
����������
�������

Citation: Martori, C.; Sanchez-Moral,

L.; Paul, T.; Pardo, J.C.; Font, A.; Ruiz

de Porras, V.; Sarrias, M.-R.

Macrophages as a Therapeutic Target

in Metastatic Prostate Cancer: A Way

to Overcome Immunotherapy

Resistance? Cancers 2022, 14, 440.

https://doi.org/10.3390/

cancers14020440

Academic Editors: Parthasarathy

Chandrakesan and Janani

Panneerselvam

Received: 23 December 2021

Accepted: 15 January 2022

Published: 16 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Macrophages as a Therapeutic Target in Metastatic Prostate
Cancer: A Way to Overcome Immunotherapy Resistance?
Clara Martori 1, Lidia Sanchez-Moral 1 , Tony Paul 1, Juan Carlos Pardo 2,3, Albert Font 2,3,
Vicenç Ruiz de Porras 3,4,* and Maria-Rosa Sarrias 1,5,*

1 Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n,
08916 Badalona, Spain; cmartori@igtp.cat (C.M.); lsanchez@igtp.cat (L.S.-M.); tpaul@igtp.cat (T.P.)

2 Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol,
Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; jcpardor@iconcologia.net (J.C.P.);
afont@iconcologia.net (A.F.)

3 Badalona Applied Research Group in Oncology (B·ARGO), Catalan Institute of Oncology,
Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain

4 Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n,
08916 Badalona, Spain

5 Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
* Correspondence: vruiz@igtp.cat (V.R.d.P.); mrsarrias@igtp.cat (M.-R.S.)

Simple Summary: In recent years, therapeutic options for patients with metastatic prostate cancer
have improved significantly. However, the efficacy of current immunotherapy strategies in metastatic
prostate cancer patients is limited. The prostate cancer tumor microenvironment, which includes
immunosupressive cells such as tumor-associated macrophages, has been proposed as a major barrier
to the effectiveness of immunotherapy. Thus, macrophages have emerged as a promising target to
directly reduce tumor progression and overcome immunotherapy resistance. In this review we will
summarize the current status of therapies targeting macrophages as well as their potential to increase
immunotherapy efficacy in metastatic prostate cancer.

Abstract: Prostate cancer (PC) is the most common malignancy and the fifth cause of cancer death in
men. The treatment for localized or locally advanced stages offers a high probability of cure. Even
though the therapeutic landscape has significantly improved over the last decade, metastatic PC
(mPC) still has a poor prognosis mainly due to the development of therapy resistance. In this context,
the use of immunotherapy alone or in combination with other drugs has been explored in recent
years. However, T-cell directed immune checkpoint inhibitors (ICIs) have shown limited activity with
inconclusive results in mPC patients, most likely due to the highly immunosuppressive PC tumor
microenvironment (TME). In this scenario, targeting macrophages, a highly abundant immunosup-
pressive cell type in the TME, could offer a new therapeutic strategy to improve immunotherapy
efficacy. In this review, we summarize the growing field of macrophage-directed immunotherapies
and discuss how these could be applied in the treatment of mPC, focusing on their combination
with ICIs.

Keywords: metastatic prostate cancer; immunotherapy; immune checkpoint inhibitors; tumor-associated
macrophages; tumor microenvironment; immunotherapy resistance

1. The Therapeutic Landscape of Metastatic Prostate Cancer

Prostate cancer (PC) is the most common malignancy in men and was the fifth cause of
cancer death in males worldwide in 2020 [1]. About 80–90% of PC patients are diagnosed at
localized or locally advanced stages wherein local treatments, such as surgery or radiother-
apy, possibly in combination with androgen deprivation therapy (ADT), can be curative in
a high percentage of patients [2]. For PC patients who relapse after local therapy and those
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with metastatic PC (mPC), ADT is the standard therapy. However, almost all mPC patients
eventually progress to incurable metastatic castration-resistant PC (mCRPC), defined as
radiographic progression and/or a rise in prostate-specific antigen (PSA), regardless of
having a castrate level of testosterone (<50 ng/mL) [3,4]. For decades, therapeutic options
for patients with mCRPC have been limited. Since 2004, Docetaxel has been used in the first
line chemotherapy-based treatment for these patients [5]. However, over the last ten years
the therapeutic landscape of mCRPC has changed dramatically [6] thanks to the discovery
and subsequent approval of the second-generation taxane cabazitaxel [7], new andro-
gen receptor signaling inhibitors (ARSIs) such as abiraterone [8,9] and enzalutamide [10],
the alpha-emitter radium-223 for patients with symptomatic bone metastasis [11], poly
(ADP-ribose) polymerase inhibitors (PARPi) for patients with alterations in DNA damage
repair (DDR) genes [12], PSMA radioligands [13], as well as platinum-based treatments
recommended for patients with aggressive variants of PC (AVPC) who have progressed
on docetaxel treatment [14,15]. Moreover, it is important to note that several of these
drugs, especially docetaxel and ARSIs, have been tested and approved in combination with
ADT in earlier disease settings, including metastatic castration sensitive prostate cancer
(mHSPC) [16–18]. However, despite these new therapeutic options, mCRPC still has a poor
prognosis, with a median overall survival (OS) of approximately three years, mainly due
to disease heterogeneity and the development of therapy resistance. Thus, to overcome
these challenges, biomarker-based precision medicine approaches guiding the sequence
of systemic therapy as well as new therapeutic strategies are needed. In this setting, an
increasing effort has been made in recent years to incorporate immunotherapy in the treat-
ment of mPC, however, with no successful results [19]. In this review we will discuss the
current status of immunotherapy in the mPC therapeutic scenario as well as the mecha-
nisms involved in immunotherapy resistance, focusing on PC immunosuppressive tumor
microenvironment (TME) and specifically on the role of tumor-associated macrophages
(TAMs). Finally, we further discuss the therapeutic potential of targeting TAMs to improve
current immunotherapies in mPC.

