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Abstract: Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable,
specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in
the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in
polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many
health benefits. On the other hand, there is currently hardly any article dedicated specifically to
C. lentillifera regarding nutritional composition and recent advancements in its potential health
benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera
and compile recently discovered beneficial properties throughout the past decade. From the data
compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of
C. lentillifera differs from one region to another depending on various external factors. As a result,
this paper will offer researchers the groundwork to develop food products based on C. lentillifera.
The authors of this paper are hopeful that a more systematic review could be done in the future as
currently, existing data is still scarce.

Keywords: Caulerpa lentillifera; sea grapes; nutrient content; nutrient composition; health benefits

1. Introduction

In 2019, Asia contributed to 97.4 percent of global seaweed production (99.1 percent
from cultivation), with seven of the top ten producing countries located in Eastern or South-
eastern Asia [1]. This indicates a significant regional imbalance in seaweed production
which is largely influenced by the fact that seaweeds are a regular part of human diets in
East Asia compared to elsewhere [2]. Seaweeds have been a food source since the fourth
century in Japan and the sixth century in China. According to historical sources, people
gathered macroalgae for sustenance as early as 500 B.C. in China and a thousand years
later in Europe. People who lived near coastal areas preferred to consume seaweeds as a
main dish or in soup [3]. Europeans usually consume smaller amounts of seaweed than
Asians due to European regulations and dietary habits [4].

Although macroalgae intake is not as prevalent in Europe as in Asia, microalgae have
acquired popularity because of their physiologically active components, earning them the
reputation of "new superfoods" [5]. Between 1950 and 2019, global seaweed cultivation and
production increased by a thousand-fold, with mainly brown seaweed (from 3.1 million
tonnes to 16.4 million tonnes) and red seaweed cultivation (from 1 million tonnes to
18.3 million tonnes) being the main contributors [1]. However, the world cultivation of
green seaweed decreased from 31,000 tonnes to 17,000 tonnes during the same period [2].
The 16,696 tonnes of green seaweeds grown in 2019 represented only 0.05 percent of the
total seaweed production in the same year. Among the 16,696 tonnes produced were
Caulerpa spp., Monostroma nitidum, Enteromorpha [Ulva] prolifera, Capsosiphon fulvescens,
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and Codium fragile, all of which are included in FAO’s Aquatic Sciences and Fisheries
Information System. Out of 100 known Caulerpa species, only seven are utilised for human
consumption globally, with C. lentillifera and Caulerpa racemosa dominating in this aspect [6].
Table 1 shows the global seaweed production and comparison by region in 2019.

Table 1. Global seaweed production and comparison by region in 2019 [2].

Countries/Region

Total Seaweed Production
(Farmed and Wild) Seaweed Cultivation

Tonnes (Wet wt.) Share of World
Production (%) Tonnes (Wet wt.) Share in Farmed and

Wild Production (%)

World 35,762,504 100.00 34,679,134 96.97
Asia 34,826,750 97.38 34,513,223 99.10
1. China 20,296,592 56.75 20,122,142 99.14
2. Indonesia 20,296,592 56.75 20,122,142 99.14
3. Republic of Korea 1,821,475 5.09 1,812,765 99.52
4. Philippines 1,500,326 4.20 1,499,961 99.98
5. DPR of Korea 603,000 1.69 603,000 100.00
7. Japan 412,300 1.15 345,500 83.80
8. Malaysia 188,110 0.53 188,110 100.00
America 487,241 1.36 22,856 4.69
6. Chile 426,605 1.19 21,679 5.08
Europe 287,033 0.80 11,125 3.88
9. Norway 163,197 0.46 117 0.07
Africa 144,909 0.41 117,791 81.29
10. United Republic of Tanzania 106,069 0.30 106,069 100.00
Oceania 16,572 0.05 14,140 85.32

Data from FAO Fishery and Aquaculture Statistics. Global Aquaculture Production 1950–2019 (FishStatJ).

Due to their grape-like appearance, they are commonly known as sea grapes or
sea caviars. They are also known by different names in certain countries; most names
directly translating the term "sea grape" into their vernacular. For instance, “nama” in Fiji,
“bulung boni” in Indonesia, “umi budo” (海ぶどう) or “kumejima” in Japan, “bada podo”
(바다포도) in Korea, “lato”, “lelato”, or “ararosip” in the Philippines, “latok” in Malaysia,
and “rong nho” or “rong nho biển” in Vietnam [7–11]. They usually inhabit sandy or
muddy shallow sea bottoms [12]. C. lentillifera J. Agardh was originally described from the
Red Sea coast [13]. It has been reported to be widely distributed in subtropical and tropical
locations, such as the South China Sea, Southeast Asia, Japan, Taiwan, and Oceania, where
it is directly consumed as a snack, in salads, and sushi, or in its salt-preserved form [14].
It has been described to have a salty taste and succulent texture. Figure 1 illustrates fresh
C. lentillifera.

C. lentillifera is an alternative food that can also be used therapeutically. Over the years,
it has gained popularity owing to its nutritional value, potential pharmacological benefits,
and sustainability [15,16]). Within the past five years, several publications have reviewed
various aspects of Caulerpa spp., such as its consumption, nutritional value, and farming [6],
bioactive components and biotechnological applications [17], metabolite roles in cancer
treatments [18], as well as its position as a functional food [11]. Only two publications had
focused on reviewing the green algae genus Caulerpa in chemical composition, diversity,
ecology, farming, pharmacological and industrial potential [10,19]). However, the review
did not critically evaluate C. lentillifera specifically. To the best of our knowledge, no
publication has focused solely on C. lentillifera in terms of its nutrient content and recent
advances in potential health benefits that would make it suitable for pharmaceutical and
nutraceutical use. Therefore, this article aims to review relevant literature in the past decade
from reliable sources regarding C. lentillifera based on its nutrient content and beneficial
properties. This paper would provide a good foundation for future researchers to develop
functional food products utilising C. lentillifera.
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Figure 1. Fresh C. lentillifera.

2. Nutritional Value of C. lentillifera

The proximate composition and the total dietary fibre content of C. lentillifera from
different countries are shown in Table 2.

2.1. Carbohydrate and Fibres

The most abundant component in C. lentillifera are carbohydrates and dietary fibre. Di-
etary fibre is a complex mixture of carbohydrates and polymers in plants, including oligosac-
charides and polysaccharides. Other non-carbohydrate components such as polyphenols,
resistant proteins, saponins, and waxes may also be present [38]. However, these may
vary even within its species [39]. For instance, although belonging to the same genus and
family, C. lentillifera has higher carbohydrate content than C. racemosa [40]. C. lentillifera
contains as low as 0.36% and as high as 72.9% carbohydrates in its dry matter (Table 2). Its
dietary fibre content is approximately 17.5 to 36.7% in 100 g dried C. lentillifera, respectively.
Water-soluble fibre content is approximately 2.45–17.21%. Water-soluble fibres are usually
higher in red algae, around 15 to 22% in the dry matter, such as in Chondrus crispus (Irish
moss) and Porphyra/Pyropia spp. (nori) [41,42].

