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Abstract

Resting-state functional connectivity (rsFC) approaches provide informative estimates

of the functional architecture of the brain, and recently-proposed cofluctuation analy-

sis temporally unwraps FC at every moment in time, providing refined information for

quantifying brain dynamics. As a brain network disorder, autism spectrum disorder

(ASD) was characterized by substantial alteration in FC, but the contribution of

moment-to-moment-activity cofluctuations to the overall dysfunctional connectivity

pattern in ASD remains poorly understood. Here, we used the cofluctuation approach

to explore the underlying dynamic properties of FC in ASD, using a large multisite

resting-state functional magnetic resonance imaging (rs-fMRI) dataset (ASD = 354,

typically developing controls [TD] = 446). Our results verified that the networks esti-

mated using high-amplitude frames were highly correlated with the traditional rsFC.

Moreover, these frames showed higher average amplitudes in participants with ASD

than those in the TD group. Principal component analysis was performed on the

activity patterns in these frames and aggregated over all subjects. The first principal

component (PC1) corresponds to the default mode network (DMN), and the PC1

coefficients were greater in participants with ASD than those in the TD group. Addi-

tionally, increased ASD symptom severity was associated with the increased coeffi-

cients, which may result in excessive internally oriented cognition and social

cognition deficits in individuals with ASD. Our finding highlights the utility of
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cofluctuation approaches in prevalent neurodevelopmental disorders and verifies that

the aberrant contribution of DMN to rsFC may underline the symptomatology in ado-

lescents and youths with ASD.

1 | INTRODUCTION

Autism spectrum disorders (ASDs) refer to neurodevelopmental dis-

orders characterized by impairments in social communication and

interaction and stereotyped behavior and interests (American Psy-

chiatric Association, 2013). Although these disorders have common

central features, including poor social reciprocity, lack of emotional

interaction, and inability to develop relationships, their broad range

and individual variability contribute to the challenges in ASDs diag-

nosis and treatments (Elsabbagh & Johnson, 2016; Hobson &

Meyer, 2005).

Previous neuroimaging studies identified functional connectivity

(FC) for assessing the temporal correlation among brain areas (Rogers

et al., 2007). Previous studies reported that ASD was associated with

altered FC patterns in a pair of cortical midline brain regions, namely,

the posterior cingulate cortex (PCC) and ventromedial prefrontal corti-

ces, which constituted the hubs of the default mode network (DMN)

(Assaf et al., 2010; Sutterer & Tranel, 2017). This network involved

internally directed attention, self-referential thought, and social cogni-

tion (Uddin et al., 2007). Many studies showed that the self-reflective

and social cognition deficits observed in ASD were associated with

the alterations in FC within DMN nodes and from the DMN nodes to

the entire brain (Washington et al., 2014; Yerys et al., 2015).

Increased within network connectivity between core DMN nodes was

reported in children with ASD (Lynch et al., 2013; Uddin et al., 2013).

Moreover, some study found that participants with ASD exhibited

over-connectivity between the medial and anterolateral temporal cor-

tex and an aberrantly weak connectivity of the precuneus with visual

cortex and basal ganglia (Lynch et al., 2013). This study also reported

a significant correlation between aberrant connectivity patterns and

the severity of social impairment.

