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Abstract

Physician stress is associated with near misses and adverse medical events. However, little

is known about physiological mechanisms linking stress to such events. We explored the

utility of machine learning to determine whether the catabolic stress hormone cortisol and

the anabolic, anti-stress hormone dehydroepiandrosterone sulfate (DHEA-S), as well as the

cortisol to DHEA-S ratio relate to near misses in emergency medicine residents during

active duty in a trauma 1 emergency department. Compared to statistical models better

suited for inference, machine learning models allow for prediction in situations that have not

yet occurred, and thus better suited for clinical applications. This exploratory study used

multiple machine learning models to determine possible relationships between biomarkers

and near misses. Of the various models tested, support vector machine with radial bias

function kernels and support vector machine with linear kernels performed the best, with

training accuracies of 85% and 79% respectively. When evaluated on a test dataset, both

models had prediction accuracies of around 80%. The pre-shift cortisol to DHEA-S ratio was

shown to be the most important predictor in interpretable models tested. Results suggest

that interventions that help emergency room physicians relax before they begin their shift

could reduce risk of errors and improve patient and physician outcomes. This pilot demon-

strates promising results regarding using machine learning to better understand the stress

biology of near misses. Future studies should use larger groups and relate these variables

to information in electronic medical records, such as objective and patient-reported quality

measures.

Introduction

Stress adversely impacts physician performance with potentially adverse effects on the quality

of care that the patient receives. Chronic stress and stress-related disorders are associated with

impaired work function and decreased work engagement, such as sick leave and presentism

[1]. Many studies have examined the prevalence of burnout among physicians [2], to some-

times alarming results. Almost 1 in 2 US physicians have symptoms of burnout, which has
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been associated with increased odds of being named in a medical malpractice suit [3]. For

emergency room physicians, job-induced stress can be particularly high with implications for

cognitive fatigue and clinical practice [4].

Several studies have associated physician stress to adverse medical events and medical

errors [2, 3]. However, there are limited studies on possible neurophysiological mechanisms

that would explain a causal link between stress and near misses and related medical events.

Studies have shown that stress may influence executive function [5] and may therefore be a

major contributor to adverse medical decision making. Grueling work schedules and cogni-

tively demanding work likely also contribute [6].

Near misses

Although adverse medical events are relatively rare, and therefore difficult to study, near

misses are more common [7]. According to the National Academy of Medicine, reporting and

addressing adverse events and near misses is critical to enhance patient safety [7]. However,

few studies have examined the relationship between objective measures of physiological stress

and near misses [8]. A near miss has been defined as “any process variation that did not reach

the patient, employee or visitor, but for which a recurrence carries a significant chance of a

serious adverse event”. Because they are more common, near misses serve as a reliable marker

for overall safety [7].

Machine learning

Machine learning is a branch of artificial intelligence and lies at the intersection of statistics

and computer science. It utilizes a variety of statistical, probabilistic, and optimization meth-

ods to allow computers to “learn” from past examples and accumulate experience. Briefly, sta-

tistics focuses on learning from data and computer science focuses on developing efficient

computer algorithms [9]. While statistical models have a focus on inference, machine learning

models work more towards prediction of future outcomes in situations that have not yet been

observed [10]. Machine learning has proven to have many potential applications in the bio-

medical field [11] and is part of a growing trend towards more personalized medical

treatment.

One of the most notable uses of machine learning has been in the field of cancer research,

where it has been applied for over 30 years [12]. Among well designed studies, machine learn-

ing has shown to substantially improve the accuracy (15–25%) in predicting cancer suscepti-

bility, recurrence, and mortality [13]. A recent meta-analysis comparing theory-driven and

machine learning prediction of suicide showed that machine learning could provide superior

performance in the prediction of suicide ideation, attempts, and death in comparison to the

suboptimal performance across all surveyed theoretically driven models [14]. Similarly, prom-

ising results have been found in predicting stress in medical professionals using machine

learning models, which increased the accuracy of stress prediction up to 20.8% as compared to

traditional statistical procedures [15].

