolites, sugars play a key role in signalling, plant growth and plant develop-

ment [27–29]. In barley, sugar-related genes are associated with tillering and plant height [30].

Several experiments showed the influence of varying sugar levels on flowering and senescence

[31]. Moreover, the role of sugars in defence mechanisms of plants is reported by numerous

studies (reviewed in Moghaddam and Van den Ende [32]).

In the present mQTL study, applied in the large barley nested association mapping (NAM)

population HEB-25 [33], mQTL for sugars and sugar-like metabolites were detected. Our
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results promise a better understanding of the interactions of metabolites and phenotypes, as

well as the causative genes in barley.

Materials and methods

Plant material

The NAM population HEB-25 was generated by crossing and subsequent backcrossing of 25

wild barley accessions (24 Hordeum vulgare ssp. spontaneum and one Hordeum vulgare ssp.

agriocrithon) with the German elite spring barley cultivar Barke (Hordeum vulgare ssp. vul-
gare). The resulting BC1S3 generation comprises 1,420 individual lines (whereof 1,307 were

used in this study) subdivided into 25 families (for a detailed description see Maurer et al.
[33]).

Genotypic evaluation

DNA of pooled BC1S3:8 plants of each line was extracted according to the manufacturer’s pro-

tocol, using the BioSprint 96 DNA Plant Kit and a BioSprint work station (Qiagen, Hilden,

Germany), and finally dissolved in distilled water at approximately 50 ng/μl for genotyping

with the recently developed barley Infinium iSelect 50K chip [34] at TraitGenetics, Gatersle-

ben, Germany. SNP markers that did not meet the quality criteria (polymorphic in at least one

HEB family, < 10% failure rate, < 12.5% heterozygous calls as 6.25% is the expectancy in

BC1S3) were removed from the data set. Altogether, 33,005 SNPs met the quality criteria and

were analysed in this study. Based on the Barke reference genotype, the wild barley allele can

be specified in each segregating family. To setup, the quantitative identity-by-state (IBS)

matrix the state of the homozygous Barke allele was coded as 0, while HEB lines that showed a

homozygous wild barley genotype were assigned a value of 2. Consequently, heterozygous

HEB lines were assigned a value of 1. If an SNP was monomorphic in one HEB family but

polymorphic in a second family, lines of the first HEB family were assigned a genotype value

of 0, since their state is not different from the Barke allele. Missing genotype calls (0.84%) were

estimated by applying the mean imputation (MNI) approach [35]. The genotype matrix is

available at e!DAL [36, 37]. The markers are uniformly distributed over the whole genome

with few gaps and decreasing density in the telomere regions [10].

Field trial

In 2017, a field trial with HEB-25 was conducted at the Kühnfeld experimental station of the

University of Halle (51˚29’45.72"N; 11˚59’36.62"E) to gather metabolite data. The trial was

sown at the end of march (27th/28th). Plots consisted of two rows of 50 seeds each with a row

length of 1.40 m and a spacing of 0.20 m between rows and 0.50 m between plots. They were

completely randomized in a rectangular shape consisting of 18 rows and 82 columns, resulting

in a total number of 1,476 plots, surrounded by cultivar Marthe to reduce border effects. Sev-

enteen control genotypes (with 3–8 repeats each) were distributed randomly across the field.

Pest control and fertilisation followed local practice.

The studies were conducted on land owned by the authors’ institutions. The research con-

ducted complied with all institutional and national guidelines.

Metabolic evaluation

Sampling took place on 22 May 2017 under a clear sky between nine and ten o’clock. This date

represented the developmental stage BBCH 30–31 (beginning of shooting [38]) for the major-

ity of plants. A 2 cm tissue sample from the middle region of the last fully developed leaf of
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each HEB line was sampled. The leaf was cut approximately 1 cm from the stem and was put

in an Eppendorf tube. The protruding leaf tip was cut off; this resulted in a leaf section of the

fully differentiated middle part of the blade as the leaf sample for our analysis. The Eppendorf

tube was closed and put instantly in liquid nitrogen to stop metabolic processes. All plots were

sampled within one hour under constant weather conditions. In total, 29 people were involved

to meet this schedule. Sampling was repeated under the same circumstances (constantly clear

sky, equal time of day, equal sampling methods) on 22 June 2017. The plants were more het-

erogeneous at this time, representing developmental stages BBCH 59–69 (end of ear emer-

gence to end of flowering). The purpose of the second sampling was not simply to repeat the

first. Rather, the intention was to find out how the metabolites differ depending on the devel-

opmental stage of sampling and what role genetics play.