2. Immunotherapy in Metastatic Prostate Cancer Treatment: Current Status and
Mechanisms of Resistance

It is well known that immunotherapy, and particularly immune checkpoint inhibitors
(ICIs) targeting the T-cell receptor–ligand interaction, such as cytotoxic lymphocyte antigen-
4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed death ligand 1 (PD-
L1) [20], have made major advances in the last decade and are widely used in clinical
practice to treat urological tumors [21], such as renal cell carcinoma [22] and urothelial
cancer [23]. However, in mPC the results have to date been quite modest, except for a
small subgroup of mCRPC patients (3–5%) that present a microsatellite instability (MSI)
and mismatch repair-deficient (dMMR) phenotype in which exceptional responses to the
anti-PD-1 pembrolizumab have been reported [24–26]. High-tumoral mutation burden
(TMB) is also commonly associated with better clinical outcome to ICIs [27,28]; however,
only a small subset (3–8.3%) of mPC tumors have a high TMB, representing a significant
obstacle for immunotherapy efficacy [29].

Paradoxically, PC was one of the first diseases for which immunotherapy was ap-
proved. Sipuleucel-T, an autologous antigen-presenting cell (APC)-based immunotherapy,
was—on the basis of a modest benefit in OS—approved by the Food and Drug Administra-
tion (FDA) for asymptomatic and minimally symptomatic men with mCRPC [30]. However,
Sipuleucel-T has limited acceptance by the medical community and is not approved by
the European Medicines Agency (EMA) due to the complex and costly production of this
cellular immunotherapy combined with its limited benefit and the appearance of ICIs in
the clinical setting. Nevertheless, as previously stated, several clinical trials have evaluated
the efficacy of ICIs in mPC patients who were not selected based on predictive molecular
biomarkers, either as single agents or in combination with other checkpoint inhibitors or
with other therapies with limited overall activity and inconclusive results [19,31]. Thus,
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an important current challenge is to improve the efficiency of ICIs in the mPC therapeutic
setting. In fact, at present, a large number of immunotherapy-based clinical trials are
ongoing in PC, many of which are testing combination therapies or new ICIs [19].

Boosting the immune system may be a good strategy to treat mPC. Nonetheless, it
is essential to understand the underlying mechanisms explaining the lack of ICIs efficacy
in mPC in order to identify predictive biomarkers as well as new therapeutic targets that
could allow us to improve immunotherapy outcome. In this context, several potential
mechanisms of PC resistance to ICI immunotherapy have been proposed. In contrast
to other tumors such as melanoma or lung cancer, PC has traditionally been recognized
as an immunologically “cold” tumor with low levels of tumor-associated antigens and
neoantigens, which represent an important mechanism of resistance to ICIs [32]. The
expression of the major histocompatibility complex (MHC) class I, a molecule that presents
antigenic protein fragments to cytotoxic T cells, is also decreased in PC and consequently
limits the proliferation and activation of these cells [33].

Additionally, the PC immunosuppressive TME has also been proposed as a major
barrier for immunotherapy efficacy due to the high number of immunosuppressive T cells
and the low TME permeability preventing CD8+ cytotoxic T cells and natural killer (NK)
infiltration [34].

Taken together, the evidence suggests that mPC cells can escape T-cell recognition
through several mechanisms. Additionally, the role of TAMs in immune evasion may be
important for treatment resistance, as summarized in the following sections.

3. Tumor-Associated Macrophages in PC

Macrophages are versatile cells of the myeloid hematopoietic system that have a
wide range of functions, including tissue development, homeostasis, and innate immune
responses. In adult tissues, in the absence of inflammation, resident macrophages have
an embryonic origin and can persist and replenish locally throughout the adult life [35].
These cells are key to maintaining homeostasis. In the setting of inflammation, infection,
or any imbalance requiring increased macrophage activity, blood monocytes raised in the
bone marrow can flow out through the endothelium, reach the tissue, and differentiate
according to the input of the microenvironment to replenish resident macrophages [35–37].

Their differential origin and their elevated plasticity can explain why, although they
have many features in common, macrophages are heterogeneous in terms of gene and
microRNA expression signatures, epigenetic modifications, surface receptor expression
patterns, secretory profiles, and functional properties [38,39]. For example, macrophages
can be actively proinflammatory or highly immunosuppressive, depending on environ-
mental cues and molecular mediators [37,40,41]. Prototypic proinflammatory macrophages
(often defined as classical or M1 macrophages) can support pathogen and tumor cell killing,
are induced by Th1 inflammatory cytokines and/or microbial factors (e.g., IFN/LPS), and
can be identified by their surface expression of MHC-II and CD80, the secretion of IL-6
and TNF-α, and an increased expression of iNOS [37,42]. In contrast, immunosuppressive,
pro-resolving macrophages (often defined as alternative or M2 macrophages) support the
effector functions of Th2 thymocytes and can aid in the later stages of the repair process.
They are induced by exposure to Th2 cytokines like IL-4 and IL-13, anti-inflammatory
cytokines IL-10 and TGF-β, glucocorticoids or tumor microenvironmental factors, and can
be defined by CD163 and CD206 surface expression and increased production of IL-10
or Arg1 [37,42]. However, since the plasticity of macrophages allows the coexistence of
intermediate populations, their identification and classification are often challenging, as
has been extensively reviewed [37,39,41,42].

Within the tumor, macrophages constitute between 30 and 50% of infiltrating im-
mune cells, therefore, they represent an interesting target for immunotherapy [43]. More-
over, in vivo studies have demonstrated that macrophages mediate both chemo- and
immunotherapy resistance through the secretion of soluble factors and the mediation of ma-
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trix deposition and remodeling that induce pro-survival and/or anti-apoptotic programs
in the malignant cells and the TME [44–46].

Specifically, in PC, several studies have reported that TAMs infiltration into the TME
supports PC cell proliferation and migration and is associated with disease progression and
metastasis after therapy with ARSIs [47,48]. Indeed, TAMs infiltration is often correlated
with poor OS of mPC patients [49,50]. Of note, inhibition of androgen receptor (AR) signal-
ing has been correlated with an increased expression of CCL2 along with CCL2-CCR2 axis
activation in PC, thereby enhancing metastasis through macrophage recruitment [51,52].
Likewise, Huang and colleagues demonstrated that TAM-secreted CCL5 could promote
the migration, invasion and epithelial–mesenchymal transition (EMT) of PC cells as well as
the self-renewal of PC stem cells by activation of β-catenin/STAT3 signaling [53].