Existing FC methods typically assume that time series maintain

their characteristics over time. Therefore, they are usually estimated

over the course of an entire scan session (Rogers et al., 2007). Recent

evidence emphasized the importance of dynamic functional interac-

tions, in which sliding window techniques were used to track fluctua-

tions in FC across time. An arbitrary fixed window length was

determined prior to analyses, and FC matrices were subsequently cal-

culated for observations within that window. The window slides along

the timeseries, and states are clustered on the basis of the dynamic

FC matrices of each window (Allen et al., 2014). One study found

hypervariability in ASD across numerous brain regions, thereby sug-

gesting the presence of atypical network connectivity in multiple tran-

sient states，while falling short of statistical significance in static

analysis (Mash et al., 2019). Other studies demonstrated dynamic

characteristic as a function of ASD symptoms. Global alterations in

dynamic FC density (FCD) variabilities and atypical dynamics of intra-

and interhemispheric FCD variabilities were found in ASD (Guo

et al., 2020). The within-network variance of DMN was significantly

associated with the symptom severity of ASD. Besides, the atypical

dynamic FC variance between DMN and sensorimotor cortex was

associated with social deficits in ASD (He et al., 2018). In addition, the

increased variance of widespread long-range dynamic functional con-

nections was found in ASD, thereby suggesting that greater dynamic

variance was a potential biomarker of ASD (Chen et al., 2017). Addi-

tionally, abnormal quantification of metrics of sliding window analysis,

including dwell time (Yao et al., 2016) and transitions between brain

states (De Lacy et al., 2017; Watanabe & Rees, 2017), was found in

participants with ASD, hence supporting the evidence that ASD was

characterized by transient states. Although early studies on dynamic

FC and the symptom severity in ASD produced some results, the win-

dowing procedure induced a blurring effect, thus making the localiza-

tion of the time-varying connectivity in time and the assessment of

the contributions made by each single frame impossible (Hindriks

et al., 2016). Some emerging methods, such as coactivation patterns

(CAPs), allow brain dynamics to be characterized at each single time

point (Liu & Duyn, 2013). However, these approaches generally

require the specification of a seed region or a threshold to determine

high-activation frames. Thus, explaining precisely how these coactivity

patterns are combined to give rise to the entire FC is elusive (Preti

et al., 2017).

Recently, a comprehensive and mathematical method was pro-

posed for the exact decomposition of FC into its frame-wise contribu-

tions, explicitly linking instantaneous patterns of cofluctuations to FC

over long timescales (Esfahlani et al., 2020). They also found that FC

and its system-level organization were driven by cofluctuations during

high-amplitude frames, which were underpinned by the activation of

the default mode and control networks. Meanwhile, 10 adults' data

from the Midnight Scan Club (MSC, 10 resting state scans per sub-

jects[Gordon et al., 2016]) were used to measure differential identifia-

bility, which indicated how much more similar FC patterns were to

intra-subject than to inter-subject. The results indicated that the

cofluctuations of high-amplitude frames carried reliably individualized

and distinguishable information. Despite this methodological innova-

tion, latest studies produced interesting results. A recent study used

two independent sampling datasets (i.e., MSC and MyConnectome

[Laumann et al., 2015], a project in which a single individual was

scanned >100 times) to demonstrate that the FC of a few high-

amplitude frames recapitulated time-averaged FC accurately. They

also extended the prior study by classifying a small subset of high-

amplitude frames as “event” (Betzel et al., 2022b). The use of cofluc-

tuation analysis showed that functional dynamic in high-amplitude

frames were partly shaped by the modular organization of structural

connectivity (Pope et al., 2021).
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Taken together, previous studies provided evidence of the abnor-

mal FC of the DMN in ASD, but focused mostly on the entire scan

session. The contribution of moment-to-moment-activity cofluctua-

tions to the overall dysfunctional connectivity pattern in ASD remains

poorly understood. Notably, adolescence or youth (ages 8–24) is a

particularly critical window for social development, thus it is an impor-

tant time to investigate the neurobiological mechanism implicated in

social behaviors. The current study applied the cofluctuation analysis

to rs-fMRI in a large multisite sample of adolescents and youths from

the ABIDE repository (ASD = 354, typically developing controls

[TD] = 446). We speculate that adolescents and youths with ASD

would show abnormal cofluctuations in a few frames, and such abnor-

malities may underline their social deficits.

2 | MATERIALS AND METHODS

2.1 | Participants

Original rs-fMRI data and phenotypes were downloaded from the

ABIDE repository (ABIDEs I and II, http://fcon_1000.projects.nitrc.

org/indi/abide/) (Di Martino et al., 2014; Martino et al., 2017). The

inclusion criteria were detailed as follows: 1) subjects between 8 and

22 years of age; 2) participants with complete cortical coverage and

available full IQ (FIQ), handedness, and eye state during scanning

scores; 3) subjects with low levels of head motion during scanning

(i.e., maximum motion <2 mm translation and 2� rotation and less than

30% frames with high frame-wise displacement [FD], as illustrated in

preprocessing); 4) full anatomical and high-quality brain images deter-

mined by manual checking; 5) well-matched dataset between the ASD

and TD groups for each site generated using a data-driven algorithm

that maximizes the p values of group difference in terms of age, hand-

edness, FIQ, eye status, and mean FD; and 6) sites with more than ten

subjects per group left after the aforementioned selection procedure.