In seaweed, soluble fibres can absorb water up to 20 times its volume [43]. This
helps enhance the binding of water with food pellets in the gut and aids in stool bulking
and shortening transit time in the colon; these act as positive factors that may prevent
colon cancer [44]. In Caulerpa spp., soluble polysaccharides mostly consist of glucans
and sulfated polysaccharides [19]. Sulfated polysaccharides from C. lentillifera have been
reported to have physiological benefits, which will be discussed in the latter part of this
review. Insoluble dietary fibres are generally not digested in the human gastrointestinal
tract. Upon contact with water, they do not form gels but retain water in their structural
matrix, increasing faecal bulk and accelerated intestinal transit [45]. Insoluble dietary fibres
of C. lentillifera range from 15.75 to 28.98% (Table 2). However, C. lentillifera has lower
dietary fibre content than other green seaweeds, such as C. racemosa and Ulva reticulata,
at 65.7% and 64.9%, respectively [40,46,47]. In adults, high consumption of dietary fibre,
particularly fermentable fibres, has been linked with increased short-chain fatty acid (SCFA)
contents in the stool [44,48].
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Table 2. Proximate composition and fibre contents of C. lentillifera from different countries.

China Indonesia Malaysia Philippines Taiwan Thailand USA Vietnam Reference

Water content, % a 95.09–95.95 77.57–95.01 87.05–92.3 90.1–91.7 94.28 95.4–95.8 94 - [20–33]

Ash, % dw 25.31–55.20 1.02–3.41 2.1–29.61 4.17–26.57 1.27–22.2 24.21–57.01 46.4 - [20–23,33–36]

Moisture, % b 12.91–13.66 - - - 6.42 25.31 16 [33,36,37]

Carbohydrate, % dw 21.32–50.71 0.36–17.08 44.02–72.9 61.82 3.67–69.75 59.27 11.8 44 [20,22–27,29–37]

Protein, % dw 12.5–14.76 0.43–3.84 13.24–19.38 0.78–5.1 0.53–10.5 4.67–12.49 9.7 4.89–7.0 [20,22–37]

Lipid, % dw 0.78–2.32 0.32–0.79 0.7–2.87 0.05–0.75 0.09–1.57 0.86–2.0 7.2 1.2–14.0 [20,22–37]

Fibre, % dw 7.81–12.98 14.38 4.12–19.4 - 0.17–2.97 - - [23–27,29,32,33]

Total dietary fibre, g/100 g 33.44–37.16 - 32.99 30.67 - - 17.5 [25,33,34,36,37]

Insoluble fibre 26.56–28.98 - 15.78 27.17 - - - 16.6 [31–33,36,37]

Soluble fibre 2.45–8.6 - 17.21 3.5 - - - 2.6–4.21 [24,33–37]
a Wet weight; b Dry weight.
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2.2. Protein and Amino Acids

With increased population growth and demand for protein, seaweeds are plausibly
viable and sustainable protein sources due to their low environmental impact and fast-
growing rate. Furthermore, the protein content of whole algae is very high compared
to common food staples such as cereals, legumes, and nuts [49]. With its versatility and
simplicity of usage, whole algal protein has the potential to be a tremendous whole-food
protein source, as well as a great way to supplement protein-deficient diets [50]. When
comparing the protein contents, the levels of proteins are higher in Rhodophyta (red),
followed by Chlorophyta (green), and Ochrophyta (brown) [51,52]. The protein content of
C. lentillifera ranged from 0.43 to 19.38% in various countries (Table 2). The wide difference
and instability of the protein content could be affected by various external factors, such as
water temperature, season, geography, weather, and other factors [46]. It was reported that
protein content in seaweed was higher in winter than in autumn and summer [53,54].

The protein quality depends on the presence and quantity of essential amino acids.
Amino acids are the building blocks that form proteins bound together via peptide bonds
formed between the carboxyl group of an amino acid and the amino group of the next
amino acid in line [55]. C. lentillifera are considered to have high-quality proteins as the
essential amino acids present and were close to egg and soya protein content [54]. Except
for tryptophan, almost all essential amino acids (EAA) are present. Their amino acid profile
is dominated mainly by leucine, valine, aspartic acid, glutamic acid, and glycine. The major
amino acids in seaweed proteins are aspartic and glutamic acid, which contribute to the
umami flavour [56]. The amino acid profile of C. lentillifera is shown in Table 3.

Table 3. Amino acid profile of C. lentillifera.

Amino Acids g/100 g Sample Mean ± SD Reference

Essential amino acids g/100 g

[31–33]

Threonine 0.79–9.3 4.94 ± 3.49
Valine 0.87–11.16 5.66 ± 4.09
Lysine 0.68–7.78 4.59 ± 3.16

Histidine 0.08–2.07 0.98 ± 0.81
Isoleucine 0.62–6.94 3.71 ± 2.57
Leucine 0.99–12.86 6.51 ± 4.68

Methionine 0.18–2.37 1.45 ± 0.93
Phenylalanine 0.61–6.6 3.57± 2.38

Total EAA 4.7–57.01 29.86 ± 21.10
Non-essential amino acids

Aspartic acid 1.43–14.89 8.37 ± 5.74
Serine 0.76–9.47 5.00 ± 3.60

Cysteine 0.81–1.2 1.03 ± 0.18
Glutamic acid 1.77–14.72 9.30 ± 6.15

Glycine 0.64–19.23 9.17 ± 8.14
Arginine 0.83–6.21 3.86 ± 2.56
Alanine 0.85–13.36 6.57 ± 5.07
Tyrosine 0.48–4.74 2.65 ± 1.78
Proline 0.57–5.75 3.43 ± 2.34

Total NEAA 7.67–90.0 49.67 ± 35.45
Total amino acids 12.37–147.0 63.84 ± 59.40

EAA/NEAA 0.61–0.63: 1

2.3. Minerals

Minerals absent from freshwater algae and terrestrial crops are mostly available in
seaweeds [57]. Minerals are essential and required in certain amounts for the normal
metabolic functioning of the human body [58]. The mineral element found present in
C. lentillifera, including essential minerals and toxic minerals, are presented in Table 4. The
mineral content varies due to the phylum or class of the seaweed and geographical origin,
along with seasonal, environmental, and physiological variations [39].
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Table 4. Mineral element composition in C. lentillifera in different countries.