The frozen leaf samples were pulverised using a Retsch-ball mill (MM 400, Retsch, Ger-

many) for 2 minutes at 20 Hz. The homogenised leaf samples were then resuspended in 700 μl

methanol:chloroform:water solution (3:2:4) containing 8 μg/ml 13C-sorbitol as an internal

quantitative standard. The mixture was shaken for 20 min at room temperature and at 500

rpm. The mixture was then centrifuged for 11,000 X g for 5 minutes at 4˚C. After the extrac-

tion, 10 μl of the supernatant was dried in a vacuum concentrator without heating for 45 min-

utes. Online derivatization was performed using the Multi-Purpose Sampler (MPS, Gerstel,

Germany) by adding 30 μl Methoxamine hydrochloride (20 mg/ml in Pyridine) to the samples

and shaken for 30 min at 45˚C. Furthermore, 45 μl N,O-Bis(Trimethylsilyl)trifluoroacetamide

and 5 μl Alkane-Standard (C10-C28; 6 mg/ml) were added and the samples were shaken again

for 120 min at 45˚C. As quality controls for the measurement procedure, leaf samples from 10

randomly chosen Barke reference plants were extracted and pooled together. These standards

had the same chemical composition all the time and were used for intra-batch and inter-batch

correction of the data analysis. All the samples along with 20% of quality controls were ana-

lysed with GC-MS (GC-qTOF system -7890B/7200, Agilent, Santa Clara, USA). One μl of the

derivatized samples were injected at 250˚C in a splitless mode with a helium gas flow set to 1

ml min-1. Chromatography was performed with a 30-m Zebron Capillary GC-Column

(ZB-Semi Volatiles, 30 m, 0.25 mm, 0.25 μm). The Helium flow was constant at 1 ml/min. The

temperature program was set to 60˚C followed by a linear ramp of 10˚C/min to 320˚C and

holding at this temperature for 3 minutes. Throughout the run, the transfer line, source and

the quadrupole were set to 290˚C, 230˚C and 150˚C respectively. The raw data was processed

by MassHunter Qualitative Analysis software (Agilent, B.07.00) and MassHunter Quantitative

Analysis software for QTOF (Agilent, B.08.00). The mass spectra library NIST 14 (National

Institute of Standards and Technology) and standard compounds were used for identification

and confirmation of the chromatographic peaks. Peak areas were normalized with the internal

standard, quality controls and fresh weight.

This resulted in data for 1,307 lines with 158 metabolites (alkanes, amino acids, organic

acids, sugars and unknowns). Metabolites, which were under the limit of quantification or sat-

urated, or with> 10% missing values were removed from the data set so that 123 metabolites

were used for GWAS (S1 Table). Samples from the 2nd sample date resulted in data for 1,229

lines with 159 metabolites (one additional unknown metabolite). After data cleaning 118

metabolites remained for the subsequent analyses (S2 Table). Remaining missing values were

replaced with the minimum value of the respective metabolite.

Statistical analyses

All statistical analyses were performed with SAS 9.4 [39] and R [40]. Pearson’s correlation

coefficients were calculated with R software with the corrgram package [41]. The box-cox
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power transformation [42] was applied to metabolic data using SAS PROC TRANSREG

with λ ranging from -3 to 3 by steps of 0.25. The genomic heritabilities of metabolites (also

called SNP-based heritabilities, [43]) were estimated with the R package sommer [44] as

h2
SNP ¼

s2
Aþ s2

Dþ s2
I

s2
Aþ s2

D þ s2
Iþ s2

R
, where s2

A; s
2
D; s

2
I and s2

R represent the additive, dominance, epistatic

and residual variance components, respectively. Additionally, repeatability of metabolites

was calculated for the subset of 17 genotypes (elite cultivars, control lines) where multiple

metabolite measurements were available as rep ¼ VG
VGþ

VR
r
, where VG and VR represent the

genetic and residual variance components, respectively, while r represents the number of

replications per genotype. Descriptive statistics for metabolites were calculated with R pack-

age psych [45]. All figures were created with R using the package ggplot2 [46]. Fig 2 was cre-

ated with the tool InteractiveVenn [47].