Finally, a well-matched dataset of 800 subjects (ASD = 354,

TD = 446) from 16 sites was constructed. The demographic data is

shown in Table 1.

2.2 | Data preprocessing

The rs-fMRI data were preprocessed using the advanced edition of

the data-processing assistant for rs-fMRI (DPARSFA v4.1, http://

rfmri.org/DPARSF) toolbox in MATLAB (Yan & Zang, 2010). The first

ten images of each subject were removed to ensure a steady-state

longitudinal magnetization. Slice-timing correction and realignment

were applied on the remaining functional images to correct the tem-

poral differences and head motion. The corrected data were spatially

normalized to the Montreal Neurological Institute stereotaxic space

by using 12-parameter affine linear transformation and nonlinear

deformation and resampled to 3 � 3 � 3 mm3. This process enabled

us to directly compare responses among adolescents, youths, and

young adults. Previous studies suggested that anatomical differences

among children as young as seven were small relative to the resolu-

tion of fMRI data, which supported the usage of a common space in a

group with a broad age range (Bedny et al., 2015; Burgund

TABLE 1 Demographics and clinical
characteristics of the participants

ASD (n = 354) TD (n = 446) t/x2 p value

Age (years) 13.47 ± 3.62 13.40 ± 3.26 t(798) = 0.29 .76a

Sex (male/female) 301/53 382/64 χ2 = 0.053 .82b

Handedness (right/left/mixed) 291/34/29 387/29/30 χ2 = 1.25 .54b

FIQ 105.55 ± 17.07 112.97 ± 17.07 t(798) = �7.00 <.05a

Mean FD (mm) 0.15 ± 0.05 0.63 ± 0.05 t(798) = �1.26 .21a

ADI_R (N = 257)

Social 19.68 ± 5.29

Verbal 15.41 ± 4.62

RRB 5.80 ± 3.30

Onset 3.03 ± 2.51

ADOS gotham

RRB (N = 204) 2.03 ± 1.61

Social (N = 227) 8.03 ± 2.83

Communication (N = 227) 3.50 ± 1.64

Total (N = 238) 11.57 ± 4.03

Abbreviations: ADI_R Autism Diagnostic Interview-Revised; ADOS, the Autism Diagnostic Observation

Schedule; ASD, autism spectrum disorder; FD, frame-wise displacement; FIQ, the full-scale intelligence

quotient; RRB, restricted and repetitive behaviors; TD, typically developing controls.

N number of subjects.
aThe p value was obtained by two sample t-test, two tailed;
bThe p value was obtained by χ2 test.
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et al., 2002). Subsequently, all the normalized functional images were

smoothened using a 6-mm full-width at half-maximum Gaussian ker-

nel and then detrended. Next, the linear trends were removed. Signals

from white matter and cerebrospinal fluid and 24 rigid body motion

parameters were regressed out of the data. Subsequently, a bandpass

filter (0.01–0.1 Hz) was applied on the regressed time series. Finally,

given that FC was sensitive to the confounding factor of head motion,

scrubbing was performed for motion correction to reduce the nega-

tive influence. When the FD exceeded 0.5 mm, the value of the signal

at that point was removed. Growing evidence showed that the global

signal, especially in studies of ASD (Gotts et al., 2013), may also con-

tain valuable information (Fox et al., 2009; Schölvinck et al., 2010).

Therefore, the global signal regression (GSR) was not applied.

2.3 | Regions-of-interest parcellation

In the current study, Schaefer et al.'s parcellation (Schaefer

et al., 2018) scheme (resampled to MNI152NLin2009cAsym standard

space) was used with 200 parcels, each of which was associated with

one of brain network from Yeo et al.'s seven-network parcellation

(Yeo et al., 2011), namely, the visual, somatomotor, dorsal attention,

ventral attention, limbic, frontoparietal task control, and DMNs.