In addition, PC tumors secrete high levels of growth factors, cytokines and chemokines,
including TGF-β, IL10 and CXCL2, which help recruit several immunosuppressive cells
(myeloid-derived suppressor cells [MSDC] and regulatory T [Treg] cells) and pro-tumorigenic
TAMs, both in the TME and in peripheral blood [54,55], thereby promoting tumor tolerance
and evasion by suppressing the proinflammatory type 1 CD4+helper T (Th1) and CD8+
cytotoxic T cells [56]. The key role of cancer-associated fibroblasts (CAFs), the predominant
cell type in the TME, in PC tumorigenesis and therapy resistance has also been well
described [57]. CAFs are active factors for monocyte recruitment toward tumor cells
by stromal-derived growth factor-1 (SDF-1) and CCL2 secretion, promoting their trans-
differentiation into the M2 macrophage phenotype [58]. It has similarly been suggested
that CAFs are also able to induce the trans-differentiation of proinflammatory and anti-
tumorigenic macrophages to anti-inflammatory and pro-tumor TAMs [59].

On the other hand, a loss of PTEN, a negative regulator of the PI3K/AKT/mTOR
pathway, is present in approximately 60% of mCRPC patients [60] which is related to worse
prognosis, treatment resistance, tumor grade, tumor stage, and risk of recurrence [3,61].
Interestingly, TAMs expressing CXCR2 can infiltrate PTEN-null prostate tumors; CXCL2
activation of CXCR2 can direct macrophages towards an anti-inflammatory phenotype [62].

It has been shown that the infiltration of tolerogenic TAMs in the TME promotes a pro-
tumorigenic and immunosuppressive effect due to the secretion of high levels of growth
factors, cytokines and chemokines, such as TGF-β, arginase 1 (ARG1), IL10 and CCL20,
contributing to a poor infiltration of cytotoxic T lymphocytes and high recruitment of
immune suppressive Foxp3+ Tregs cells [63–67]. In fact, a positive feedback loop between
TAMs and Tregs enhances their immunosuppressive effects in the TME, as Tregs can
enhance the immunosuppressive properties of TAMs and vice versa [68].

Overall, these data indicate that TAMs play a dual role as “tumor promoters” and
“immune suppressors”: they can promote tumor initiation and metastasis and act as central
drivers of the immunosuppressive TME. Hence, targeting TAMs could represent a potential
therapeutic strategy against mPC.

4. Involvement of TAMs in ICIs Efficacy

PD-L1 and PD-1 are also expressed in TAMs [69–71] promoting immune suppression
and escape. ICIs were not originally meant to target macrophages directly, but several
studies suggest that macrophages also contribute substantially to the final outcome of
these strategies. TAMs express PD-1, with a higher expression in more advanced stages
of primary human cancers [69]. PD-1+ TAMs showed a reduced degree of phagocytosis
of S. aureus bioparticles and tumor cells compared to PD-1− TAMs. Interestingly, the
decreased phagocytosis activity of PD-1+ TAMs could be rescued by PD-1/ PD-L1 blockade,
which led to a direct decrease in tumor burden [69]. Furthermore, anti-PD-1 or PD-L1
immune checkpoint blockade induced an M1 macrophage polarization [72,73]. A common
feature associated with anti-CTLA-4–mediated tumor rejection is an increase in the ratio
of T effector to T regulatory cells within the tumor [74–76]. Simpson et al. revealed that
reduction of Treg cells provoked by anti-CTLA-4 antibodies depend on FcγRIV-expressing
macrophage-mediated cell depletion [77]. Therefore, these studies suggest that immune
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checkpoint inhibitors targeting CTLA-4 or PD-1/PD-L1, in addition to T cells, may also
modulate TAM activity in such a way that contributes to antitumor efficacy. In the following
sections we will summarize and discuss the current strategies targeting TAMs that are
under preclinical and/or clinical investigation.

5. Targeting Macrophages in Cancer Therapy and Its Application in PC

Macrophages have emerged as a promising target to directly reduce tumor progression
and furthermore overcome immunotherapy resistance. Macrophages can be targeted by
different approaches. Historically, the most common approach has been to reduce the
number of macrophages at the tumor site, either by affecting their migration capacity and
thereby their recruitment to the tumor site, or by inducing macrophage death or depletion.
Moreover, recent studies have put their effort on reprogramming macrophages at the tumor
site instead of depletion in order to reduce adverse effects. Additional novel strategies
include macrophage modulation as adjuvant in vaccine therapies or adoptive macrophage
cell therapy.

Of all the treatment modalities presented herein, none have been approved so far for
their clinical use in PC. However, several are currently being studied in the context of this
malignancy and have reached phase I-IV clinical trials (Table 1).

Table 1. Macrophage-related therapies under clinical trials currently active in prostate cancer.

Intervention 1 Phase NCT 2 Number Indication

CSF-1R inhibitor (JNJ-40346527) I NCT03177460 High-risk localized prostate cancer

Enzalutamide + CXCR2 inhibitor (AZD5069) I/II NCT03177187 mCRPC

UV1 synthetic peptide vaccine + GM-CSF I/IIa NCT01784913 mPC

Carboplatin + GM-CSF
Cabazitaxel + GM-CSF II NCT04709276 Metastatic prostate neuroendocrine

carcinoma and mPC

DNA vaccine pTVG-HP + nivolumab + GM-CSF II NCT03600350 Non-metastatic, non-castrate
prostate cancer

ProscaVax (PSA/IL-2/GM-CSF) II NCT03579654 Localized prostate cancer

Cabazitaxel + prednisone + GM-CSF III NCT02961257 mCRPC previously treated with a
docetaxel-containing regimen

