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Body dynamics of gait affect 
value‑based decisions
Eric Grießbach1*, Francesca Incagli2, Oliver Herbort2 & Rouwen Cañal‑Bruland1*

Choosing among different options typically entails weighing their anticipated costs and benefits. 
Previous research has predominantly focused on situations, where the costs and benefits of choices 
are known before an action is effectuated. Yet many decisions in daily life are made on the fly, for 
instance, making a snack choice while walking through the grocery store. Notably, the costs of actions 
change dynamically while moving. Therefore, in this study we examined whether the concurrent 
action dynamics of gait form part of and affect value-based decisions. In three experiments, 
participants had to decide which lateral (left vs. right) target (associated with different rewards) they 
would go to, while they were already walking. Results showed that the target choice was biased by 
the alternating stepping behavior, even at the expense of receiving less reward. These findings provide 
evidence that whole-body action dynamics affect value-based decisions.

Imagine yourself walking through the grocery store. While walking down the aisle in the candy section, you start 
having an appetite for candy. To your left you see your favorite liquorice. Somewhat closer to your right you see 
your favorite fruit gums. Which snack will you go for? Value-based decision-making is often considered to be a 
cognitive weighing process between costs and benefits1,2. In this scenario, the benefit would perhaps be reflected 
by the caloric intake or tastiness of either of the two snacks, and the costs might include the cost of the action 
itself, here the physical effort it may take to walk to the liquorice, which is farther away than the fruit gums. There 
is empirical evidence supporting the claim that the costs of action play a significant role in decision-making3–7.

However, the majority of this research investigates just a snapshot of human decisions, namely situations 
in which choices and actions can be implemented sequentially. Per definition, in sequential decisions, cost and 
reward information is available before an action is initiated. Only after weighing the options, the action is exe-
cuted. Theories of sequential decision-making such as good-based models8 and evidence accumulation models9 
assume that costs and rewards are being weighted independently of actions. Good-based models focus on where 
the competition between action choices occurs8,11. They assume that the comparison of choice options takes 
place at an abstract level independent of sensorimotor representations. As such, decision and action are sepa-
rate, sequentially unfolding modules. Only after reaching a decision boundary modeled as competition between 
abstract choice options, the decision is accomplished and implemented by a respective sensorimotor action.

Evidence accumulation models focus on a formal specification of how selection occurs9,11. More specifically, 
evidence is sampled in a sequential manner until one choice option reaches a threshold. Similar to good-based 
models, only afterwards an action is initiated. It follows that in these theories the flow of information is modeled 
in a unidirectional manner: the choice governs the action8,9.

According to Lepora and Pezzulo10, when a decision is made and only afterwards an action is initiated, by defi-
nition the action dynamics—evolving a posteriori—cannot influence the already made decision without feedback 
from action dynamics. Consequently, sequential decision-making theories8,9 cannot account for many situations 
in which decisions have to be made during action execution, be it in sports (e.g., when deciding whether to pass 
a defender on the left or right while dribbling the ball), work environments (e.g., when navigating through a 
construction site), or other everyday situations (e.g., when making a snack choice while walking). In such situ-
ations costs of actions change dynamically and hence may need to be continuously updated and integrated into 
the decision process, a process not covered by sequential decision-making models.

Therefore, alternative theoretical approaches have been proposed, including the embodied choice framework10 
and action-based models11–13. These approaches do integrate dynamic action costs in decision-making. The 
embodied choice framework assumes bidirectional, continuous feedback between the action and the decision 
process10. This entails feedback about dynamic action costs that are continuously fed back into the decision. 
Action-based models propose that the degree of activation between competing actions reflects the weighing of 
costs and rewards, thereby arguing that action and decision processes form an inseparable unity11–13.
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While these theoretical approaches have received support from neurophysiological studies12,14, there are only 
a handful of behavioral studies that examined the impact of concurrent action dynamics15–18. These studies, 
however, tend to report rather mixed evidence. On the one hand, Wolpert et al.16 showed that perceptual deci-
sions are influenced by dynamic action costs in a reaching task. On the other hand, Michalski et al.18 provided 
evidence that in a finger tracking task the dynamic action cost was only integrated into the decision process 
when the demands of continuous tracking were removed. Therefore, a first open question that remains to be 
answered is whether dynamic action costs are integrated into behavioral decisions, and if so, whether this effect 
translates to whole-body movements (going beyond reaching and pointing), thereby generalizing to a broad 
range of ecological choices in daily situations.