Genome-wide association study (GWAS)

We used a multiple linear regression model with SNP markers being included as main effects

using the quantitative IBS genotype matrix scores, to conduct genome-wide association map-

ping for each Box-Cox transformed metabolite. The analysis was carried out by means of

model selection with SAS PROC HPREG. This procedure can select the best model based on a

set of predefined possible factors. In our case, all 33,005 SNPs were initially defined as possible

factors. Significant SNPs were then determined by stepwise forward-backward regression.

SNPs were allowed to enter or leave the model at each step based on the p-value (< 0.001) cal-

culated for the marginal F-test of that term. SNPs included in the final model are hereafter

referred to as significant SNPs. An SNP’s effect estimate can be interpreted as the allele substi-

tution effect and represents the regression coefficient of the respective SNP in the final model.

Note that all significant SNPs’ effect estimates are modelled at the same time in the final

model. Five-fold cross-validation was run to increase the robustness of the results. For this, the

lines were divided into 5 folds with each fold consisting of 20% randomly-chosen HEB lines

per family. Each possible combination of 4 different folds was then used as the training set to

define significant markers and to estimate their effects based on the above-mentioned model

selection procedure, while the remaining fold was used as the validation set. The metabolite

data of the validation set lines was predicted based on marker effects estimated in the training

set. Prediction ability (r2) was then calculated as the squared Pearson product-moment corre-

lation between the observed and predicted metabolite data of the validation set. In total, this

procedure was repeated 20 times with different random creation of folds, ergo in total 100

cross-validation runs were performed. To define mQTL regions, we calculated an SNP mark-

er’s detection rate (DR) as the number of times, out of 100 cross-validation runs, it was

included in the final model. We defined an mQTL as robust if DR� 25. This threshold was set

after a permutation test based on three shuffled genotype-metabolite matrices used for the

above-mentioned cross-validation procedures (≙ 300 cross-validation runs). Based on the

results obtained from that we observed a detection rate of 25 as the 99.99% percentile (that

means 99.99% of markers have less detections). If the observed detection rate from the original

data was exceeding this threshold, we declared the presence of a significant marker-metabolite

association. For the calculation of the explained phenotypic variance of a single mQTL, all

SNPs exceeding the DR in the respective mQTL region were fitted in a multiple linear regres-

sion model to explain the metabolite phenotype in the whole dataset. To estimate a family-spe-

cific mQTL effect we applied the cumulation method as presented in Maurer et al. [48]. This

procedure was conducted within each of the 100 cross-validation runs and the mean of them

was taken as the final family-specific mQTL effect estimate.
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Results and discussion

Metabolic data and GWAS performance

The analysed metabolite set includes amino acids, fatty acids, organic acids and sugars. For

most of the unknown metabolites, at least the substance group (mostly sugar) is known. S1

and S2 Tables show a detailed list of all determined metabolites and their substance grouping.

Each metabolite’s variation is illustrated in S1 and S2 Figs. The concept of estimating SNP-

based heritability [43], also called genomic heritability, was already applied in Gemmer et al.

2020 [10] to the metabolite data resulting in values of up to 0.50 (S3 and S4 Tables). Repeatabil-

ities of metabolite measurements showed high variation across metabolites (0.00–0.87)

with mean values of 0.26 and 0.28 (S3 and S4 Tables), hinting on limited data quality for sev-

eral metabolites that may affect QTL detection. In this context it is noticeable, that the metabo-

lites with sufficiently high prediction abilities (mean r2 > 0.2) in GWAS (TMET109_1,

TMET110_1, TMET116_1, TMET147_1, TMET83_2, TMET108_2, TMET110_2,

TMET111_2, TMET115_2, TMET116_2, with _1 and _2 indicating the first or second sam-

pling date; Table 1), showed above-average SNP-based heritabilities as well as repeatabilities