Particularly within the field of Emergency Medicine, machine learning has also been

applied to the detection of physician stress. Using wearable sensors that collected biometric

data using accelerometry, electrodermal activity, etc., an algorithm was designed to identify

physician self-reported periods of stress and demonstrated a potentially promising method to

facilitate biologically based stress research [16]. Machine learning has also shown promise in

studies of cognitive decline, with machine learning derived biomarkers being validated as a

potential surrogate biomarker for intervention studies [17]. These promising results seen

across a variety of disciplines, including those directly relevant to this study, indicate that
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machine learning methods have strong potential to be applied as a tool to enhance the ability

to predict near misses.

Biomarkers of stress

In order to better understand the physiological basis of near misses, the current study focused

on the catabolic stress hormone cortisol and the anabolic, anti-stress hormone dehydroepian-

drosterone sulfate (DHEA-S). Cortisol has been explored more extensively as a biomarker for

stress. However, in this study of near misses, we complemented modeling of the individual

stress hormone cortisol with the anti-stress and neuroprotective hormone, DHEA-S, as well as

the cortisol to DHEA-S ratio [18]. Both hormones are central to the biological stress response

and DHEA-S is believed to attenuate the adverse effects from cortisol on brain neurons. Corti-

sol is a biomarker for neurodegenerative disease versus DHEA-S, which is neurorestorative,

protecting brain cells from toxic cortisol levels [19]. Thus, the absolute concentration of these

hormones as well as the ratio between the two offers a more complete measure of the body’s

stress pattern.

The objective of this study is to use a machine learning approach to establish a function to

predict near misses using the ratio between the catabolic stress hormone cortisol and the ana-

bolic, anti-stress hormone dehydroepiandrosterone-sulfate, DHEA-S, along with the absolute

blood concentrations of both. Compared to statistical methods, machine learning was a better

approach for identifying and describing various patterns in our study, as the potentially noisy

data and variable clinical settings could otherwise interfere in traditional statistical models.

Results of this pilot study applying machine learning to explore the physiological basis of near

misses could provide a foundation for further studies of mechanisms involved in proactively

linking physiological stress to adverse clinical decision-making processes.

Methods

This study was a secondary analysis of de-identified data collected in 2015–2016 for a study of

self-reported and biological stress and near misses among 28 emergency residents [7]. The

original study was approved by the Wayne State University Institutional Review Board (Proto-

col # 1204010830) and the Detroit Medical Center (DMC) Research Office. Data collected con-

tains information on demographics, years of medical training, post-stress recovery strategies,

perceived skills, complexity mix of patients seen during the shift, and resident-reported near

misses. Study participants were residents in emergency medicine working at the DMC, Michi-

gan, USA, a level 1 trauma center. Only a portion of the originally collected data was used in

this analysis and is provided in S1 File. In particular, the biomarker data used (described

below) were the only features that the model was trained on. Fig 1 depicts an overview of the

methods employed.

As a brief overview, after receiving raw saliva samples and performing the ELISA assay, the

data was then processed with Synthetic Minority Oversampling Technique (SMOTE), scaled,

and split into training and test dataset. The preprocessed data was then fed into a variety of AI

algorithms which were tuned by means of grid searching for optimal hyperparameter values,

and iteratively testing. These finalized models were then evaluated. Finally, the results of the

models were interpreted with permutation feature importance. Each step is further detailed

below.

Biomarker data

Saliva samples were drawn for 28 physicians immediately before the start of a shift and after

the end of a shift. Approximately 1 mL of saliva was collected by passive drooling and placed
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on ice, later being transported to the lab for biomarker analysis with commercially available

enzyme-linked immunosorbent assay (ELISA) kits. See [7] for more comprehensive methods

description.

The machine learning models exclusively used the biomarker data collected, i.e., pre-shift

cortisol concentration, pre-shift DHEA-S concentration, pre-shift Cortisol DHEA-S ratio,

post-shift cortisol concentration, post-shift DHEA-S concentration, and post-shift Cortisol to

DHEA-S ratio. The biomarker data aforementioned were the six initial features that were used

to train the model. Table 1 depicts descriptive information about all data used for the model.

To prepare the dataset for the machine learning models, it was first oversampled with Syn-

thetic Minority Oversampling Technique (SMOTE) to balance and increase the frequency of

Fig 1. Study methodology. 1Synthetic Minority Oversampling Technique. 2Standard Scaling removes the mean and

scales to unit variance. 3Dehydroepiandrosterone-sulfate. 4The AI Algorithms mentioned are the k-nearest neighbors,

Naïve Bayes, linear discriminant analysis, support vector machine (with the default radial bias function kernels),

support vector machine with linear kernels, and support vector machine with sigmoidal kernels respectively.

https://doi.org/10.1371/journal.pone.0264957.g001

Table 1. Biomarker information (n = 28).