A second open question concerns the time course of action cost integration. In this regard, Bakker et al.17 
provided initial evidence that when dynamic action costs are integrated into a reaching task, this is based on the 
immediate body state rather than the anticipated body state that per definition lies in the future and are bound 
to change continuously. However, given that this study applied a paradigm that only included passive motions17, 
the time course of action cost integration in decisions during active movements such as when walking through 
the aisle of the grocery store to buy candy is yet to be determined.

To recap, if indeed dynamic changes of the body state (i.e., dynamic action costs) are part of the decision 
process in daily human behaviors, then the decision in the introductory example to choose between the liquorice 
or the fruit gums should be influenced by the concurrent stepping (i.e., walking) behavior. To test this, here we 
examined how walking, a complex whole-body movement, affects value-based decision-making in three experi-
ments in which reward options appeared to the left or right side during walking (see Fig. 1). During walking the 
body state alternates between the left and right foot supporting the body. Based on the foot on the ground, the 
action costs of making a directional change vary dynamically. That is, if the left foot is currently on the ground 
and we intend to walk towards a target at the right, the swing leg (right) can make a lateral step towards the right. 
If in the same scenario, we intend to walk towards a target at the left, the right swing leg would have to make a 
cross-over step towards the left side (see Fig. 1). Prior work showed a preference for the lateral stepping strategy 
over cross-over steps when avoiding a planar obstacle on the ground19,20. More specifically, a cross-over step was 
more unstable than a lateral step because of a reduced area on the ground to stabilize the laterally swaying center 
of mass. When participants were free to choose a directional change towards the left or right side, participants 
had a higher success rate and preference to change the direction towards the side which enabled a lateral step 
and avoided the cross-over step21. This finding confirms that a directional change by making a cross-over step 
is costlier than a lateral step. Costlier is defined quite liberally here (i.e., is not limited to bioenergetic costs 
only20,22), denoting any difference of characteristics between actions (including e.g. stability19) that render one 
action preferable or more likely than the other.

To validate that in our walking paradigm (see Fig. 1) the cross-over step was indeed costlier than a lateral 
step, in Exp. 1, we examined the preference for either stepping strategy in sequential decision-making, that is, 
when cost and reward information was available before the first step was initiated. Knowing that in sequential 
decision tasks participants typically adapt their coordination pattern to assume a body state that facilitates the 
realization of their decision23,24, we predicted a preference for the lateral rather than the cross-over stepping 
strategy. Results confirmed this prediction.

This validation allowed us to subsequently address the two main questions highlighted above. First, based 
on the embodied choice framework10 and action-based models11–13, we examined whether the dynamic action 
costs during walking influence value-based decisions. Second, we aimed at scrutinizing the time course of such 
action cost integration. Given previous evidence from research on reaching tasks indicating that dynamic action 
costs of the immediate body state rather than the anticipated body state is integrated into the decision process17, 
in Exp. 2, we first tested whether this prediction proved robust for whole-body movements such as displayed in 
our walking paradigm (see Fig. 1). To this end, we presented the reward information so late that the immediate 
body state would necessarily dictate the subsequent lateral or cross-over step. In other words, if participants were 
to integrate dynamic action costs, in this condition this could be only achieved by integrating the immediate (but 
not anticipated) body state due to the temporal demands of the task. It follows that based on the embodied choice 
framework10 and action-based models11–13, in Exp. 2 we predicted that participants would be biased towards a 
lateral stepping strategy, even at the expense of getting lower rewards.

Because Exp. 2 did not differentiate between the integration of the dynamic action costs of the immediate 
vs. the anticipated body state, we conducted a third experiment. Exp. 3 allowed us to scrutinize the time course 
of action cost integration in value-based decisions in a more fine-grained manner. That is, we systematically 
manipulated three time points of displaying the reward information during walking, including earlier reward 
presentation conditions that gave participants more time to potentially anticipate the final body state mandat-
ing the lateral or cross-over step. We hypothesized that if it was indeed the immediate body state at the time of 
reward presentation (and not the anticipated body state) that affects the value-based decision, then the immediate 
body state would predict the final stepping direction regardless of the anticipated body state dictating a lateral 
step. This should hence be observable independent of congruency or incongruency between the immediate and 
the anticipated body state, even when resulting in lower rewards at higher action costs.