Countries Australia China Malaysia Philippines Thailand USA Vietnam Reference

Element
Aluminium, Al - 8.57 - - - - 744 [32,36]
Antimony, Sb - 3.25–4.18 - - - - - [32]
Arsenic, As 1.06 µg/g 5.14–6.46 - - - - ≤1 [21,32,36]
Barium, Ba - 0.26–1.71 - - - - 4.75 [32,36]

Beryllium, Be - 0.38–1.71 - - - - - [32]
Boron, B 18.4 µg/g 2.37–2.58 - - - 70 µg/g 21.7 [20,21,32,36]

Cadmium, Cd 0.53 µg/g 0.36–0.7 - - - - 1.14 [21,32,36]
Calcium, Ca 16,650 µg/g 0.77–3728.35 32.7–118.66 988.44 780 0.0095 8137 [20–23,32,33,35,59]
Cerium, Ce - 0.83–1.04 - - - - - [32]

Chromium, Cr - 0.23–0.34 - - - - 3.3 [32,36]
Cobalt, Co - 0.03–0.07 - - - - 1.35 [32,36]
Copper, Cu 0.89 µg/g 3.04–20.37 1.18–3.0 - 2200 µg/g 1 µg/g 2.74 [20–23,32,33,36,59]
Gallium, Ga - 0.11–0.15 - - - - - [32]

Iodine, I - 0.73–26.3 4.78 µg/g - 1424 µg/g - - [24,32]
Iron, Fe - 13.62–1972.97 145.0 430.93 9.3 167 µg/g 595 [20,23,32,33,35,36]

Lithium, Li - 0.28–2.15 - - - - - [32]
Magnesium, Mg 5.875 mg/g 1.93–8126.59 78.33–170.0 - 630 0.0165 10,663 [21,23,32,33,36,59]
Manganese, Mn - 5.54–1341.07 - - 7.9 10 µg/g 425 [20,32,33,36]

Molybdenum, Mo - 0.02–0.05 - - - - 1.32 [32,36]
Nickel, Ni - - - - - - 1.88 [36]

Nitrogen, N - 0.18–1.10 - - - 0.0239 - [20,32]
Phosphorus, P - - 11.22–25.40 - 1030 0.0016 1073 [20,23,33,36,59]

Lead, Pb 0.16 µg/g - - - - - - [21]
Potassium, K - 0.91–4967.34 66.16–1413.0 - 970 0.007 1066 [20,23,32,33,36,59]
Rubidium, Rb - 2.24–2.57 - - - - - [32]
Selenium, Se 3.9 µg/g 0.02–0.05 - - - - ≤1 [21,32,39]
Sodium, Na - 14.90–9432.33 933.83–12,297.0 - - - 130,794 [23,32,36,59]

Strontium, Sr 143 µg/g 10.19–11.31 - - - - 104 [21,32,36]
Sulphur, S - - - - - 0.0155 6733 [36]

Tin, Sn - 0.021–0.024 - - - - - [32]
Titanium, Ti - 0.07–0.16 - - - - - [32]
Vanadium, V 0.44 µg/g 0.07–0.32 - - - - 2.46 [21,32,36]

Zinc, Zn 27.55 µg/g 1.89–33.90 0.14–6.2 1.09 2.6 17 µg/g 15.2 [20,21,23,32,33,35,
36,59]

All values are presented in mg/100 g sample unless stated otherwise.

Essential minerals crucial for human wellbeing include Ca, Cu, Fe, Mg, Zn, K, Na,
P, Se, Mn, Cr, and I [60,61]. On the other hand, toxic minerals such as Al, As, Cd, Hg,
and Pb do not possess any benefits to humans but cause detrimental effects, which are
present in C. lentillifera [62,63]. As stated in Table 4, Na, Mg, K, Ca, and Mn has a wide
range of concentrations, among all mineral elements, with the highest concentration
in Na (14.90–130,794 mg/100 g). For Mg, the highest concentration value was around
8126.59 mg/100 g (in China) to 10,663 mg/100 g (in Vietnam). The highest concentra-
tion value of K and Mn were found in C. lentillifera from China, 4967.34 mg/100 g and
1341.07 mg/100 g.

The calcium content in C. lentillifera is comparable to common foods such as milk
products, meat, fish, poultry, and legumes. For instance, the highest concentration value
found in C. lentillifera was 8137 mg/100 g (in Vietnam) which is 4 times higher than the
calcium content in high calcium milk powder, 2000 mg/100 g [64,65]. Iodine and iron
are important to the human diet, both of which can be found in high concentrations
in seaweeds, including C. lentillifera [66]. Insufficiency and deficiency of iodine could
lead to goiter and hypothyroidism [65]. Although the iodine content in C. lentillifera is
relatively low compared to in other green seaweed such as Ulva clathrata [67], it can be
considered a cheap and reasonable option to fulfil the minimum iodine required needed by
the body [65,68].

The deficiency of iron is a major health problem worldwide. The root of this problem
is caused by prolonged inadequate intake due to low bioavailability in the diet. Especially
during the period of growth and chronic blood loss, the increase in iron requirement may
also cause iron deficiency [65]. The consumption of C. lentillifera could be a potential iron
supplement to combat iron deficiency. However, it is difficult to generalise or conclude
whether the mineral contents in C. lentillifera is high or low, as different sampling region
have greatly varied environmental conditions [19]. From the compiled data in Table 4, it
can be concluded C. lentillifera are rich in minerals that meet the requirement of the human
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body. However, the Na/K ratios need careful consideration, as it has been reported to be
higher than in other seaweeds such as Sargassum polycystum and Eucheuma cottonii [24].
If the Na/K ratio is too high, it is detrimental to the sodium to potassium balance in the
human body, which can result in cardiovascular diseases. A simple desalting operation,
such as soaking, is recommended before eating [32].

2.4. Lipids

C. lentillifera are significantly low in lipid content ranging from 0.05 to 14.0% in
dry weight. Despite low lipid composition, C. lentillifera has raised interest due to a
high content of long-chain polyunsaturated fatty acids (PUFAs) and carotenoids [19,41].
Compared to terrestrial vegetables, C. lentillifera contain significantly higher levels of
polyunsaturated fatty acids, which act as strong antioxidants, such as ω-3 and ω-6 [69],
which have various roles in the prevention of cardiovascular diseases, osteoarthritis, and
diabetes [70]. The fatty acids profile of C. lentillifera are shown in Table 5. The ω-3 and
ω-6 PUFAs, particularly linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), cannot be
synthesised by most heterotrophic organisms and can only be obtained through dietary
intake [32,71]. All these PUFAs can be found in C. lentillifera, with α-linolenic acid (18:3ω3)
being the most abundant [71]. The fatty acid compositions of C. lentillifera are as tabulated
in Table 5.