Biomarkers Median Value Standard Deviation

Cortisol Pre-shift [μg/dL] 4501.00 3023.48

Cortisol Post-shift [μg/dL] 1499.00 1200.10

DHEA-S Pre-shift [μg/dL] 317.00 488.13

DHEA-S Post-shift [μg/dL] 236.00 217.19

Cortisol DHEA-S Ratio Pre-Shift 14.50 13.40

Cortisol DHEA-S Ratio Post-Shift 7.63 9.52

https://doi.org/10.1371/journal.pone.0264957.t001
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near miss datapoints within the dataset. It was then randomly split into training and testing

datasets, with the training dataset comprised of 70% of the data, and the testing dataset com-

prising 30% of the data. Datapoints with any missing data were then dropped. All data was

then normalized by removing the mean and scaling to unit variance.

Model implementation

Several machine learning models were used and compared to explore the possible relationship

between pre and post shift concentrations of cortisol, DHEA, and the cortisol to DHEA ratio

and the outcome variable resident-reported near misses. Tested models included linear dis-

criminant analysis (LDA); K nearest neighbor (KNN); Naïve Bayes (NB); and support vector

machine (SVM) with linear, radial bias function (RBF), and sigmoid kernels. For detailed

information regarding these models, please refer to [20].

The linear discriminant analysis model was implemented using singular value decomposi-

tion solver, to deal with the issue of small sample size problem with data of high dimensional-

ity. The KNN algorithm was tuned at different values of k, and the final implementation had a

k value of 5. The distance metric used for the KNN model was the Minkowski metric, which is

a generalization of the Euclidean distance and Manhattan distance. This metric was employed

with a power parameter of two, which is equivalent to the standard Euclidean metric. For the

support vector machine with a polynomial kernel, we used a polynomial of the third degree.

To tune the various hyperparameters of the estimators employed, we searched the hyper-

parameter space for the best cross validation score. For each model, we defined a grid of possi-

ble parameter values for tunable hyperparameters (such as k value for KNN, etc.). All possible

combinations of parameter values were explored, and the best combination was obtained. This

exhaustive grid search aided in the determination of the final models.

The models and all the accompanying data preparation methods were all constructed and

performed with Python, version 3.7 (Python Software Foundation Inc.). All models were

assessed for accuracy and c-statistic. Following this, model interpretation was done by means

of feature importance ranking, which was assessed with a separately constructed forest of trees.

Permutation feature importance was the metric used when determining feature importance

and is defined to be the decrease in a model’s accuracy score when a single feature is randomly

shuffled. By breaking the connection between a feature and the prediction target, permutation fea-

ture importance allows the assessment of how much a model depends on a feature. With a model

m and a dataset D, a reference accuracy of s is first computed. Then, for each feature j within D, j
is randomly shuffled to generate a distorted version of D. For each repetition k in 1, . . ., K: the sk,j

of model m on the distorted D is then recomputed. The feature importance is then defined as:

ij ¼ s �
1

K

XK

k¼1

sk;j

As all employed features were demonstrated to positively improve the accuracy of the mod-

els, all features were retained following the feature importance stage. Permutation feature

importance was used primarily to further understand the relative importance of all the features

to the model, and how to different biomarker measures compared to each other in terms of

accuracy contribution.

Model assessment metrics

The machine learning algorithms were compared and assessed using the accuracy and c-statis-

tic. Accuracy refers to the number of instances that the model predicted correctly out of all
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instances evaluated on. It is calculated with the following equation.

Accuracy ¼
Number of Correct Predictions
Total Number of Predictions

A true positive (TP) is when a model correctly predicts a positive class. In the case of this

study, the model correctly predicted that the physician reported a near miss. A true negative

(TN) is when the model correctly predicts the negative class, in our case, when a physician did

not report a near miss. False negatives (FN) are when the positive class has been misclassified,

i.e., a physician with a reported near miss classified as one without a near miss. False positives

(FP) are when the negative class has been misclassified, i.e., when a physician that did not

report any near misses has been classified as one that has.