2.4 | Cofluctuation time series

The strength of the FC between two brain regions was quantified as the

Pearson correlation of their fMRI blood oxygen level-dependent (BOLD)

time series, which was calculated as the mean value of their element-

wise z-scores. The averaging step was omitted in the cofluctuation anal-

ysis. Let xi ¼ xi 1ð Þ,…,xi Tð Þ½ � and xj ¼ xj 1ð Þ,…,xj Tð Þ� �
be the time series

recorded from voxels or parcels i and j, respectively. Similar to the

Pearson correlation, we first obtained the z-score of each time series,

Zi ¼ xi�μi
σi

, where μi ¼ 1
T

P
txi tð Þ and σi ¼ 1

T�1

P
t xi tð Þ�μi½ � were the time

averaged mean and SD, respectively. Subsequently, the cofluctuation

of i with j was calculated as Zi�Zj

� �
. This procedure was repeated for

all pairs of parcels, thereby resulting in a set of cofluctuation (edge)

time series. With N parcels, this set had N N�1ð Þ
2 pairs, each of length

T. These elements represented the cofluctuation magnitude among

the regions resolved at each moment in time.

A cofluctuation time series contains moments in time when many

edges cofluctuate collectively. We identified these moments by calcu-

lating the amplitude (quantified by computing the root sum square

[RSS]) across all cofluctuation time series and plotting this value as a

function of time (Figure 1). We extracted the top 5% high-amplitude

frames of all the time points (ordered by cofluctuation amplitude) and

estimated the FC from those points alone. Then, we calculated the

average RSS and activity patterns in the high-amplitude frames for

each participant. In addition, the variances in the activity pattern of

the high-amplitude frames in each group were obtained to character-

ize the fluctuation of these frames.

To understand what drove the high-amplitude frames better, we

performed principal component analysis (PCA) on the activity patterns

in the high-amplitude frames, which aggregated over all the subjects

and scans. Then, the statistical significance of the regional PC scores

was assessed nonparametrically by using permutation tests (Linting

et al., 2011). The original data was permuted to obtain the permuted

data set. The total number of possible permuted data set was n!m�1,

where n was the number of participants, and m was the number of

the regional PC scores.

2.5 | Statistical analysis

For the demographic data, the two-sample t test was used to evaluate

the differences in age, FIQ, and mean FD. The χ2 test was performed

on the handedness and the eye state.

F IGURE 1 Overview of analysis pipeline. We temporal unwrapped the Pearson correlation to generate the co-fluctuation time series for
every pair of brain regions (edges). Then, we identified these moments by calculating the RSS across all the co-fluctuation time series and plotting
this value as a function of time. As shown in the distribution of edge co-fluctuation amplitude, we extracted the top 5% of all time points (ordered
by co-fluctuation amplitude) and obtained the average of the activity patterns of these time points within subjects. Last, we performed principal
components analysis on the activity patterns in the high-amplitude frames

LI ET AL. 4725



In the current study, ComBat (Johnson et al., 2007) was used to

reduce potential biases and non-biological variability induced by site

and scanner effects. Notably, in the ComBat model, age, sex, handed-

ness, mean FD, FIQ, and group as covariates were included to pre-

serve important biological trends in the data and avoid

overcorrection. ComBat harmonization analysis was performed using

a publicly available MATLAB package hosted at https://github. com/J-

fortin1/ComBatHarmonization (Yu et al., 2018). Next, the two-sample

t test was conducted to assess the between-group differences (ASD

vs. TD) in the RSS of the high-amplitude frames and the PCA coeffi-

cients. Additionally, two-way ANOVA was performed for PC1 coeffi-

cients using diagnosis (two levels: ASD and TD) and age (three levels:

<12 years, 12–18 years and > 18 years) as between-subject factors.

The gender, FIQ, handedness, and mean FD were taken as covariates

in the model.

Given that the normality of data was vague, Spearman’s correla-

tion analysis was performed between the coefficient and social

behavior scores for the ASD group. The significant threshold for mul-

tiple comparisons was set as FDR-corrected p < .05.

2.6 | Reproducibility analysis

Given that several critical strategies and parameter selections might

influence the findings, the reproducibility of our findings, including

global signal regression and the percentage of selected top high-

amplitude frames, was further validated. In addition, we performed

within-Group PCA in each group.