Table 5. Fatty acids composition in C. lentillifera.

Fatty Acids, % Reference

Saturated fatty acids
C 3:0 15.92 [35]
C 4:0 2.3 [26]
C 6:0 0.002–0.3

[26,30,32]C 8:0 0.0004–1.1
C 10:0 0.0001–6.4 [24,26,30,32]
C 11:0 0.85–1.1 [24,26,32]
C 12:0 0.006–0.69 [24,26,30,32]
C 13:0 0.001–1.54 [24,26,30,32]
C 14:0 0.019–2.92 [24,26,30,32]
C 15:0 0.001–2.1 [24,26,30,32]
C 16:0 0.22–49.46 [24,26,30,33]
C 17:0 0.0001–3.36 [24,26,30,32]
C 18:0 0.012–7.83 [24,26,30,33]
C 20:0 0.001–1.98 [24,26,30,33]
C 21:0 0.001–1.62 [24,26,30,32]
C 22:0 0.005–1.15 [24,26,30,33]
C 23:0 0.01–2.05 [24,26,30,32]
C 24:0 0.041–8.85 [24,26,30,32]

Monounsaturated fatty acids
C 14:1 0.001–1.5 [24,26,30,32]

C 14:1ω-9 0.59 [31]
C 15:1 0.83–2.54 [26,31,32]

C 16:1ω-9 0.029–8.24 [33]
C 17:1 0.0003–2.67 [24,26,32]

C 18:1ω-9c 0.03–32.49 [24,26,30,32]
C 18:1ω-9t 0.22–0.93 [24,26,30,32]

C 20:1 0.18–1.69 [26,33]
C 20:1ω-9 0.009–0.17 [24]
C 22:1ω-9 0.0001–2.8 [24,26,33]
C 24:1ω-7 0.1–2.79 [26,32]
C 24:1ω-9 0.66–0.93 [24,30]
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Table 5. Cont.

Fatty Acids, % Reference

Polyunsaturated fatty acids
n-6 PUFA

C 18:2 (ω6c) 0.48–13.14 [30,32]
C 18:2 (ω6t) 0.09–4.13 [33]
C 18:3 (ω6) 0.002–13.89 [24,33]
C 20:2 (ω6) 0.002–4.27 [24,30]
C 20:3 (ω6) 0.001–3.3 [32]
C 20:4 (ω6) 0.003–6.7 [33]
C 22:2 (ω6) 0.95–1.56 [30]
C 22:6 (ω6) 0.11–0.83 [32,33]
n-3 PUFA

C 18:3 (ω3) 0.035–13.30 [24,32]
C 20:3 (ω3) 0.001–2.72 [24,32]
C 20:5 (ω3) 0.003–1.91 [24,33]
C 22:6 (ω3) 0.003–3.64 [24,30,33]

2.5. Vitamins

Seaweeds are known to be a good source of both water-soluble and fat-soluble vita-
mins. The requirements of vitamin A, B2, B12, and two-thirds of vitamin C in the human
body could be fulfilled by consuming 100 g of seaweed [72,73]. Table 6 indicates the vitamin
content found in C. lentillifera with its daily RNI and daily UL for comparison purposes.

Table 6. Vitamin content in C. lentillifera, the daily recommended nutrient intake (RNI), and the
tolerable upper intake level (U.L.) per day.

Vitamins Present in C. lentillifera RNI/Day 1 UL/day 2 Reference

Thiamine (Vitamin B1), mg/100 g 0.021–8.8 1.1–1.2 mg ND
[22,23]Riboflavin (Vitamin B2), mg/100 g 0.02–2.5 1.1–1.3 mg ND

Vitamin B3 (as niacin), mg/100 g 1.09–200 14–16 mg NE 35 mg NE
Vitamin C, mg/100 g 0.028–274 70 mg 2000 mg [8,22,24,32,33]

Vitamin E, mg α-tocopherol/g 0.02–0.46 7.5–10 mg 1000 mg [24,32,33]
Vitamin A (as β-carotene), µg RE/g 0.1–1530 600 µg RE 3000 µg RE [8,20–24]

1 The values of RNI per day are for adults aged 19–65. 2 RNI and tolerable upper intake levels are obtained from
Recommended Nutrient Intakes for Malaysia (Ministry of Health, 2017).

Water-soluble vitamin C is the most abundant in C. lentillifera, the major contributor to
its antioxidant properties, with concentrations ranging from 0.028–274 mg/100 g. Among
other seaweed groups, C. lentillifera is generally rich in B group vitamins [74]. Vitamin B1,
B2, and B3 were present in C. lentillifera in trace amounts; however, the amount detected still
exceeded the recommended daily intake. The total amount of vitamin B2 in C. lentillifera
is considerably higher than in various legumes, including chickpeas, lentils, red and
black grain, and soya beans, which contain relatively high riboflavin levels of around
0.2–0.5 mg/100 g [64]. Recent data on the riboflavin content of selected commercial rice,
such as fragrant rice, basmati rice, and Siam rice, showed that all varieties contain 0.06 mg
riboflavin per 100 g [75]. The amount of B3 in C. lentillifera, 1.9–200 mg/100 g, was also
higher than that of Ulva fasciata, 1.02 mg/100 g, and E. flexuosa, 0.98 mg/100 g [76].

2.6. Pigments

The most abundant pigments in the Caulerpa species are chlorophylls, mostly com-
posed of chlorophyll a and b [77]. Chlorophylls have an antioxidant property that makes
them useful nutritional and a health supplement [78]. Chlorophylls available in our diet are
obtained via the consumption of green vegetables. Several studies have demonstrated that
chlorophylls and their degradation products have anti-proliferative and anticancer proper-
ties [41,79]. Carotenoids which are tetraterpenoid pigments are also found in C. lentillifera.
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Most carotenoids were present in seaweeds, such as α- and β-Carotene, lutein, and zeaxan-
thin, in which all except α-carotene were detected in C. lentillifera, as shown in Table 7.

Table 7. The concentration of pigments found in Caulerpa lentillifera.