A receiver operating characteristic (ROC) curve shows the relationship between the true

positive rate and false positive rate at all classification thresholds. The true positive rate (TPR)

is defined as

TPR ¼
TP

TP þ FN

The false positive rate is defined as

FPR ¼
FP

FPþ TN

The ROC curve shows tradeoff between specificity and sensitivity in a binary classifier, plot-

ting the true positive rate (TPR) against the false positive rate (FPR) at various thresholds. The

area under the ROC curve, abbreviated AUC, measures the degree of separability and is a met-

ric that evaluates how capable a model is of distinguishing between the different two classes.

AUC can range from 0 to 1. An AUC of 0.0 means the model has 100% false predictions, while

an AUC of 1 means the model correctly predicts every case. AUC is also referred to as c-statis-

tic in some literature, which is how it is referred to for the rest of this paper. AUC is a common

indicator of model performance and has been used frequently in many machine learning stud-

ies [15].

Results

Of the 28 physicians in the study sample, the majority were male (71.4%). One quarter (25.0%)

reported having experienced near misses during their shift. After oversampling, the dataset

consisted of 48 datapoints, 24 of each class, that is, those that reported near misses during the

shift and those that did not. The results of fitting all the models on the dataset are shown in

Table 2.

Most of the models had comparable accuracies. SVM with RBF kernels (the default, abbre-

viated as SVM from here forward), SVM with linear kernels (LSVM), and LDA models per-

formed the best, with training accuracies of 89%, 79%, and 87% respectively. The SVM also

had the highest training c-statistic, 86%, and the receiving operating characteristic (ROC)

curve for this model is shown in Fig 2. The SVM with linear kernels or linear SVM (LSVM)

had a training c-statistic of 80% and a test c-statistic of 75% (Fig 3). With this metric, the

LSVM also outperformed all other models except the SVM. Performance, in this case, was

assessed by comparing metric values and determining which one was higher. Of the various

support vector machine kernels tested, the SVM with sigmoidal kernels (SSVM) had the poor-

est performance when compared to the SVM and LSVM by measure of accuracy and c-

statistic.
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The SVM, while having the highest training accuracy, showed a larger difference between

training and test dataset c-statistic than other comparable models, so it was therefore not cho-

sen as the best model. However, as seen in its confusion matrices (Figs 4 and 5), the SVM has

good resistance against false negatives, and did not have a single instance of them in the train-

ing or testing dataset. The LSVM was selected as the best model, as it had high performance

that was stable across the training and testing datasets. The confusion matrix for this model on

the training and testing data sets can be seen in Figs 6 and 7. All in all, the SVM and LSVM

had similarly good performance, with respect to multiple metrics.

The results of permutation feature importance rankings from a separately constructed tree

model are shown in Fig 8. Using five iterations, we found the cortisol to DHEA-S ratio mea-

sured before the shift to be the most important predictor of near misses, and it was ranked

Table 2. Accuracies of different models tested.

Model Training Accuracy Test Accuracy Training C-Statistic Test C-statistic

SVM 85% 80% 86% 75%

LSVM 79% 80% 80% 75%

SSVM 73% 73% 74% 72%

LDA 79% 73% 78% 73%

KNN 76% 73% 77% 69%

NB 79% 73% 79% 72%

SVM is the default support vector machine (with radial bias function kernels). LSVM is the support vector machine with linear kernels and SSVM is the support vector

machine with sigmoidal kernels. LDA represents the linear discriminant analysis model, KNN is the k-nearest neighbors model, and NB is the naïve bayes model.

https://doi.org/10.1371/journal.pone.0264957.t002

Fig 2. ROC curve of SVM with RBF kernels. This SVM model performed similarly across training and testing

datasets.

https://doi.org/10.1371/journal.pone.0264957.g002
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significantly higher than the post shift cortisol to DHEA-S ratio. Consistent with this observa-

tion, the DHEA blood concentration was a more predictive factor than the post shift DHEA

blood concentration. However, we interestingly found that the post shift cortisol concentra-

tions was more predictive than its pre shift counterpart.