(with exception of TMET115_2, repeatability = 0.22, S4 Table). There were clearly positive cor-

relations between the genomic heritability of metabolites and their estimated mean r2 values

(prediction ability) in GWAS at both sampling dates (S3 and S4 Tables, S3 and S4 Figs). All of

these metabolites are unknowns, with the exception of TMET83_2, which represents threonic

acid (substance group sugar acid). However, substance groups of the remaining metabolites

are known. TMET109_1, TMET116 (both sampling dates), TMET147_1, TMET108_2, and

TMET111_2 are classified as sugar-like metabolites, while TMET115_2 is a disaccharide. Only

TMET110 (both sampling dates) is completely unknown. The correlation pattern among

metabolites mostly reflects the substance grouping of them (S5 and S6 Tables, S5 and S6 Figs).

For instance, seven sugars of the first sampling date clustered together, including the four ones

for which mQTL were obtained. Metabolites from the first and second sampling date corre-

lated just slightly, with the exception of one hotspot. Interestingly, this hotspot comprises all

those metabolites from the first sampling date and five out of six metabolites from the second

sampling date for which mQTL were obtained (S7 Table and S7 Fig). Fig 1 illustrates this cor-

relation, including the metabolite TMET83_2, the only metabolite in the mQTL study which

Table 1. Summary of GWAS results.

Metabolitea r2 GWASb Number of significant SNPsc r2 of major mQTL-1Hd

TMET109_1 0.24 17 0.38

TMET110_1 0.51 15 0.65

TMET116_1 0.40 15 0.53

TMET147_1 0.21 14 0.36

TMET83_2 0.43 10 -

TMET108_2 0.37 12 0.32

TMET110_2 0.27 23 0.64

TMET111_2 0.35 15 0.15

TMET115_2 0.20 14 0.36

TMET116_2 0.26 25 0.53

a Metabolites, see S1 and S2 Tables; _1 and _2 indicate 1st and 2nd sampling date
b Mean cross-validated r2 value (prediction ability) of the metabolite in GWAS
c Number of significant SNPs in GWAS, DR� 25
d r2 value (unvalidated) of the major mQTL-1H estimated in GWAS.

https://doi.org/10.1371/journal.pone.0246510.t001
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was not correlated with the others. Due to the strong correlation of TMET110 with the other

unknown sugar-like metabolites, this metabolite can with a high possibility be classified as

sugar-like, too.

Metabolic QTL (mQTL) analysis

Only eight metabolites with prediction abilities (r2)> 0.2 were further screened for mQTL,

which were defined if a SNP reached a detection rate (DR) of� 25 in 100 cross-validation

runs. Under these circumstances, mQTL for four metabolites from the first and six metabolites

from the second sampling date were detected, with between ten and 25 associated SNPs for

each metabolite (Table 1, Figs 2 and 3). Those could be grouped into 19 mQTL for the first

sampling date and 25 mQTL for the second sampling date (S8 and S9 Tables). Two metabolites

with significant marker-metabolite associations were found at both sampling dates (TMET110

and TMET116). This slight overlap confirms our expectation, that at different developmental

stages different metabolites are produced. The maximum r2 value was 0.51 for metabolite

TMET110_1. Most significant SNPs were found for TMET116_2 (25). S10 Table shows the

complete results of GWAS (DRs of all significant markers for all metabolites, estimated effects

of marker-metabolite associations for all metabolites). Some mQTL were shared between

metabolites or sampling dates (Table 2, Fig 4). The results of the ten most interesting mQTL

(Table 2) are discussed in detail below.