Pigments Concentration (mg/100 g) Reference

Chlorophylls 0.729–82.32
[22,37,80]Chlorophyll a 0.332–53.0

Chlorophyll b 0.397–118.0
Carotenoids 2.578–22.0 [22,80]
Astaxanthin 3.0 [77]

β-Carotene/Lycopene 0.1–1530.0 µg RE/g [20,21,24,77,80]
Caulerpin 25.79–33.59 µg/g [37]

β-Cryptoxanthin 1.3
[77]Canthaxanthin 14.6

Fucoxanthin <0.001
Lutein <0.02–2.113 [77,80]

Violaxanthin 0.893 [80]
Zeaxanthin 0.213–3.6 [77,80]

β-carotene is a precursor of vitamin A (retinol), an essential vitamin that promotes
a healthy immune system, good skin, and eye health [78]. β-carotene also has antioxi-
dant properties that protect the body from free radicals produced by oxidation of other
molecules [81]. Carotenoids like lutein and zeaxanthin prevent the progress of age-
related macular degeneration [56,82]. Caulerpin is a bis-indole alkaloid found in genus
Caulerpa [83]. In C. lentillifera, it is found present at concentrations of 25.79–33.59 µg/g.
This compound contributes to some of its reported therapeutic activities. For instance,
caulerpin isolated from Caulerpa taxifolia showed anti-diabetic properties [84], whereas
caulerpin sourced from other Caulerpa spp. demonstrated potential anti-inflammatory and
anti-nociceptive properties [85]. The health benefits of caulerpin extracted from C. lentillifera
will be covered in the next section of this review paper.

3. Health Benefits of Caulerpa lentillifera

C. lentillifera has been discovered to have health-related functionalities that could be
used for medical treatment and prevention, as illustrated in Figure 2. Table 8 highlights the
documented health benefits of C. lentillifera in the literature throughout the previous decade.

3.1. Cardioprotective
3.1.1. Anti-Hypertensive

Cardiovascular disease (CVD) is one of the noncommunicable diseases that is the
most probable cause of mortality globally, besides cancer, diabetes, and chronic respiratory
diseases, among people between the age of 30 to 70 years old [86]. Hypertension, or an
increase in arterial blood pressure, is a major risk factor for CVD, affecting 15% to 20%
of the world population [87–90]. One of the most important therapeutic approaches in
managing hypertension is the inhibition of the Angiotensin-converting enzyme (ACE),
as demonstrated in many clinical trials [8,87]. ACE inhibitors block the conversion of
angiotensin I to angiotensin II, resulting in blood vessel relaxation and decreased blood
pressure [89]. Pharmaceutical manufacturers have commercialised many ACE inhibitors to
lower angiotensin II concentrations for the treatment of hypertension; however, these drugs
possess adverse side effects, emphasising the need for developing natural food-derived
inhibitors with fewer undesirable side effects [91].
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Figure 2. Overview of health benefits reported of C. lentillifera.

In an in vitro study, protein hydrolysates from C. lentillifera were obtained using four
different enzymes: α-chymotrypsin; pepsin; thermolysin; trypsin [92]. All hydrolysates
obtained have demonstrated ACE-inhibiting properties, with the thermolysin hydrolysate
showing the highest inhibition with 90.64% inhibition at a dose concentration of 1 mg/mL [92].
From their investigation, they concluded that the bioactive components responsible for this
inhibitory activity were oligopeptides, FDGIP (FP-5), and AIDPVRA (AA-7). Although
this is the first reported study utilising protein peptides from C. lentillifera, there are
many other similar studies sourcing protein peptides from different seaweed species
such as Undaria pinnatifida, Saccharina japonica, Sargassum fusiforme, S. maclurei (Ochrophyta),
Gracilariopsis lemaneiformis, Mazzaella japonica, Palmaria palmata, Pyropia/Porphyra spp., Bangia
fusco-purpurea (Rhodophyta), Ulva rigida, U. chlatrata, and U. intestinalis (Chlorophyta) [93–108].

Table 8. Health benefits reported in Caulerpa lentillifera.

Health Benefits
Reported

Extract from
C. lentillifera Model of Study Dosage Reference

Anti-hypertensive Dried C. lentillifera powder

α-chymotrypsin, pepsin,
thermolysin, and trypsin 1 mg/mL [92]

Male Wistar rats (8–9 weeks old;
338 g) 5% dw [24]

Anti-hyperlipidaemic

Dried C. lentillifera Male Sprague-Dawley rats (10 weeks
old, 260–300 g) 5 g/100 g [24]

C. lentillifera extract Male rabbits 10, 158.5 and
39,810.70 mg/kg bwt [109]

Aqueous extract Porcine pancreatin 5 mg [14]
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Table 8. Cont.

Health Benefits
Reported

Extract from
C. lentillifera Model of Study Dosage Reference

Anti-bacterial; anti-microbial

C. lentillifera extracts E. coli, S. aureus, Streptococcus sp.,
Salmonella sp. [26]

Caulerpin E. coli, S. aureus, Streptococcus sp.,
Salmonella sp.

Methanolic extract Staphylococcus aureus,
Streptococcus mutans 25–250 mg/mL [110]

Methanolic extract Methilin-resistant Staphylococcus
aureus (MRSA), Escherichia coli K1 250 µg/mL [111]

Anti-tumour; anti-cancer;
anti-proliferative; apoptotic

ß-1,3-Xylan Human breast cancer cells,
MCF-7 cells 1–2 mg/mL [112]

Ethanol-hexane
Extract A172 Human glioblastoma cells 200–1000 µg/mL [113]

Anti-coagulant

ß-1,3-Xylan Rabbit plasma 1, 3, 5, 10 and 20 mg/mL [114]

Aqueous extract
Male albino rabbits (4–6 months old,

1.0–1.25 kg) and canine
blood samples

3 mg/mL [115]

Anti-hyperglycaemic

Hydroethanolic
Extract Male albino mice 10 and 50 mg/kg [116]

Freeze-dried
aqueous extract Male BALB/c mice (6 weeks old) 600 and 1000 mg/kg bwt [34]

Anti-diabetic Ethanolic extract

Rat insulinoma cells (RIN),
3T3-L1 cells

1000 µg/mL [117]
10–25 µg/mL

L6 rat skeletal muscle cells 250 µg/mL [118]
6-week-old db/db male mice 250 and 500 mg/kg

Rat insulinoma (RIN)-m5F cells 250, 500, and 1000 µg/mL [119]

Anti-inflammatory

C. lentillifera
extracts Murine macrophage RAW 264.7 cells 50 µg/mL [26]

Caulerpin Murine macrophage RAW 264.7 cells 25, 50, 100 µg/mL

Sulphated
polysaccharides HT29 colonic carcinoma cells 50, 100, 200, 300 and 400 µg/mL [120]

Antioxidative Freeze-dried aqueous extract Male BALB/c mice (6 weeks old) 600 and 1000 mg/kg bwt [24]

Anti-pyretic Aqueous extract Adult male mice (24–30 g) 500 mg/kg bwt [121]

Chelating agent Aqueous extract Male Sprague Dawley rats (4 weeks,
150–180 g) 500 mg/kg bwt [122]

Immunostimulatory

Sulphated
polysaccharides Murine macrophage RAW 264.7 cells 1–5 µg/mL [123]

Xylogalactomannnans Murine macrophage RAW 264.7 cells 50–800 µg/mL [124]