Sipuleucel-T (APCs loaded with the fusion protein
PAP linked to GM-CSF) III NCT03686683 Non-metastatic prostate cancer

Enzalutamide and luteinizing hormone-releasing
hormone analogue (LHRH-A) + zoledronic acid II NCT03336983 mPC

ADT + zoledronic acid
ADT + zoledronic acid + docetaxel + prednisolone

ADT + zoledronic acid + celecoxib
II/III NCT00268476 Hormone-naïve prostate cancer

Zoledronic acid
IV NCT04549207 Bone metastases from breast cancer

and CRPCPamidronate

CAR-M (CT-0508) I NCT04660929 HER2 overexpressing solid tumors,
including PC

1 Treatments affecting macrophages. 2 National Clinical Trial.

In this review we provide an overview of the most relevant strategies for targeting
TAMs, as summarized in Figure 1. In addition to those strategies that were designed
to directly target TAMs, we have also included those developed for other purposes that
display modulatory effects on various immune cells, including TAMs.
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Figure 1. Targeting macrophages as a therapy for prostate cancer. Representative illustration summa-
rizing the immune landscape in the context of prostate cancer and the different potential approaches
to target macrophages. The strategies are classified into molecules that mainly affect macrophage
recruitment or survival, induce their depletion, or reprogram their activity. Abbreviations: ARG1,
arginase 1; CAFs, cancer-associated fibroblasts; CCL2, C-C motif chemokine ligand 2; CCL20, C-C
motif chemokine ligand 20; CCR2, C-C motif chemokine receptor 2; CD4+ Th1, type 1 CD4+ helper T
cell; CD8+ CTL, CD8+ cytotoxic T lymphocyte; CSF-1, colony stimulating factor 1; CSF-1R, colony
stimulating factor 1 receptor; CTLA-4, cytotoxic T lymphocyte-associated protein 4; CXCL2, C-X-C
motif chemokine ligand 2; CXCR2, C-X-C motif chemokine receptor 2; FAK, focal adhesion kinase;
GM-CSF, granulocyte macrophage colony-stimulating factor; IL, interleukin; MDSC, myeloid de-
rived suppressor cell; PC, prostate cancer; PD-1, programmed death 1; PD-L1, programmed death
ligand 1; S100A9, calcium binding protein A9; SDF-1, stromal-derived growth factor-1; SIRPα, signal
regulatory protein-α; TGF-β, transforming growth factor β; Treg, regulatory T cells; VEGF, vascular
endothelial growth factor. Created with BioRender.com, accessed on 22 December 2022.

5.1. Therapies Affecting TAM Precursor Recruitment

CSF-1R. Colony stimulating factor 1 receptor (CSF-1R) is a transmembrane tyrosine
kinase receptor whose expression is restricted to myeloid cells, that dimerizes upon binding
of its two ligands, CSF-1 or IL-34 [78]. Dimerization induces a phosphorylation cascade
of several macrophage-related signaling pathways that are involved in the differentiation,
dissemination, survival, and migration of myeloid cells, including TAMs [79,80]. In humans,
CSF-1 increased expression associates with poor prognosis in several cancers, such as gastric
cancer, breast cancer, and leiomyosarcoma [81–83]. In experimental mouse models of lung
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adenocarcinoma, targeting CSF-1R with the drug PLX3397 (pexidartinib), which also
inhibits two other tyrosine kinase receptors, KIT and FLT3 [84], decreased tumor burden
by modification of TAM distribution [85]. Similarly, CSF-1R inhibition with PLX5622
in a mouse model of medulloblastoma, reduced TAMs (IBA1+ microglial cells) around
60%, which reduced tumor growth and prolonged mouse survival [86]. In the clinical
settings, inhibiting CSF-1R with PLX3397 showed encouraging preliminary results in a
phase I trial, which examined the safety and pharmacokinetics of the agent in patients with
advanced, incurable, solid tumors (NCT01004861). Responses were experienced within the
first 4 months of treatment and the median duration of response surpassed 8 months. Best
responders were those patients with tenosynovial giant cell tumor (TGCTs), a rare tumor
type with a central role for CSF-1 in its pathogenesis [87]. Subsequently, in a human phase
III trial in TGCTs patients, the administration of PLX3397 significantly reduced the tumor
size with a 39% overall tumor response, compared to no tumor response in patients treated
with placebo (ENLIVEN Study, NCT02371369) [88].

Regarding PC, androgen blockade therapy and radiotherapy were found to increase
myeloid derived suppressor cell (MDSCs) systemically and CSF-1 expression by tumor
cells. Subsequently, combination of CSF-1R inhibition with androgen blockade therapy
or irradiation reduced tumor progression in subcutaneous PC mouse models [89,90]. At
a clinical level, a phase I clinical trial enrolled 36 participants with advanced breast or
PC who failed to respond to other treatment modalities. Patients were treated with mAb
LY3022855. On the 8th day post first dose administration, 22 participants with metastatic
breast cancer and 12 with mCRPC showed increased circulating CSF-1 levels and decreased
proinflammatory monocytes. Irrespective of some common adverse events, the treatment
was well tolerated and showed evidence of immune modulation (NCT02265536) [91].
Another phase I clinical trial, studying the effects of investigational drug JNJ-40346527, a
selective inhibitor of CSF-1R, on patients with high-risk PC that are resectable and showing
no signs of local and distant metastasis, is currently active (NCT03177460).