There was one outstanding mQTL on chromosome 1H (for simplicity referred as mQTL-

1H) in the region of approximately 13 Mbp to 20 Mbp (approx. 27–30 cM). At both sampling

dates, all metabolites (with r2 >0.2 and DR� 25) except TMET83_2 showed significant

marker-metabolite associations in this genomic region. High amounts of up to 65%

(TMET110) of explained phenotypic variance of the respective metabolites could be attributed

to this single mQTL (Table 1, S12 Table). While in case of TMET110 this mQTL seems to be

the main responsible mQTL for metabolite accumulation, other metabolites like TMET111_2

Fig 1. Pearson’s correlation coefficients of metabolites investigated in this study. Significant correlation coefficients

are indicated with � p< 0.05, �� p< 0.01 and ��� p< 0.0001. The colour intensity indicates the strength of the

correlation. Red indicates positive, blue indicates negative correlation. Metabolites from the first and second sampling

date are highly correlated among themselves, with the exception of TMET83_2. The correlations between the first and

second sample date are also medium positive and highly significant.

https://doi.org/10.1371/journal.pone.0246510.g001
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with no more than 15% of explained phenotypic variance indicate a more complex genetic

control. The detection of further relevant mQTL for TMET111_2, TMET108_2, and

TMET115_2 supports this assumption. Interestingly, the explained phenotypic variance of

mQTL-1H for TMET116 was the same for both sampling dates, as in the case of TMET110.

This hints on a stable genetic impact on these metabolites’ accumulations at both plant devel-

opmental stages.

In the corresponding chromosomal region genes coding for resistance proteins as well as

for UDP-galactose transporter 5 (HORVU1Hr1G008350) and a Glucose-6-phosphate isomer-

ase (HORVU1Hr1G006860) are located (S8, S9 and S11 Tables). Besides this major mQTL,

several further significant marker-metabolite associations in the proximity of disease resis-

tance-related genes were detected (S8 and S9 Tables). This indicates the role of sugar metabo-

lites in the plant defence system, where they are primarily involved in signalling [28, 29, 32].

Sugars activate genes, which recognize pathogen-associated molecular patterns (PAMPs) [51].

In this context, research on sugars and sugar-like compounds as an alternative to chemical

plant protection is of great interest [52].

UDP-Galactose transporter 5 belongs to the group of nucleotide-sugar transporters. In gen-

eral, sugar transporters are responsible for the distribution of sugars in the plant. Short (cell-

to-cell) and long-distance transports are distinguished. Besides nutrition, they provide sugars

Fig 2. Manhattan plot of all metabolites of the first sampling date. All metabolites showed significant marker-metabolite associations on chromosome 1H. The

different point shapes and point colours differentiate the metabolites and the associated SNPs. The x-axis shows the chromosomes with SNP ordering based on the

Morex Reference Sequence 1.0 [49], the detection rate (DR) is given on the y-axis. The dashed line indicates the threshold of DR> 25, which was used as significance

threshold.

https://doi.org/10.1371/journal.pone.0246510.g002
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Fig 3. Manhattan plot of all metabolites of the second sampling date. All metabolites showed significant marker-metabolite associations on chromosome 1H. The

different point shapes and point colours differentiate the metabolites and the associated SNPs. The x-axis shows the chromosomes with SNP ordering based on the

Morex Reference Sequence 1.0 [49], the detection rate (DR) is given on the y-axis. The dashed line indicates the threshold of DR> 25, which was used as significance

threshold.

https://doi.org/10.1371/journal.pone.0246510.g003

Table 2. List of selected mQTL and sugar-related candidate genes.

Metabolitea mQTLb Position Ref. Seq. 1.0 (bp)c Total number of genesc Selected candidate genes (CGs)d

83_2 1H-1_2 4,228,359–6,332,167 65 Serine/threonine-protein kinase

108_2; 110_2; 111_2; 115_2; 116_2 1H-2_2 13,579,164–20,291,169 98 Disease resistance proteins, UDP-galactose transporter 5

109_1; 110_1; 116_1; 147_1 1H-1_1 14,371,313–20,291,169 82 Disease resistance proteins, UDP-galactose transporter 5