Polysaccharides Mouse RAW264.7 cells 6.25, 12.5, 25 and 50 µg/mL [125]

In vitro fermented culture
60 cytoxan (CTX) induced
immunosuppressed male

BALB/c mice; 20 g
25, 50, and 100 mg/kg bwt [126]

3.1.2. Anti-Hyperlipidaemic

Lipids are one of the important nutrients required by the human body. High intake
of lipids, however, could lead to obesity and hyperlipidaemia [127]. Hyperlipidaemia is
characterised by a rise in blood total cholesterol (TC), low-density lipoprotein (LDL), very
low-density lipoprotein (VLDL), and a reduction in high-density lipoprotein (HDL) [128].
It is a major cardiac risk factor, and it has been linked to an increased risk of cardiovascular
disease in these patients [129]. Although the current drugs used in medical practices
are very effective in lowering LDL levels, these drugs do have side effects which cause
patients to seek treatments using safe and naturally derived drugs. At present, much
research has evaluated seaweed-polysaccharides effect in lowering blood lipid levels.
The evaluations are mainly conducted based on in vivo and in vitro experiments. In an
in vitro experiment, mice were fed a high cholesterol and high fat (HCF) diet to establish a
hyperlipidaemic model study. Then, the mice were treated with seaweed polysaccharides
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in which their blood lipid-related factors, lipase inhibition rate, and bile salts binding
capacity were determined.

In an in vivo study, treatment of HCF rats with 5% dried C. lentillifera for 16 weeks
significantly lowered their body weight by 39.5%, increased HDL levels by 48.7%, reduced
TC by 18.4%, LDL by 34.6%, and triglycerides levels by 33.7%, and lowered lipid per-
oxidation level by 9%, erythrocyte glutathione peroxidase level by 31.8% and catalase
level by 3.14%, compared to the corresponding levels in HCF rats [24]. Similar findings
were obtained in another in vivo study where a decrease in total cholesterol levels was
observed among hypocholesterolaemia-induced male rabbits administered with crude
C. lentillifera extract [109]. The anti-hyperlipidaemic effects of different polysaccharide
fractions of C. lentillifera extract, i.e., WCLP25, WCLP40, WCLP55, WCLP70, and WCLP85,
were assessed in a simulated bile acid-binding experiment. From the in vitro experiment
conducted, they found out that WCLP-55 and WCLP-70 are potentially applicable for low-
ering blood lipids as these fractions have significantly higher binding capacities for cholic
acid, deoxycholic acid, glycocholic acid, and taurocholic acid) [14]. Other polysaccharides
sourced from different seaweed species demonstrated hypolipidemic properties, such as
Sargassum polycystum, Enteromorpha prolifera, Monostroma nitidum, Sargassum fusiforme, and
Ulva pertusa [130–133].

3.2. Antibacterial and Antimicrobial Activity

Antimicrobials are compounds that kill or hinder the growth of microbial pathogens,
respectively, whereas antibiotics and antifungals are compounds that help kill them [130].
Antimicrobials primarily impact microbial cells, targeting the phospholipid bilayer of the
cell membrane, destroying enzyme systems, and altering the bacteria’ genetic material [134].
Secondary metabolites from seaweeds such as polyphenols or other bioactive compounds
can disrupt the permeability of the microbial cell, and interfere with membrane function,
thus, consequently causing cell apoptosis [135]. In a study, the antibacterial potential of
C. lentillifera extracts and caulerpin against four common food microbial pathogen strains,
i.e., E. coli, Salmonella sp., Streptococcus sp., and Staphylococcus aureus, were evaluated [26].
The seaweed extract was found to demonstrate antimicrobial activities in all test organ-
isms with the range of minimum inhibitory concentrations of 136.5, 125.25, 175.25, and
140.50 MIC/mg mL−1 in E. coli, Staphylococcus aureus, Streptococcus sp., and Salmonella sp.
respectively. As for the caulerpin extract, it demonstrated antimicrobial activities in all
test organisms with minimum inhibitory concentrations of 5.25 MIC/mg mL−1 in E. coli,
S aureus, and Salmonella sp., and the lowest in Streptococcus sp., 15.50 MIC/mg mL−1.

3.3. Anti-Cancer

Existing anticancer medicines are often nonspecific, have side effects, or are exceed-
ingly expensive; therefore, the search for improved therapeutics continues, with a particular
focus on naturally occurring compounds. In an in-vitro study, it was discovered that ß-
1,3-Xylan extracted from C. lentillifera inhibited the growth of MCF-7 human breast cancer
cells and triggered chromatin condensation, degradation of poly ADP-ribose polymerase
(PARP), and activation of caspase-3/7, indicating that it promoted death in these cells (MCF-
7 cells) [123]. In other in vivo and in vitro experiments utilising bioactive compounds ex-
tracted from Sargassum wightii and E. cottonii, similar findings have been observed [136–138].
Despite similar outcomes observed in the previously mentioned experiments, different
molecular mechanisms may occur as each compound, i.e., phloroglucinol, fucoxanthin,
and fucoidan, have different action mechanisms, such as anti-angiogenic, antioxidative,
anti-metastasis, anti-proliferative, and pro-apoptotic [139]. Recently, a fascinating discovery
by Tanawoot and others [113] revealed that A147 glioblastoma cells treated with ethanol-
hexane seaweed extracted from C. lentillifera demonstrated a drastic drop in cells viability
and inhibited glioblastoma cell cycle progression in a high dose-dependent manner. The
seaweed extracts also promoted the apoptosis of A147 cells.
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3.4. Anti-Coagulant

Anti-coagulant is a key agent for preventing thrombosis, with heparin being the most
often used commercial antithrombotic medication [140]. An in-vitro study using rabbit
plasma treated with different concentrations of ß-1,3-Xylan, a polysaccharide compound
extracted from C. lentillifera, has demonstrated prolonged activated partial thromboplastin
time (aPTT). A similar result was observed in another study by Arenajo and colleagues,
whereby an aqueous extracted from C. lentillifera, the concentration of 3 mg/mL tested
in male albino rabbits and canine blood samples was able to prolong the clotting time
dose-dependently [115].