3 | RESULTS

3.1 | Group differences in high-amplitude
cofluctuation events

As a first point of results, we wanted to verify whether this mathe-

matical approach enabled us to compare the cofluctuations of net-

work organization with the fluctuations in the BOLD time series

directly. Therefore, we calculated the RSS of the cofluctuation and z-

scored fMRI BOLD time series. We found that across subjects, these

time series were highly correlated in the ASD (r = 0.85) and TD

groups (r = 0.91), indicating that high-amplitude frames had a nearly

one-to-one correspondence with the high-amplitude BOLD fluctua-

tions (Figure 2a). We found that the RSS of these high-amplitude

frames was significantly higher (two-sample t-test, p < .0001;

Figure 2b) in participants with ASD than those in the TD group. Addi-

tionally, we found a significant correlation (Figure 2c,d) between the

RSS of high-amplitude frames and the restricted repetitive behaviors

(RRB) (r = 0.16, p = .03) and the total score (r = 0.18, p = .03) in

ADI-R (FDR-corrected).

3.2 | Abnormal DMN patterns underlie the
symptom severity in participants with ASD

We estimated the rsFC by only using the fMRI BOLD data for high-

amplitude time points. Next, we calculated the similarity of the rsFC

estimated during high-amplitude episodes with respect to the time-

F IGURE 2 Characteristics of
co-fluctuation in high-amplitude
frames. (a) Relationship of co-
fluctuations with BOLD
fluctuations. Pooling data from
across subjects, co-fluctuation
was highly related to the BOLD
activity. (b) Between-group
difference (ASD vs. TD) in RSS of

high-amplitude frames (top 5%).
***p < 0.0001 (c) RSS of high-
amplitude frames was significantly
positive related to the RRB score
in ADI_R (FDR corrected,
p < 0.05). (d) RSS of high-
amplitude frames was significantly
positive related to the total score
in ADI_R (FDR corrected,
p < 0.05). ADI_R autism diagnostic
interview-revised; RRB, restricted
and repetitive behaviors
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averaged rsFC estimated using the full time series. Findings showed

that the high-amplitude networks were highly correlated with the

rsFC, and this correlation was significantly lower in participants with

ASD (r = 0.31 ± 0.15) than those in TD group (r = 0.46 ± 0.14, two-

sample t-test, p < .0001; Figure 3a). Additionally, the between-group

difference of variance in the activity pattern of the high-amplitude

frames was determined by using two-sample t-test. In comparison

with TD, the variance of the temporal cortex that belonged to the

DMN was decreased in ASD (FDR, p < .05, Figure 3b).

To better understand whether high-amplitude frames were

underpinned by a specific brain activity pattern, we performed PCA

on the activity patterns in high-amplitude frames in the ASD and TD

groups. We focused on the first principal component (PC1), which

explained 32% of the total variance. Then, we mapped the component

scores for PC1 onto the cortical surface and found that PC1 corre-

sponded to a mode of activity that emphasized correlated fluctuation

of the DMN and anticorrelated fluctuations of the dorsal attention

and visual network (Figures 3c,d). The significances of regional PC1

scores were obtained by permutation test (FDR-corrected, p < .05).

The PC1 coefficients were much higher in participants with ASD than

those in TD group (two-sample t-test, p < .0001; Figure 3e), indicating

that the DMN was descriptive of primary activity patterns in partici-

pants with ASD but less in the TD group. Additionally, the abnormal

coefficients were significantly associated with the social (Figure 3f)

(r = 0.1857, p = .0241) and RRB scores (Figure 3g) (r = 0.1857,

p = .0158) in ADI-R and social scores (r = 0.1930, p = .0158) in

ADOS-G (Figure 3h). FDR-correction was used for multiple compari-

sons. The ANOVA results of PC1 coefficients exhibited significant

diagnosis-related effects. However, no significant age-specific and

diagnosis-by-age interaction effect was found in the coefficients

(Table 2).

In addition, as shown in Figure S1, except for PC1, other compo-

nents of the PCA were not related to the DMN. Notably, we found

that the second principal component (PC2) corresponded to the limbic

network (Figure S1a,b), whereas the third principal component (PC3)

corresponded to a mode of activity that delineated regions in ventral

attention and somatomotor network (Figure S1c,d).