Discussion

The objective of this investigation was to use machine learning to explore the relationship

between relative and absolute concentrations of stress and anti-stress biomarkers to predict

near misses and evaluate the performance of these models. Our study experimented exten-

sively with SVM, and the SVM with linear kernels and with RBF kernels were among the top

performing models in this study. The LSVM did not indicate overfitting and was selected as

the best model. Feature importance methods showed that the pre-shift cortisol to DHEA-S

ratio was the most significant predictor of near misses.

As SVM are robust in the presence of noise, they predict well in this application, which

explains their overall high performance. The LDA model also performed comparably, and

since SVM are extensions of LDA models, this likely explains why the models performed rela-

tively similarly. No model significantly lagged in prediction accuracy. NB seems like a clinically

promising model for further investigation as it has good performance, interpretability, and

efficiency. Relative blood concentrations of the biomarkers, or the cortisol to DHEA ratio,

were shown to be significant to predict stress related near misses. As discussed in the introduc-

tion, the ability of machine learning models to perform beyond the level of inference and gen-

eralize to future conditions allow for effective clinical implementation.

Fig 3. ROC curve of SVM with linear kernels. The SVM with Linear Kernels showed a smaller difference between

training and testing datasets than the SVM with RBF kernels.

https://doi.org/10.1371/journal.pone.0264957.g003
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The inclusion of the pre and post shift cortisol and DHEA-S blood concentrations, as well as

the pre and post shift cortisol to DHEA-S ratio may seem redundant, as the machine learning

models should be able to infer this relationship and determine if it is correlated with near misses.

However, the explicit addition of both the pre and post shift cortisol increased the accuracy of all

models tested. This likely reflects a strong relationship between frequency of near misses and the

cortisol to DHEA ratio. The pre-shift cortisol to DHEA ratio was chosen as the most important

predictive feature by using a separate tree to measure permutation feature importance, and this

ratio was shown to be positively correlated with near misses. Contrastingly, post shift cortisol and

post shift DHEA-S were more predictive than their pre shift counterparts.

LDA is a robust classification method that was tested for this study because of its predictive

ability and simplicity [21], as it does not require extensive tuning of hyperparameters. It has

also been shown to produce good classification results for low dimensional data, the case for

this study, and is useful in real world applications because of its fast prediction speeds and

small memory requirements [22]. It requires relatively fewer samples; thus, it can be used with

small sample sizes [23] and was therefore suitable for this study. LDA performed compara-

tively well, having a training accuracy of 79% and a validation accuracy of 73%. Particularly

with the c-statistic of the LSVM, the training c-statistic, 80%, and the testing c-statistic, 75%,

were quite comparable, which suggests that the model likely did not overfit, a concern when

dealing with limited data.

Fig 4. Confusion matrix of SVM with RBF kernels on training data.

https://doi.org/10.1371/journal.pone.0264957.g004
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Something of note is that while it had poorer accuracy, the LSVM seemed to have less of an

issue with overfitting, as with both metrics (accuracy and c-statistic) the gap between the train-

ing and test dataset performance is more significant in the SVM with RBF kernels. KNN and

NB models consistently performed similarly, with comparable accuracies and c-statistics for

both training and testing trials.

The SVM is an extension of the LDA classifier and uses separating hyperplanes to distin-

guish between different classes of data and is robust in the presence of noise [24]. SVM can

also be used with a variety of kernels. This study used linear, sigmoid, and RBF kernels, which

transformed the low-dimensional input space into a higher-dimensional space, converting

non separable problems into separable problems by adding more dimensions, which helps to

build a more accurate classifier. Since the relationship between near misses and stress bio-

marker relative and absolute concentration is not very direct, increasing the dimensionality is

likely what caused its high performance, particularly with the SVM with RBF kernels, which

performed the best out of all models tested.

Interpreting LDA and SVM models can be difficult. It is hard to see the way the model

makes its decisions by purely looking at the model weights and parameters. For this reason,

although it has high accuracy, LDA and SVM models may not always be the right choice for

clinical implementation. To mitigate this issue, we added an additional forest of trees for these

Fig 5. Confusion matrix of SVM with RBF kernels on testing data.

https://doi.org/10.1371/journal.pone.0264957.g005
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models that allows for interpretation. This forest allows for feature importance ranking and

shows the effect that each model input has on loss.