3.5. Anti-Diabetic and Anti-Hyperglycaemic

Diabetes is a type of metabolic disorder considered a chronic health problem globally.
This disorder occurs when the pancreas does not produce enough insulin, Type-1 Diabetes,
or when the body cannot use the insulin effectively upon production, Type-2 Diabetes [86].
Seaweeds have been widely used for anti-diabetic treatments [34,141]. Ethanolic extracts
of C. lentillifera have been assessed both in in vivo and in vitro experiments resulting in
positive anti-diabetic effects. An in vitro experiment conducted by Sharma and others [117]
in rat insulinoma cells (RIN), 3T3-L1 cells exhibited a decrease in dipeptidyl peptidase-
IV and α-glucosidase enzyme activities at 1000 µg/mL dosage concentration, whereas,
at a 10–25 µg/mL dose concentration, ethanolic C. lentillifera extract showed inhibited
cell death and iNOS expression in interleukin- 1β and interferon-γ induced RIN cells.
Enhanced insulin secretion in pancreatic β-cells and increased insulin sensitivity and
glucose uptake in 3T3-L1 adipocytes were observed at 10–25 µg/mL dose concentration
administered [117]. According to the American Diabetes Association, hyperglycaemia
refers to a high blood glucose level where the blood glucose is greater than 125 mg/dL
while fasting with greater than 180 mg/dL 2 h postprandial. When 10 mg/kg and 50 mg/kg
of hydroethanolic extract from C. lentillifera were introduced to male albino mice, it induced
significant antihyperglycemic effects in the fasting state and 2-h postprandial loading in
a dose-dependent manner [116]. Similarly, 600 and 1000 mg/kg of freeze-dried aqueous
extract from C. lentillifera were orally administered to male BALB/c mice, which showed
improved plasma glucose, insulin, and homeostasis model assessment-insulin resistance
(HOMA-IR) levels after 6 weeks [34].

3.6. Anti-Inflammatory

Inflammation is a natural defensive response to harmful stimuli such as irritants,
pathogens, or damaged cells. Microbial infections, tissue stress, and some traumas are
all examples of threats that trigger inflammation, which is frequently followed by symp-
toms such as fever, redness, swelling, and pain [142,143]. The inflammatory response is
characterized by the overproduction of proinflammatory cytokines such as tumour necro-
sis factor-alpha (TNF-α), interleukin (IL) (IL-6 and IL-1), prostaglandin E2 (PGE2), nitric
oxide (NO), and increased production of reactive oxygen species (ROS) [144]. Increased
inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) activity is often
linked to increasing NO and PGE2 production [141]. Although C. lentillifera has been a
research subject regarding its health benefits, not many reports are found pertaining to its
anti-inflammatory activity except for an in-vitro study by Nagappan and Vairappan [26]
and Sun and others [120].

Using murine macrophage RAW 264.7 cells as the model of study, Nagappan and
Vairappan found that the C. lentillifera extracts and caulerpin, an active ingredient extracted
from C. lentillifera, when subjected to the RAW 264.7, did not release lactate dehydrogenase
(LDH) and suppress the NO production. They also found that the production of nitrite
and proinflammatory cytokines, TNF- α and IL-6, were lowered in a dose-dependent
manner. Meanwhile, Sun and others studied the anti-inflammatory activity of C. lentillifera
by treating HT29 colonic carcinoma cells that have been lipopolysaccharides (LPS) induced
with four different fractions of sulphated polysaccharides extracts, i.e., CLGP1, CLGP2,



Foods 2022, 11, 2832 14 of 24

CLGP3, and CLGP4 [120]. From their research, they concluded that LPS-stimulated HT29
cells treated with CLGP4, C. lentillifera polysaccharides demonstrated a powerful inhibition
of the production of interleukin-1ß (IL-1ß) as well as the tumour necrosis factor (TNF-α),
significantly reduced the mucin2 production in a dose-dependent manner. Among all
sulphated saccharides, CLGP4 had the best anti-inflammatory effect in vitro.

3.7. Antioxidant

Antioxidant phytochemical compounds can scavenge reactive oxygen and nitrogen
species (ROS and RNS) in the human body, slowing or preventing the onset of oxidative
stress-related diseases such as cancers, cardiovascular diseases, delayed sexual develop-
ment, kidney and liver diseases, neurological disease, respiratory diseases, and rheumatoid
arthritis [145–148]. One of the most prominent health benefits of C. lentillifera is its antioxi-
dant properties. Among all solvent extractions used, it can be observed that ethanolic and
methanolic extracts showed antioxidant activity in various tests, as tabulated in Table 8.
The different levels of activities exhibited in these antioxidant tests could be correlated to
the polarity of the solvent extraction used. However, C. lentillifera extracted using water,
i.e., the most polar organic solvent, showed a much lower antioxidant activity than when
methanol and ethanol were used. This could be due to the dependency of the antioxidant
activity on the synergistic effects of the extraction solvent used [149]. In a recent in vivo
study, freeze-dried aqueous extract of C. lentillifera was observed to reduce antioxidative
stress in diabetic mice and prevent male reproductive system dysfunction [34]. Overall,
C. lentillifera can be seen to have high phenolics and flavonoid content, good scavenging
and reducing properties, and high Trolox equivalent antioxidant capacity, as shown by the
data tabulated in Table 9.
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Table 9. Antioxidant activities in Caulerpa lentillifera.

Solvent *ETN
AC RA

TPC, mg GAE/g TFC, mg QE/g DPPH, % FRAP, mg TE/g TEAC, % H2O2 activity, % ORAC, µmol T.E./100 g Reference
mg AAE/g mg FESO4/g

Methanol 0.762

42.85 362.11 2.16 b [150]

51.87 [24]

52.85 [25]

4.52 4.93 9.74 [111]

16.8–28.56 [29]

0.58 15.41 2.87 0.27 [59]

Ethanol 0.654

1.3–2.04 1.21–31.68 0.08–46.46 88.78–94.81 [8]

54.23–79.09 c [28]

5.74 68,372 [77]

21.19–26.37 17.92–21.34 6.23–7.28 a 63.19–73.2 [37]

[151]

Water 1
2.04 1.17 81.55 [108]

3.04 18.26–29.3 [151]

Acetone: Hexane NA 47 [80]

Butanol 0.586 4.5–11.0 21.99–22.17 [151]

Chloroform 0.259 5.47 0.28 2.2 [111]

Ethyl acetate 0.228 25.64–91.25 28.75–84.37 [151]

Hexane 0.009 13.97–38.27 9.7–40.41 [151]

*ETN: solvent polarity index a Expressed in mg phloroglucinol (PGE) per gram dry extract; b Expressed in µM/mg dw; c Expressed in %.
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3.8. Anti-Pyretic

Anti-pyretic or analgesic helps prevent or alleviate fever. Fever is a common medical
symptom characterised by a 37.2 ◦C fever induced by infection or inflammation. Three of
the most common over-the-counter synthetic anti-pyretic drugs are aspirin, acetaminophen
(paracetamol), and ibuprofen [152,153]. These drugs reduce fever by inhibiting the expres-
sion of cyclooxygenase (COX-2), which results in the production of prostaglandins [153,154].
However, these synthetic anti-pyretic drugs raise considerable concerns since they can
lead to a few adverse pharmacological [155,156]. Hence, there is a global need for drugs
produced from natural resources that have a minimal detrimental impact on human health.
C. lentillifera has been evaluated in an in vivo study to determine whether it could po-
tentially be used as an anti-pyretic agent [121]. 500 mg/kg per body weight of aqueous
extracts from the seaweed were administered orally to adult male mice with body weights
ranging around 24 to 30 g. From their experiment, they concluded that C. lentillifera showed
a significant anti-pyretic effect as the rectal temperature of mice with fever decreased by
1.15 ◦C, 5 h after consumption of aqueous seaweed extract as compared to the control given
10 mg/kg of acetaminophen.