108_2 1H-3_2 28,823,904 27 Nucleotide-sugar transporter family protein

116_1 1H-2_1 36,457,092 25 Sugar transporter 1

116_2 1H-4_2 444,533,575 20 Trehalose-6-phosphate phosphatase

83_2 2H-3_2 691,870,056 40 Serine/threonine-protein kinase

115_2 5H-2_2 503,110,566 6 Sugar transporter protein 7

83_2; 108_2 6H-3_2 570,020,515–580,178,325 247 Sugar transporter SWEET

111_2; 115_2 7H-1_2 47,788,650; 52,114,669 30; 22 GDP-mannose transporter 1

a Metabolites, see S1 and S2 Tables; _1 and _2 indicate 1st and 2nd sampling date.
b mQTL name with chromosome positions and consecutive numbering (see S8 and S9 Tables); _1 and _2 indicate 1st and 2nd sampling date.
c Physical position (in base pairs) of the mQTL, derived from Reference Sequence 1.0 [49] and corresponding number of genes present in the given range or within

2,000,000 bp surrounding the indicated single position.
d Arbitrarily selected candidate genes (derived from Barleymap [50]) in the given range or within 2,000,000 bp surrounding the mQTL peak marker of the mQTL. For

exact positions, see S8, S9 and S11 Tables.

https://doi.org/10.1371/journal.pone.0246510.t002
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for cells involved in growth and development. Moreover, they are important for signalling

[53]. Besides the major mQTL mQTL-1H-1_1 and mQTL-1H-2_2, also mQTL-1H-2_1,

mQTL-1H-3_2, mQTL-5H-2_2, mQTL-6H-3_2 and mQTL-7H-1_2 include different sugar

transporter CGs, namely: Sugar transporter 1, a nucleotide-sugar transporter family protein,

sugar transporter protein 7, sugar transporter SWEET and GDP-mannose transporter 1. The

mQTL and CGs correspond to all eight metabolites.

As UDP-galactose transporter 5, also nucleotide-sugar transporter family proteins and

GDP-mannose transporter 1 belong to the group of nucleotide-sugar transporters. They are

located in the Golgi apparatus and the endoplasmic reticulum of eukaryotic cells [54]. Nucleo-

tide sugars are substrates of glycosyltransferases and are synthesized in the cytoplasm. Glyco-

syltransferases need them to equip proteins and lipids with sugar rests. Glycosylation reactions

mainly take place in the Golgi apparatus. Via these nucleotide-sugar transporters, the sugars

are transported to the reaction locus [55]. Sugar transporter 1 and sugar transporter protein 7

are unspecific sugar transporters which transport sugars through the cell membrane. SWEET

sugar transporters are responsible for the transport of hexose and sucrose for different pur-

poses like seed filling and nectar secretion [56]. Moreover, the expression of SWEET genes is

induced by fungal and bacterial pathogens. This indicates that the sugar efflux function of the

transporters is the target of pathogens to ensure their own nutrition [57] and further hints on

sugar metabolites’ involvement in pathogen responses.

Glucose-6-phosphate isomerase is an essential enzyme of catabolic glycolysis and anabolic

gluconeogenesis that catalyses the reversible isomerization of glucose-6-phosphate and fruc-

tose-6-phosphate [58]. This reaction is essential for all living organism to utilize the energy

Fig 4. Number of shared mQTL between five correlated metabolites. All metabolites share one mQTL, the major

mQTL on chromosome 1H.

https://doi.org/10.1371/journal.pone.0246510.g004
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from carbohydrates. Regarding plants, it was identified to be a salt-induced protein in the

green algae Dunaliella salina [59]. Under salt stress, glucose-6-phosphate isomerase is

increased and involved in adaption to high salinity [59].

TMET83_2, threonic acid, is the only known metabolite with sufficient GWAS perfor-

mance in our mQTL study. It is a sugar acid derived from threose, which forms the basic

structure of the essential amino acid threonine. Four mQTL for TMET83_2 harbour serine/

threonine-protein kinases as CGs (on 1H, 2H and 3H), while mQTL6H-3_2 harbours serine/

threonineprotein phosphatase 2A (HORVU6Hr1G091550). In general, protein kinases in

plants phosphorylate proteins and are involved in many different important processes, mainly

in signalling regarding to nutrition, pathogen attacks and abiotic stresses. The impact of pro-

tein kinases in plant metabolism is highlighted by the estimation that 1–3% of functional genes

account for them [60]. Besides TMET83_2, several protein kinase family protein CGs on dif-

ferent chromosomes for several metabolites were found (S8 and S9 Tables). Serine/threonine

protein kinases play a key role in apoptosis. The phosphorylation of different substances deter-

mines its function in the apoptotic process, triggered by biotic and abiotic stress [61]. The

threonic acid levels observed in this study might, therefore, reflect a plant’s reaction to stress.