The Naïve Bayes method is a supervised learning algorithm based on Bayes theorem in

machine learning [25]. Our NB model had a training accuracy of 79% and a test accuracy of

73% and although the accuracy was not the highest in comparison to the other models tested,

its high computational efficiency [26], interpretability, and ability to predict in the presence of

missing data [27] make it well suited to clinical implementation. Our NB model showed that

the pre shift ratio of cortisol to DHEA was the most significant predictor of near misses in this

dataset.

The KNN classifier is a non-parametric method that has the capacity to learn nonlinear

relationships well and is clinically appealing, performing well in comparison to more compli-

cated models [28]. The KNN model developed has a training accuracy of 76% and a validation

accuracy of 73%. As it performed similarly to the NB model, it likely would not be the model

of choice for this application, as NB models also afford significant computational efficiency

along with other benefits not matched by the KNN. KNN models are additionally not as inter-

pretable as NB models.

With this limited dataset, the SVM with RBF kernels had the best performance. Based on

the discussions above, this is likely due to the ability of the SVM to find more indirect relation-

ships by increasing the dimensionality of the data. However, considering all factors, alternative

Fig 6. Confusion matrix of SVM with linear kernels on training data.

https://doi.org/10.1371/journal.pone.0264957.g006
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models, such as the NB, may be used instead, as SVM are black box algorithms that cannot be

readily interpreted.

This study had several limitations. The algorithm was trained on a small dataset. which may

mean overfitting and may not generalize well to other clinical settings. To improve on this in

the future, a larger dataset should be used to train, with the train, test, and validation cohort

not randomly split from a homogenous dataset but should be from separate clinics or of differ-

ent caliber, to see the efficacy of the model in a more realistic setting. Additionally, the data

collected did not have a control group to compare to.

This study found that cortisol, specifically pre-shift cortisol, was more important to the model

than DHEA-S concentrations. The pre-shift cortisol to DHEA-S ratio was the most significant fea-

ture to model predictions. The feature importance rankings also found that the pre-shift cortisol

to DHEA-S ratio was more significant than their post-shift counterpart. This suggests that inter-

ventions should be implemented that help emergency room physicians relax before they begin

their shift, as this could reduce risk of errors and improve patient and physician outcomes.

The link between stress and cortisol is well researched, and cortisol is a reasonable bio-

marker of stress [29]. Cortisol has been linked to sleep loss [30] and is well shown to have neu-

rotoxic effects after long term or repeated stress exposure [31]. Cortisol and anxiety have also

been shown to have significant correlations to stress in sleep deprived medical residents [32].

Fig 7. Confusion matrix of SVM with linear kernels on testing data.

https://doi.org/10.1371/journal.pone.0264957.g007
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By focusing on the ratio between these two hormones along with the absolute concentration

of each, information about the preferential production of these hormones can be assessed. The

cortisol to DHEA-S ratio has been used in previous studies and shown to increase with

increased stress severity ratings [33]. Using the ratio also allowed us to determine the signifi-

cance of the balance between cortisol and DHEA-S rather than merely focusing on each indi-

vidual hormone. Past studies have also reported that separately, cortisol and DHEA have no

significant correlation with certain physiological processes, such as sepsis, but together they

had predictive power [34, 35], further validating this approach. The study suggests that future

assessments of physician stress should focus on the cortisol to DHEA ratio along with absolute

blood concentrations of these two biomarkers. Should these findings hold up in future larger

confirmatory research, the cortisol to DHEA-S ratio pre-shift might be one measure to better

Fig 8. Permutation feature importance. Using a forest model we were able to determine the relative importance of each feature used in

the models.

https://doi.org/10.1371/journal.pone.0264957.g008
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define at-risk physicians prior to them initiating their often high-intensity and high-risk work

in the emergency department.

Conclusions

Once the model is further refined, biomarkers and clinical data might be used to predict risk

of adverse events in clinical practices. The amount of cortisol and DHEA-S as well as the corti-

sol to DHEA-S ratio could be used proactively to assess risks for adverse events due to stress,

with a focus on the cortisol to DHEA-S ratio. Future studies should use larger groups and

relate these variables to administrative data in electronic medical records, such as treatment

quality.

Supporting information

S1 File. Study dataset. This datafile includes the cortisol and DHEA-S blood concentrations

and all data used for the study.
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