3.3 | Reproducibility results

To evaluate the stability and reproducibility of results, we repeated

the main analysis by adopting different strategies and parameter

selections. As a first point of validation, we calculated the results in

the data with GSR. We verified that the PC1 with GSR was similar to

the results without GSR (Figure S2). We re-analyzed the selection of

the different percentages of top high-amplitude frames by using a

broad range of threshold (0%–60%) to estimate whether it affected

F IGURE 3 Cofluctuation time series reveal bursty structure of resting-state FC. (a) we calculated the Pearson correlation between rsFC
estimated during high-amplitude episodes with respect to time-averaged rsFC estimated using the full time series. The functional networks
estimated using the top 5% of time point much more similar to traditional FC in participants with ASD than in TD group. (b) Between-group
difference (ASD-TD) of variance in the activity pattern of the high-amplitude frames. (c-d) First principal component (PC1) score corresponds to
the activity patterns that emphasized correlated fluctuations of default mode network. Asterisks indicate systems whose mean PC1 score was
significantly greater (more positive or negative) than expected by chance (permutation test; FDR fixed at 5%) (e) value of coefficients for the PC1
were greater in the participants with ASD than TD group. (f-h) Correlation between the PC1 coefficients and clinical data in ASD. All the p values
were FDR adjusted. ADI_R autism diagnostic interview-revised; ADOS, the autism diagnostic observation schedule; RRB, restricted and repetitive
behaviors
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the results. We found that the correlation between rsFC estimated

during high-amplitude frames and the time-averaged rsFC was greater

in ASD than in the TD group over a range of thresholds (Figure S3a).

We also found that the RSS of high-amplitude frames was greater in

ASD (Figure S3b). In addition, the PC1 score patterns were robust

(Figure S3c–f).

We noted that another strategy for comparing the ASD and TD was

to analyze them by adopting within-GroupPCA in each group. We found

PC1group explained 66.6% of the total variance in the ASD group and

20.9% of that in the TD group. Although the PC1group scores of the two

groups exhibited similar activities in DMN (Figure S4), we found statisti-

cally significant differences in the dorsal attention, limbic, and default

mode networks (Figure S4g–h) (ASD > TD, FDR-corrected, p < 0.05). To

explore whether the lower explained variance of PC1group of TD was

due to an over-decomposition of the components, we also retained the

other principal components in the within-Group PCA. The first 10 com-

ponents explained 84.1% of the total variance in the ASD group

(Figure S4c), but only explained 63.53% of the total variance in TD

(Figure S4f). Moreover, although the PC3group of the TD also emphasized

the activity in the DMN, the remaining principal component in the ASD

and TD groups did not exhibit this pattern (Figure S5). Viewed collec-

tively, DMN made an overwhelming contribution to the FC in partici-

pants with ASD (PC1group) compared with the TD group

(PC1group + PC3group).

4 | DISCUSSION

Here, we used a cofluctuation approach to temporally unwrap the

Pearson correlations to examine the relationships between the func-

tional brain dynamics and dysfunctional symptomatology in ASD. This

simple procedure enables us to decompose FC into individual co-

fluctuation frames. The entire brain’s FC and its system-level organi-

zation could be represented by a relatively small number of frames,

which exhibit the strongest cofluctuation amplitude. We found that

these frames showed fewer average amplitudes in participants with

ASD than those in the TD group. Then, we performed PCA on the

activity patterns in these high-amplitude frames, which aggregated

over all subjects. We focused on the PC1 and found that it corre-

sponded to DMN. Additionally, the abnormalities in the coefficients

for PC1 were associated with the deficits of ASD. Our finding high-

lights the utility of cofluctuation approaches in prevalent neurodeve-

lopmental disorders and verifies that altered DMNs may underline the

social deficits in adolescents and youths with ASD.