For mQTL-1H-4_2 (TMET116_2), trehalose 6-phosphate phosphatase is a potential CG.

The phosphorylated form of trehalose is an important regulator of plant growth, development

and senescence [62]. Although most correlations of sugar-like metabolites and flowering time

were weak (S13 Table), several mQTL co-localize with known CGs influencing plant develop-

ment (S8 and S9 Tables), namely HvELF3 (1H), Ppd-H1 (2H), Vrn-H1 (5H), Vrn-H2 (4H) and

Vrn-H3 (7H) [33]. In this regard, TMET109_1 is striking as it is negatively correlated (r =

-0.21, p< 0.0001) with flowering time and shows significant associations with HvELF3, Ppd-
H1, Vrn-H2, and Vrn-H3 (S8 Table), which hints on its involvement in flowering time regula-

tion or reflects developmental differences at the time of sampling. In general, correlations with

flowering time were more pronounced at the first sampling date, which is likely due to the

higher diversification of flower initiation during this time than at the second sampling date,

when most genotypes had already flowered. However, to link metabolites to phenotypes a

model which incorporates all metabolites simultaneously is advisable [10].

The fact that mQTL for different metabolites were reliably detected reflects that genetic varia-

tion for these metabolites’ accumulations is present in the HEB-25 population. To investigate

which of the 25 diverse donor alleles in HEB-25 cause the differences in the respective metabo-

lites, family-specific effects for the detected mQTL were computed (S14 and S15 Tables). In the

case of mQTL-1H, which showed the highest impact on all of the metabolites, the estimated

effects varied considerably between families. Depending on the family, this mQTL causes effects

of different strength or even different directions, with half of the families showing little difference

to the cultivated allele. Interestingly, the family-specific effects of the different metabolites corre-

spond to each other, i.e. mQTL-1H has a similar impact on different metabolites, which indicates

that those metabolites are closely related and based on the same genetic regulation. This is true

for both sampling dates. At the 2nd sampling date, family 06 showed at several mQTL (e.g.

mQTL2H-3_2 and mQTL5H-4_2) the most extreme effects as compared to the other families,

especially for TMET110 und TMET116. So does family 16 at mQTL3H-3_2. Looking at

TMET83, the only non-sugar metabolite, mQTL6H-3_2 causes high effects of the same direction

in all families, indicating that all wild alleles exhibit a clear difference to the cultivated allele.

Conclusions

The different direction of effects and thus the variation in metabolites depending on families

shows the influence of different wild barley backgrounds (25 different wild barley accessions)
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on metabolite profiles. The fact that besides one exception all metabolites for which mQTL

were detected are sugars also allows some conclusions. As discussed above, sugars play an

important role in disease resistance and plant development. Due to the introgressed wild bar-

ley genome in HEB-25, variation was generated in these traits, which is missing in the geneti-

cally narrow modern elite cultivars. The driving force for the variation in metabolites in the

present study might have been different resistance mechanisms and developmental differences

at the time of sampling. For GWAS, sufficient heritability is essential to detect QTLs. Low

SNP-based heritabilities and repeatabilities in the majority of metabolites might have been the

reason that only a few reliable results were obtained by GWAS.

Because of the large population size we were not able to realize more biological and techni-

cal replicates for metabolite determination per genotype, which might have increased overall

data quality in our study. To overcome these limitations, an approach for further studies could

be to create a subset of the most interesting lines (for example, the most extreme lines in terms

of metabolite content). Within this small subset, replicates are possible and a validation of our

results can be realized. Moreover, selecting genotypes with similar flowering time might help

to avoid a bias caused by different developmental stages at sampling. To sum up, data quality

should be improved in future studies to obtain satisfying GWAS results for more metabolites.

Our study underlines the importance of sugars in plant metabolism and their impact on plant

development, pathogen defence and signalling. It is the first step of further studies which are nec-

essary to investigate the complex interaction of phenotype, genotype and metabolites in barley.
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