3.9. Anti-Chelating Agent

Heavy metals are divided into two categories based on their toxicity: essential heavy
metals and non-essential heavy metals. Essential heavy metals are harmless or relatively
less harmless at low concentrations, such as zinc, copper, iron, and cobalt. However, when
the accumulation of the same elements is higher than the threshold, they can cause toxicity,
whereas non-essential metals are highly toxic, even at a low concentration, such as cadmium,
mercury, arsenic, and chromium [157]. Heavy metal accumulation in the human body
severely damages different organs, including the respiratory, nervous, and reproductive
systems, as well as the digestive tract [158,159]. Common chelating agents used as chelators
are dimercaprol, dimercaptosuccinic acid, 2,3-Dimercaptopropane-1-sulfonic acid, sodium-
calcium edetate, deferoxamine, and penicillamine [157]. However, some patients have
deteriorating conditions from these chelating agents. Common side effects reported were
fever, nausea, headache, vomiting, irregular blood pressure, gastrointestinal distress, sore
muscles, pain at the injection site, and burning sensation.

In worst scenarios, it could also cause heart failure, breathing difficulties, respiratory
failure, low blood pressure, irreversible kidney damage, convulsions, and low blood
calcium [160–162]. Hence, researchers are searching for new antidotes sourced from natural
sources with higher treatment efficacy with fewer side effects. A recent in vivo study by
Daud and others tested an aqueous extract from C. lentillifera against lead accumulation
in internal tissues of male rats [122]. With C. lentillifera being rich in antioxidants, they
hypothesised that it might be a good candidate as a chelating agent, as administration
of antioxidants has been reported to have protective effects against heavy metal-induced
tissue damage. From their experiment, lead intoxicated rats treated with the seaweed
extract had significantly higher body weight compared to lead-acetate treated rats, which
indicated the capability of the extract to reduce the ill effects. The lead accumulation levels
in the blood and internal organs among the intoxicated rats were also reduced.

3.10. Immunostimulatory

The innate immune system is one of the physiological defence mechanisms that
identifies and eliminates foreign substances while maintaining immune homeostasis via
mechanisms that compete with cell proliferation and death [163]. The immune system
protects organs from pathogens and antigens, and the development of natural, non-toxic
immunomodulators to enhance the immune regulatory system is more effective for long-
term health care [125]. Recent studies showed that C. lentillifera possesses potential and
potent immunomodulatory capabilities [123–126]. An in vitro experiment conducted by
Maeda and colleagues, sulfated polysaccharides from C. lentillifera were found to activate
and promote the growth of murine macrophages RAW 264.7 cells after 24 h of incubation,
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with a dosage concentration of 1–5 µg/mL. In addition, the data showed that the secretion
of IL-6, TNF-α, and IL-1βwas promoted after incubation with C. lentillifera polysaccharides,
and the functions of CLP were like those of lipopolysaccharides [123].

Sun and others assessed the potential as a natural immunomodulator of four novel
purified polysaccharides (CLGP1, CLGP2, CLGP3, CLGP4), suggesting a type of xyloglac-
tomannan. All polysaccharides demonstrated immunostimulatory activity at concentra-
tions of 50 to 800 µg/mL, which stimulated the viability of RAW264.7 cells, phagocytic
activity, production of nitrite, and acid phosphatase signal enzyme. They concluded
that CLGP4 showed the most potent immunostimulatory activities among all polysaccha-
rides [124]. Similar outcomes were observed in another in vitro experiment using RAW
264.7 cells as the study model [125]. In another study, an in vivo experiment was con-
ducted using polysaccharides from C. lentillifera that underwent in vitro fermentation using
cytoxan (CTX)-induced immunosuppressed BALB/c mice. At concentrations of 25, 50,
and 100 mg/kg of C. lentillifera polysaccharides, a significant increase in short-chain fatty
acids concentrations and regulated the diversity and composition of gut microbiota were
observed in immunocompromised BALB/c mice. This results in improved immunostimu-
latory effects against CTX-induced immunosuppression, including repairing body weight,
colon length, and thymus/spleen indexes, and stimulating the production of IL-1, TNF-α,
secretory immunoglobulin A, mucin2, and superoxidase dismutase. These findings indicate
that C. lentillifera can act as microbiota regulators in the gut, potentially improving the
immune system in immunocompromised mouse models.

4. Methodology

The information was electronically retrieved through various online databases (Scopus,
ScienceDirect, Google Scholar, PubMed, etc.) from 2002 to 2022. Using the primary search
phrase "Caulerpa lentillifera", a total of 138 records were found. Upon screening by applying
other relevant keywords such as "nutrient content", “nutritional value”, “antioxidant”, and
“health benefits” to obtain relevant journal articles with valuable data inputs, a total of
50 papers were selected. In this review, the data on nutrient composition and reported
health benefits were obtained only from journal articles written in English, excluding
review articles and conference papers. Data from organizations such as the World Health
Organization, the Ministry of Health Malaysia, and the European Food Safety Authority
were also adopted in this review paper.

5. Conclusions

In this review, the nutrient composition of C. lentillifera was compiled. This included
carbohydrates and fibre, proteins and amino acids, lipids and fatty acids, minerals, vi-
tamins, pigments, and antioxidant profiles. Health benefits contributed by C. lentillifera
reported in past studies, such as cardioprotective properties (i. e., anti-hypertensive and
hypolipidemic), antibacterial, anticancer, anti-coagulant, anti-hyperglycaemic, anti-diabetic,
anti-inflammatory, antioxidative, anti-pyretic, chelating agent, and immunostimulatory,
were also described and discussed. Despite the excellent nutrient profile of C. lentillifera, it
is still underutilised and only wildly cultivated globally. In the future, we hope that more
studies on functional food development and cultivation techniques concerning C. lentillifera
will be conducted, as it could be a solution for food and nutrient security problems around
the world. Furthermore, extensive studies on the isolates and extracts from C. lentillifera are
extremely important. They are needed to understand its bioactivity and mechanisms of
action while highlighting its commercialization potential, especially for nutraceutical and
pharmaceutical uses.
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