ASD were widely considered associated with atypical patterns of

functional brain connectivity in large-scale brain networks (Uddin

et al., 2013; Vissers et al., 2012). Most of these studies focused on

characterizing dynamic brain patterns and utilized sliding window

dynamic FC approaches that are known for potential pitfalls, such as

arbitrary window sizes (Lurie et al., 2020; Preti et al., 2017). Many

novel studies verified the reliability of a recently-proposed method in

several independently acquired datasets, which enabled us to unwrap

Pearson correlations to generate the time series of interregional

cofluctuations along network edges (Betzel et al., 2022; Betzel

et al., 2022b; Liu et al., 2021; Pope et al., 2021). In the current study,

we leveraged this cofluctuation method to decompose FC into its

frame-wise contributions in participants with ASD. In the ASD and TD

groups, the RSS of the cofluctuation was highly correlated with the z-

scored fMRI BOLD in the high-amplitude frames, indicating that high-

amplitude frames had a nearly one-to-one correspondence with high-

amplitude BOLD fluctuations. Critically, the FC of these frames was

exactly equal to the whole-brain static FC, which was consistent with

previous findings (Esfahlani et al., 2020). Additionally, our findings hint

at a crucial link between the instantaneous fluctuations in BOLD

activity and the organization of the resting state FC. We demon-

strated that the DMN was primarily responsible for driving the high-

amplitude frames in the ASD and TD groups. Notably, other state-

based analyses of brain dynamics reported similar patterns of activity

(Cornblath et al., 2020; Karapanagiotidis et al., 2020). Although this

mode made the greatest contribution, other modes were also likely to

make nontrivial contributions, such as the control, ventral attention,

and somatomotor network modes. All these patterns may recombine

in different proportions according to task complexity and domain

(Yarkoni et al., 2011) across individuals (Gratton et al., 2018).

The DMN is an important network that shows a substantial over-

lap with the “social brain” network (Blakemore, 2008), which has been

hypothesized to be a candidate locus of pathology in ASD. This net-

work includes the medial prefrontal cortex, the posterior cingulate

cortex and the adjoining precuneus, the lateral parietal regions, and

the temporal regions (Fox et al., 2005; Raichle et al., 2001). Some

studies proposed the involvement of the DMN in processing one’s
own emotional state (Buckner et al., 2008), self-referential thinking

(Gusnard et al., 2001; Gusnard & Raichle, 2001), thoughts about self-

versus others and theory of mind (Li et al., 2014), and autobiographi-

cal memory (Andrews-Hanna et al., 2010).

We found that DMN showed aberrant contribution to rsFC in

participants with ASD, which was associated with RRB and social defi-

cits. Previous rsFC study demonstrated that DMN was among the

most disrupted functional networks in ASD (Glerean et al., 2016;

Moseley et al., 2015), which was associated with social deficits in chil-

dren and adults with ASD (Padmanabhan et al., 2017). Our results are

consistent with the wealth of static FC research, which implicates

TABLE 2 Analysis of variance
(ANOVA) results of PC1 coefficient

Sum of squares Mean squares (MS) F p value

Main effect of age 0.002 0.001 3.068 .061

Main effect of diagnosis 0.027 0.027 164.818 .000

Diagnosis-by-age interaction effect 0.000 0.000 2.930 .087
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over-connectivity of the DMN as underlying social deficits in ASD

(Anderson, 2008; Elton et al., 2016; Hogeveen et al., 2018; Redcay

et al., 2013). Moreover, our results served as a compliment to static

analyses by demonstrating that DMN dysfunction was not only lim-

ited to increase connectivity between nodes but also increase the

contributions of momentary cofluctuations to the overall FC pattern.

As mentioned earlier, in the within-Group-PCA, a particular activity

pattern that involved the default regions was primarily responsible for

the rsFC in the TD group. Although this mode made the greatest con-

tribution, ventral attention and the somatomotor network also made

contributions. However, the DMN made an overwhelming contribu-

tion to the FC in participants with ASD. Additionally, compared with

TD, the variance of the DMN was decreased in ASD. These phenom-

ena probably occurred because ASD decreased functional flexibility or

the overly stable dynamic properties of the brain (Uddin, 2021). In the

current study, the altered DMN patterns were highly correlated with

the RRB in participants with ASD. The ability to flexibly switch among

different patterns of thought and reference frames was a critical fea-

ture of the adaptive social function (Padmanabhan et al., 2017). Aber-

rancies in DMN patterns contributed to the atypical integration of

information about the self in relation to “other” and impairments in

the ability to attend to socially relevant stimuli flexibly (Padmanabhan

et al., 2017). This finding is consistent with those of recent studies

that reported on reducing transitions between the brain state configu-

rations in ASD (Watanabe & Rees, 2017).