CSF-1R inhibitors have also proved their efficacy in combination with chemotherapy.
For example, the CSF-1R inhibitor PXLX3397, in combination with BRAF inhibitor PLX4720,
reduced primary and metastatic BRAF-mutated melanoma in a mouse model [92]. Interest-
ingly, in this study, a reduced infiltration of macrophages was observed. Strikingly, this
combined inhibition increased PD-1 and PD-L1 expression on CD11b+ cells, making these
mice more sensitive to PD-1/PD-L1 inhibitory therapy. Similar results were observed in a
mouse pancreatic cancer model, where blockade of CSF-1R reduced TAMs in the TME and
reprogrammed these TAMs to increase antigen presentation and T-cell activation, ultimately
increasing sensitivity to PD-1/PD-L1 and CTLA-4 immunotherapies [93]. In this context,
multiple clinical trials are trying to determine the safety and efficacy of combination therapy
between CSF-1R inhibitors with PD-1/PD-L1 or CTLA-4 blockade in advanced solid tumors
(NCT02452424, NCT02777710, NCT02829723, NCT02718911, NCT03238027, NCT02880371).
Enrollment for the study of the combination of PLX3397 and pembrolizumab (anti-PD-1)
to treat advanced melanoma and other solid tumors was terminated early for insufficient
evidence of clinical efficacy (NCT02452424). Likewise, using mAb LY3022855 combined
with durvalumab (anti-PD-L1) or tremelimumab (anti-CTLA-4) in patients with advanced
non-small cell lung cancer (NSCLC) or ovarian cancer (OC) had limited clinical activity,
but the treatment was well tolerated (NCT02718911) [94].

CXCR2. C-X-C motif chemokine receptor 2 (CXCR2), also known as IL-8RB, is one of
the receptors for IL-8, which is mainly expressed in granulocytes and macrophage progeni-
tors [95]. Through its interaction with ligands, CXCR2 mediates a powerful chemotaxis
that is associated to tumor progression, angiogenesis, invasion, metastasis and chemoresis-
tance [96–98]. Thus, CXCR2 is considered a marker for poor prognosis in many tumor types
and, in fact, CXCR2 blockade has been reported to re-educate TAMs and inhibit tumor
growth in mouse models of pancreatic ductal adenocarcinoma (PDAC) [62]. Moreover,
preclinical studies have highlighted that CXCR2 inhibition not only prevents metastasis
formation in PDAC, but also increases the efficacy of anti-PD-1 inhibitors by increasing
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T-cell infiltration [99]. Similarly, in a lung cancer mouse model CXCR2 inhibition decreased
tumor-associated neutrophils, increased anti-tumor T cell activity through enhanced CD8+
T cell activation and increased the therapeutic effect of cisplatin treatment [100]. Thereby,
the newly discovered drug SX-682, inhibitor of the CXCR1/2 chemokine receptors, is
currently in a phase I clinical trial to determine if it is an effective treatment for metastatic
melanoma patients in combination with pembrolizumab (anti-PD-1) (NCT03161431) and
whether it could be beneficial in combination with nivolumab (anti-PD-1) as a mainte-
nance therapy in subjects with metastatic PDAC (NCT04477343) or metastatic colorectal
cancer (NCT04599140). Likewise, a study on patients diagnosed with NSCLC, CRPC
and microsatellite stable colorectal cancer, using navarixin (MK-7123), a CXCR1/2 antag-
onist in combination with pembrolizumab (anti-PD-1), has completed its phase II trial
(NCT03473925). Another multi-centric proof of concept, phase I/II clinical trial, with
CXCR2 antagonist AZD5069 in combination with the AR antagonist enzalutamide involv-
ing individuals with mCRPC is currently ongoing (NCT03177187).

CCL2-CCR2. The monocyte chemoattractant protein-1 (MCP-1), also known as CCL2,
is a cytokine secreted by various cell types that drives the migration of myeloid and
lymphoid cells after exposure to an inflammatory stimulus [101]. CCL2 binds the cognate
receptor CCR2, and together this signaling pair has been shown to have multiple roles.
In the context of cancer, it recruits immune cells to the tumor site and induces tumor cell
proliferation, angiogenesis and metastasis [102]. Likewise, increased expression of CCL2 is
associated with the accumulation of TAMs in esophageal cancer, both being predictors of
poor prognosis [103]. Further, CCL2 affects TAM activity in many ways that affect tumor
behavior. For instance, CCL2 expression by TAMs promoted the acquisition of an invasive
phenotype in breast cancer [104].

CCL2 has been suggested as a potential biomarker for several types of cancer, in-
cluding prostate [105–108]. Given the critical roles of the CCL2-CCR2 signaling axis in
tumorigenesis, a series of clinical trials targeting this axis have been carried out in several
cancers [102,107]. Results so far, however, have not been promising. For example, since
targeting CCL2 with the mAb carlumab did not have a significant effect, it was suggested
that anti-CCR2 may be a compensatory approach. In pancreatic cancer, CCR2 antagonists—
either alone or in combination with chemotherapy—were able to control local tumors and
were well tolerated in patients [107].

Only one clinical trial has been conducted with PC patients, a phase II, open-label,
multicentric trial involving participants with mCRPC. Similar to previous assays in other
solid tumors, there were no complete or partial responses after carlumab administration,
so the study did not progress (NCT00992186). It has been proposed that the weak affinity
of carlumab with CCL2 and the inadequate clearance of the circulating CCL2-complex may
be among the reasons for the unsatisfactory therapeutic effects [107].

In several cancer models, the CCL2–CCR2 signaling axis could induce tumor immune
evasion through PD-1 signaling, thus promoting TAM-mediated immune evasion [103,107].
In light of these results, it might be promising to move to combination regimen with
anti-PD-1 into a clinical trial in the near future.

GM-CSF. The granulocyte–macrophage colony-stimulating factor (GM-CSF) was orig-
inally identified as a colony stimulating factor because of its ability to induce granulocyte
and macrophage populations from precursor cells. Multiple studies have demonstrated
that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the
phenotype of myeloid lineage cells, but also T-cell activation through various myeloid
intermediaries [109]. Besides, several studies suggest that GM-CSF has antitumor activ-
ity [110–112], which could be due to GM-CSF-induced M1 macrophage polarization and
macrophage activation [39,113,114]. Accordingly, several strategies have been developed
for GM-CSF-based cancer immunotherapy in clinical practice, including GM-CSF therapies
and GM-CSF-based DNA vaccines [115]. GM-CSF has been extensively assayed in PC
clinical trials (ClinicalTrials.gov).
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In the 1990s, the FDA approved the use of GM-CSF to treat various types of can-
cer patients with chemotherapy-induced neutropenia and leucopenia, and it was widely
used achieving excellent results [116]. Focusing on PC therapy, several studies have been
conducted so far with GM-CSF. Remarkably, a phase II study with 125 participants for
metastatic hormone refractory PC, showed that the administration of GM-CSF as main-
tenance therapy after docetaxel + prednisone chemotherapy increased the OS from 14 to
28.4 months when compared to patients receiving only chemotherapy (NCT00488982).
Furthermore, there are a few ongoing clinical trials in phase II and III aiming to minimize
adverse effects of chemotherapy and increasing OS (NCT04709276 and NCT02961257,
respectively).

GM-CSF has also been used as a vaccine adjuvant with success. This is the case of
Sipuleucel-T, the first therapeutic vaccine approved by the FDA for the treatment of patients
with asymptomatic or minimally symptomatic mCRPC. This autologous mononuclear cell
immunotherapy is formulated to stimulate an immune response to PC cells targeting
prostate acid phosphatase and induce antigen-specific T cells [117,118]. Combination with
GM-CSF prolonged the survival of patients in several clinical trials [118].

Additionally, GM-CSF is being tested as an adjuvant of DNA vaccines. In a phase
I clinical trial involving participants with mPC, administration of a DNA vaccine encod-
ing androgen receptor ligand-binding domain with GM-CSF prolonged progression free
survival (PFS) (NCT02411786) [119]. Besides, in a phase II clinical trial, non-metastatic
prostate cancer patients that were treated with a DNA vaccine encoding prostatic acid
phosphatase (pTVG-HP) and GM-CSF did not exhibit an overall increase in the 2 years
of metastatic-free survival, but showed considerable effects on the micro metastatic bone
disease (NCT01341652) [120]. Moreover, additional clinical trials are recruiting to test
the efficacy of GM-CSF with pTVG-HP in combination with the anti-PD-1 nivolumab
(NCT03600350) and cabazitaxel plus prednisone (NCT02961257). Finally, phase I/II clinical
trials are currently active to evaluate the therapeutic vaccines Proscavax (PSA/IL2/GM-
CSF) and UV1 (synthetic peptide) + GM-CSF, but they are not yet recruiting (NCT03579654
and NCT01784913, respectively).

Tasquinimod. The quinoline-3-carboxyamide tasquinimod is a small molecule im-
munotherapy with demonstrated pleiotropic effects on the TME. It binds and inhibits the
interactions of the damage-associated molecular pattern receptor S100A9 (S100 Calcium
Binding Protein A9), a key cell surface regulator of myeloid function [121,122]. Tasquin-
imod affects tumor infiltrating myeloid cells rapidly after exposure, leading to a change
in phenotype from pro-angiogenic and immunosuppressive TAMs to proinflammatory
macrophages [121]. It has shown antitumor, anti-angiogenic and immune-modulatory
properties in several murine models of solid tumors, including PC [121–124]. Tasquinimod
is the most studied agent for PC treatment, as it has been evaluated in several clinical
trials as a single agent as well as in combination therapy with other systemic agents in
mCRPC [123,125–128].

For example, a phase II clinical trial was conducted on individuals diagnosed with
mCRPC who did not exhibit any signs of progression after receiving the first dose of
docetaxel therapy. The results demonstrated a median PFS of 31.7 weeks in the treated
and 22.7 weeks in the placebo arm, additionally, when used as maintenance therapy,
tasquinimod efficiently reduced the risk of radiologic progression-free survival (rPFS) by
40% (NCT01732549) [127]. Similarly, another phase II randomized double-blinded study
using tasquinimod (ABR-215050) was conducted on 201 mCRPC individuals. The drug
was well tolerated by the patients with a median OS of 34.2 months in the treatment and
27.1 in the placebo group. The exploratory biomarkers correlated with the survival and
drug efficacy (NCT00560482) [129,130]. A double-blinded, phase III randomized trial using
tasquinimod was conducted on 1245 patients with mCRPC. The results demonstrated a
median rPFS of 7.0 months in the treatment arm when compared to 4.4 months in the
placebo. However, no significant changes in the OS were observed. The authors of the
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study suggested that the identification of predictive biomarkers of tasquinimod efficacy
may contribute to increasing OS in the future (NCT01234311) [131].

FAK. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in mul-
tiple cellular and extracellular processes, namely macrophage adhesion, and is required
for the formation of lamellipodia, migration, and infiltration into inflamed areas [132]. It
is upregulated at mRNA and protein levels in many advanced stage solid tumors [133],
like ovarian serous cystadenocarcinoma, head and neck squamous cell carcinoma, and
prostate adenocarcinoma (data from The Cancer Genome Atlas). In the context of cancer,
FAK participates in several processes involved in metastasis progression, from the expres-
sion of matrix metalloproteinases and ECM remodeling, to focal adhesion formation and
turnover [134]. Preclinical and clinical studies have outlined the benefits of FAK inhibition,
as it not only affects tumor cells but also other cells from the TME like fibroblasts [135].
Moreover, FAK inhibition reduces MDSCs, TAMs and Tregs infiltration within the tumor
in mouse models of squamous cell carcinoma [136] and pancreatic cancer [137]. In both
genetic and syngeneic mice models of PDAC, combination of the FAK inhibitor VS-4718
with the chemotherapeutic agent gemcitabine and anti-PD-1 and/or anti-CTLA-4 therapy
achieved a maximal response in terms of reducing tumor progression and increasing sur-
vival. This was due to the increased numbers of CD8+ cytotoxic lymphocytes that infiltrate
the stroma and reach the tumor as well as the reduced numbers of Tregs [137]. Hence,
targeting FAK improved response to existing therapies, and it was proposed that it may
serve to overcome treatment resistance.