Although a proliferation of resting-state connectivity studies on

participants with ASD has been witnessed in the past few years, the

results are inconsistent. These “inconsistencies” likely reflect develop-

mental changes, as well as individual heterogeneity in ASD (Uddin

et al., 2013). Existing studies demonstrated that spontaneous brain

activity is aging globally (Xing, 2021). Over typical development,

intrinsic FC within DMN nodes increased between childhood and

adulthood (Supekar et al., 2010). In ASD, no consistent evidence of

such increases in DMN connectivity with age was found (Vissers

et al., 2012; Washington et al., 2014). Some studies found mixed pat-

terns of under- and over-connectivity in adolescents with ASD rela-

tive to the TD group (Doyle-Thomas et al., 2015; Jann et al., 2015).

Therefore, in the current study, ANOVA was further performed to

probe the effect of age. The results exhibited significant diagnosis-

related effects. However, no significant age-specific and diagnosis-by-

age interaction effect was found in the coefficients, suggesting that

the atypical spontaneous brain activity of DMN in ASD was not

affected by age. Even so, the mechanism underlying the shift in DMN

connectivity patterns in adolescence is not fully understood in ASD

yet. As such, further longitudinal exploration is necessary to under-

stand the developmental changes and their impact on

symptomatology.

4.1 | Limitations

A few limitations of the current work should be noted. First, our sam-

ple includes data collected at 16 different sites. Although the sample

size and statistical power increase, the use of data across multiple

sites presents its own limitations in that inter-site variability may

affect the analyses. Although we used advanced multi-center correc-

tion methods (i.e., COMBAT) to reduce potential biases and non-

biological variability induced by site and scanner effects, we could not

be sure that inherent between-site effects were completely

accounted for. Furthermore, similar to most ASD studies, our sample

consisted mostly of males. Although sex was regressed in our statisti-

cal analysis, this imbalance of males to females may fail to account for

differences in the brain activity of the two gender. To the best of our

knowledge, ASD is a neurodevelopmental disorder. Unfortunately,

ABIDE is a cross-sectional repository. Although the effects of age and

interaction effect between age and group was analyzed in the current

study, further studies using longitudinal data are needed to explore

the developmental change in ASD. Another potential strategy, norma-

tive model, is analogous to growth charts used in pediatric medicine,

mapping the height or weight as a function of age in a reference pop-

ulation (Cole, 2012; Marquand et al., 2019). This approach has been

increasingly used to map variations between demographic, cognitive,

clinical, or behavioral variables and quantitative brain readouts derived

from neuroimaging (such as brain volume (Marquand et al., 2019,

Wolfers et al., 2020, Ziegler et al., 2014), cortical thickness

(Bethlehem et al., 2018; Zabihi et al., 2019), brain activity derived

from task fMRI (Marquand et al., 2016) and rsFC (Kessler

et al., 2016)), providing statistical inferences at the individual level

based on the extent to which each individual deviate from the norma-

tive range. Importantly, previous multisite studies demonstrated sta-

bility and robustness of normal models across the life span

(Bethlehem et al., 2022; Shan et al., 2022). However, measurement

using in the current study might not be able to effectively capture the

life-span developmental changes in ASD, and a potential reason might

be the state-dependent nature of the moment-to moment activity

cofluctuations in high-amplitude frames. Future studies are needed to

examine age-dependent functional metrics for delineating the extent

to which brain dynamics in ASD deviates from the normative range,

from a developmental framework.

5 | CONCLUSION

In summary, the findings of this study were built on the growing body

of literature on the use of cofluctuation approach in the investigation

of neurodevelopmental disorders, particularly ASD. We used this

approach to decompose the functional connections into their exact

frame-wise contributions and observed the aberrant DMN pattern

and overly stable dynamic properties in participants with ASD. Consis-

tent with previous findings, our results suggested that the dysfunction

in the DMN is a potential endophenotype for the behavioral deficits

in ASD.
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