To date, 12 phase II clinical studies with FAK inhibitors have been registered, among
them, NCT02004028, in which brief preoperative defactinib exposure in malignant pleural
mesothelioma patients was well tolerated, did not alter resectability or mortality compared
to prior series, and showed evidence of therapeutic and immunomodulatory effects. Biolog-
ical correlates of treatment included target inhibition (75% pFAK reduction); tumor immune
microenvironment changes: increased naïve (CD45RA+PD-1+CD69+) CD4 and CD8 T
cells, reduced myeloid and Treg immuno-suppressive cells, reduced exhausted T cells (PD-
1+CD69+), reduced peripheral MDSCs; and histological subtype change (pleomorphic or
biphasic to epithelioid) in 13% of cases [138]. Additionally, FAK inhibition in combination
with other therapies, such as the PD-1 inhibitor pembrolizumab, is currently being tested
in advanced solid cancers (NCT03727880, NCT02758587 NCT02523014 and NCT03287271
NCT04620330). Altogether, the capacity of FAK of modulating the environment within the
tumor has potential as anti-tumor treatment and in combination to improve efficacy of both
immunotherapy and chemotherapy. However, to our knowledge, FAK inhibition has not
been tested on PC patients.

5.2. Therapies That Induce Depletion or Affect Macrophage Survival

Bisphosphonates. These inorganic compounds, including clodronate and zoledronic
acid among others, are structurally identical to bone matrix pyrophosphatases, which is
why they are easily metabolized by osteoclasts and inhibit their resorption. They have
been used in preclinical bone metastasis models and are already in use for the treatment
of hematological and solid malignancies [139]. Bisphosphonates mainly affect osteoclasts,
which share lineage with macrophages. However, they also inhibit proliferation, migration
and invasion of macrophages, inducing apoptosis [140]. Moreover, bisphosphonates also
inhibit cancer cell proliferation, adhesion, and invasion; induce tumor cell apoptosis; block
angiogenesis; and interfere with immune surveillance [141]. Large trials have clearly
demonstrated the clinical value of different bisphosphonate-based drugs (including the
oral drugs ibandronate and clodronate and intravenous agents such as zoledronate and
pamidronate), in treatment of the hypercalcaemia of malignancy and the reduction of
skeletal-related events (SREs) and symptomatic skeletal events (SSEs) in a range of cancers.
Bisphosphonates also remain mainstay of drugs for the treatment of metastatic bone disease,
which has recently been reviewed in [142].
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Bisphosphonates have long been studied and used as an interventional therapy in
PC. Zoledronic acid, the most widely used bisphosphonate, is in advanced trial phases
(phase III/IV). While some studies indicate inefficacy of zoledronic acid when used as a
treatment modality, alone or as a combination, in advanced stages (NCT00365105) [143],
(NCT00079001) [144], (NCT00869206) [145], other analyses support its use in PC as a
post-chemo-maintenance therapy (NCT00554918) [146] and to reduce skeletal-related
events [147], (NCT00321620) [148]. Several clinical trials using zoledronic acid are currently
recruiting volunteers (NCT00268476, NCT03336983 and NCT04549207). Few meta-analysis
studies have also been performed to evaluate the effects of bisphosphonates therapy in PC
individuals with bone metastasis [149–151], and results from 18 clinical trials suggested
that bisphosphonates therapy had a high probability of decreasing the skeletal-related
events and disease progression [150]. In conclusion, at the clinical level, trials on PC have
given inconsistent results, suggesting a need for treatment combination optimization.

Trabectedin. This tetrahydroisoquinoline alkaloid alters transcriptional regulation
by binding to and inducing DNA damage, affecting slow-dividing cells and cells in the
G1 phase of the cell cycle [152]. Trabectedin targets tumor cells, but also monocytes and
macrophages within the tumor, which are quiescent and thus poorly sensitive to classical
DNA-damaging agents. It induces apoptosis by activation of caspase 8 through TRAIL, a
TNF-related apoptosis-inducing ligand [153]. Interestingly, resident tissue macrophages
have low expression levels of functional TRAIL receptors, while TAMs from liver, colon and
breast carcinoma mainly express the functional TRAIL-R2 [154]. Trabectedin is currently
approved by the EMA for the treatment of advanced soft-tissue sarcoma and platinum-
sensitive relapsed OC in combination with PEGylated liposomal doxorubicin (PLD) [155]
and by the FDA for metastatic or unresectable liposarcoma or leiomyosarcoma following an
anthracycline-containing regimen [156]. Although there are currently several clinical trials
on trabectedin, most of them aim to improve the response in sarcomas (TARMIC study,
NCT02805725; NiTraSarc, NCT03590210), or in combination in recurrent OC (NCT03470805,
NCT04887961). This suggests limited future perspectives for trabectedin as a broader
anti-cancer therapy.

Regarding PC, clinical trials have also been completed using trabectedin as a treatment
modality (NCT00147212, NCT00072670). In these trials, trabectedin showed modest activity
in mCRPC. The authors of the studies state that identification of predictive factors of
response in PC could contribute to better outcomes [157].

5.3. Strategies to Reprogram Macrophage Activity

CD47-SIRPα. CD47 is a ubiquitous protein that regulates cytokine production, T-cell
activation, and cell migration [158] through its interaction with thrombospondin-1 and
signal regulatory protein-α (SIRPα), which are mainly expressed by dendritic cells and
macrophages [159]. This interaction results in a “do not eat me” signal that prevents phago-
cytosis of autologous cells in homeostatic conditions. This mechanism is tightly regulated,
and it is mainly activated under proinflammatory conditions [160]. CD47 is overexpressed
in a variety of tumors [161–163], and is involved in tumor invasion, metastasis, and the
inhibition of phagocytosis by interacting with SIRPα-expressing phagocytes [162,163].
In fact, preclinical studies in mouse models have shown that inhibition or blockade of
CD47 inhibits tumor growth and enables the phagocytosis and killing of tumor cells by
macrophages in several types of tumors, including ovarian, endometrial, liver, and squa-
mous cell lung cancer, respectively [164–168]. Moreover, targeting CD47 in a mouse model
of esophageal squamous cell cancer not only enhanced proinflammatory responses and
increased infiltration of CD8+ T cells within the tumor, but also increased PD-1 and CTLA-4
expression, thus increasing mouse susceptibility to anti-PD-1 and CTLA-4. Hence, combina-
tion of anti-CD47 with anti-PD-1 and CTLA-4 resulted in the best antitumor response [169].
The growing interest in targeting the CD47-SIRPα interaction is reflected by the many
strategies being tested at present, which include humanized anti-CD47 mAbs magrolimab
(also named Hu5F9-G4), AK117 and AO-176, or anti-CD47/PD-1 or /PD-L1 bifunctional
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antibodies (HX009 and PF-07257876, respectively) as well as recombinant fusion proteins
SIRPα-Fc (TTI-621, and Evorpacept or ALX148) and SIRPα-Fc-CD40L (SL-172154). At
present, 46 clinical trials are studying the safety and efficacy of these drugs, either alone
or in combination with other immunotherapies and/or chemotherapy. For example, in
advanced solid tumors and hematologic malignancies, SIRPα-Fc protein is being tested in
combination with the chemotherapy doxorubicin or with anti-PD-1 mAbs (NCT02663518,
NCT04996004). In addition, combination of anti-CD47 mAb magrolimab with anti-PD-L1
mAb is under phase I clinical trials for checkpoint-inhibitor-naive OC patients, who pro-
gressed within 6 months after platinum chemotherapy (NCT03558139), while combination
therapy of magrolimab with anti-EGFR mAb cetuximab is being tested for advanced col-
orectal cancer (NCT02953782). Taken together, current data suggest that the combination of
CD47 blockage with other therapies may be a promising strategy to treat advanced tumors
that until now could not benefit from immunotherapy, including mCRPC.

Adoptive cell therapy. Application of chimeric antigen receptor T cells (CAR-T),
approved by the FDA for acute lymphoblastic leukemia and refractory non-Hodgkin
lymphoma, is challenging in solid tumors because of the low infiltration of CAR-T cells
into the immunosuppressive TME. Taking macrophages into account may improve this
modified T-cell therapy. In addition, it is also possible to modify macrophages. The
concept of a “chimeric antigen receptor” in macrophages (CAR-M) was first introduced by
Morrissey et al. [170] and later validated by Klichinsky et al. [171]. The first generation of
CAR-M combined the scFv of anti-CD19, anti-mesothelin, or anti-HER2 antibodies with a
CD3 intracellular domain. This CAR-M displayed strong anti-tumor activity in preclinical
models; a single infusion of human CAR-M decreased tumor burden and prolonged OS
in two solid tumor xenograft mouse models [171]. Accordingly, two clinical trials with
CAR-M are already underway in solid tumors. As part of a phase I, first-in-human, open
label study, subjects with HER2-overexpressing solid tumors are being recruited to assess
the safety and tolerability, as well as response rate and PFS of CT-0508, an anti-HER2
CAR-M (NCT04660929). Furthermore, one recent prospective observational study aims
to collect breast tumor samples in order to develop patients’ derived organoids to test the
antitumor activity of newly developed CAR-M (NCT05007379).

6. Discussion and Future Perspectives

Macrophages represent the largest fraction of immune cells infiltrating tumors, in-
cluding PC. Moreover, they play a key role in treatment resistance contributing to im-
mune evasion and promoting an immunosuppressive TME. Consequently, the various
pro-tumoral mechanisms of TAMs provide many attractive therapeutic targets for cancer
treatment. Macrophage-targeting strategies based on recruitment, survival, depletion,
and/or reprogramming have shown successful results in clinical trials in advanced solid
tumors, indicating that they could possess great therapeutic potential for mCRPC as well.

Regarding therapies affecting macrophage recruitment, there are treatments that have
shown positive results in PC clinical trials, highlighting GM-CSF as a therapeutic vaccine
adjuvant and CSF-1R as monotherapy, although trials in other solid tumors have suggested
that combination therapy of both strategies could improve results obtained up to now.
Conversely, although preclinical results indicated an important role of FAK in PC, to our
knowledge, FAK inhibitors have not yet been tested in clinical trials in PC. The cytokine
CCN3, secreted by PC cells, induces M2 polarization in RAW264.7 macrophages through
the activation of the FAK/Akt/NF-κB pathway, leading to an increase in VEGF expression
and promoting angiogenesis [172]. Likewise, high levels of macrophage inhibitory cytokine-
1 (MIC-1), a member of the TGF-β superfamily, induced PC cell metastasis through the
upregulation of the FAK–RhoA signaling pathway [173]. Overall, these results suggest
that FAK inhibition could be a potential strategy in PC. In terms of macrophages sur-
vival/depletion approaches, it is worth mentioning that although bisphosphonates have
been widely studied with controversial results, they should be taken into consideration as
they are used to treat metastasis in the bone, the most frequent metastatic site for PC.
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Furthermore, newly emerging therapies reprogramming macrophages are in earlier
stages, but the data currently available suggest that a new perspective in macrophage-based
therapies has opened. The combination of CD47 blockade with chemotherapy and/or
other ICIs may be a promising strategy to treat advanced tumors that currently cannot
benefit from immunotherapy, including mPC. In addition, other novel TAM reprograming
molecules are currently under preclinical investigations. In this regard, CD24 blockade
seems an attractive therapeutic alternative for tumors that only respond weakly to anti-
PD-1/PD-L1 immunotherapies [174,175]. CD24 is a surface protein that interacts with
Siglec-10, which is expressed on innate immune cells, especially macrophages, inducing an
inhibitory anti-phagocytic “do not eat me” signaling cascade that attenuates inflammatory
responses and the cytoskeletal remodeling required for macrophage phagocytosis, thus
inducing cancer cell protection [176,177]. Blocking the CD24-Siglec-10 interaction resulted
in tumor growth reduction and prolonged survival in mice models [178]. Finally, the novel
emerged technology CAR-M opens new paradigms for the development of personalized
macrophages-based cancer immune medicine.

7. Conclusions

In conclusion, macrophages represent a potential strategy worth considering in tu-
mor immunotherapy. Even though immunotherapy has shown modest results in mPC,
macrophages have been shown to influence the TME and unlock new strategies to over-
come treatment resistance. Hence, more approaches targeting macrophages in combination
with other immunotherapies need to be explored in the future.
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