Results
Adaptation of stepping behavior enables a lateral step in sequential decision‑making.  As 
in the introductory grocery store example, we chose a task in which participants were walking while reward 
options appeared on the left or right side (see Fig. 1A). To get the reward, participants had to step with at least 
one foot into a designated zone in front of a central obstacle and bypass it to its left or right to walk to one of 
the lateral targets. As rewards different combinations of points were displayed at the left and right lateral target 
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(e.g., 60 points left and 40 points right). The points always summed up to 100. To first assess and control whether 
participants would indeed prefer a lateral stepping strategy compared to a cross-over step (see Fig. 1B,C), in 
Exp. 1 the rewards were displayed before participants started walking. That is, cost and reward information were 
available before an action was initiated. Participants started a trial in a neutral position with the feet next to 
each other. The stepping behavior was measured kinematically by attaching reflective markers on the shoes and 
measuring their position with a 3D-infrared camera system (see “Methods”).

In the sequential decision-making task of Exp. 1, participants followed the instruction and almost always 
went toward the side with higher rewards (99.9%). Only when there was no reward difference, choices were more 
variable (see Supplementary Fig. S1A). Regarding the stepping strategy, participants adapted the final step into 
the zone to enable a lateral step (see Fig. 2).

Specifically, when participants walked to the reward presented at the right side, they more frequently stepped 
with the left foot into the designated zone and vice versa (χ2 (1) = 59.30, p < 0.001, OR = 0.00010, 95% CI [0.00001, 

Figure 1.   Experimental setup and exemplary stepping behavior to bypass the obstacle. (A) Dimensions of the 
experimental setup. Proportions are scaled to closely fit the real setup in this figure. Participants started a trial 
with the feet next to each other (Exp. 1) or a prespecified foot was placed at the starting line and the other foot 
was positioned behind, thereby determining the first step and stepping behavior towards the obstacle (Exp. 2 
and 3, not shown in the figure). Rewards were displayed on the left and right screens before walking towards 
the obstacle (Exp. 1) or while walking towards the obstacle (Exp. 2 and 3). To determine the timing of the 
reward presentation the positions of the shoes were measured kinematically with a 3D infrared camera system 
in real-time and the time point of the touch-down for each step was estimated25. Rewards were displayed at the 
touch-down one step (Exp. 2) or between three to one steps (Exp. 3) before stepping into the designated zone. 
To get to the reward, participants were instructed to step into the designated zone before bypassing the obstacle. 
Participants ended a trial by touching the black rectangle on either desk with one hand. (B) Example for the 
lateral step. Here the right foot stepped into the designated zone before walking towards the left target. (C) 
Example for the cross-over step. Here the left foot stepped into the designated zone before walking towards the 
left target. For convenience, the left foot is displayed in orange and the right foot in blue. R1 reward left side, R2 
reward right side.
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0.00020]). To examine whether participants took into account the cost information before the first step was initi-
ated, we additionally analyzed if participants already adapted their first step based on the decision they finally 
effectuated. Results showed that participants indeed varied the leg to start walking with or the step length to 
enable a final lateral stepping strategy (see SI, Fig S2), indicating that the cost information was taken into account 
before action initiation.

The adaptation of the stepping strategy validated that in our walking paradigm the cross-over step was indeed 
costlier than a lateral step when cost and reward information was available before the first step was initiated, that 
is, in sequential decision-making.

Following this validation, in Exp. 2 we then tested whether the dynamic action costs of the immediate body 
state are integrated into the decision process (see Fig. 1) as predicted by research on reaching17. To this end, we 
presented the reward information late so that the immediate body state would inexorably dictate the subsequent 
lateral or cross-over step. Based on the embodied choice framework10 and action-based models11–13, we hypoth-
esized a bias towards a lateral stepping strategy, even at the expense of receiving less rewards.

Dynamic action costs influence immediate value‑based decisions.  In Exp. 2, rewards were dis-
played while participants were approaching and close to the obstacle. Specifically, the reward information was 
displayed at the kinematically estimated touch-down (first contact of the foot with the ground)25 one step before 
stepping into the designated zone. The localization of this step was determined based on Exp. 1. It typically 
concerned the third step which took on average 490 ms (sd = 111 ms) until the touch-down of the final step into 
the zone. To control the final step into the zone (dictating either a lateral or cross-over step) and its combina-
tion with the reward information (e.g., 60 points left vs. 40 points right), we manipulated the starting position 
(left or right leg in front, resulting in a first step with the right or left foot, respectively) randomly on each trial. 
Additionally, to regulate the difficulty of the task, we constrained the temporal demands of reaching the target. 
Based on the data of Exp. 1, we included a ‘regular walking’ condition (6 s) and a ‘time pressure’ condition (4 s). 
If participants integrated dynamic action costs based on the body state assumed when stepping into the zone, 
then we hypothesized a bias towards a lateral stepping strategy, independent of and hence even at the expense 
of receiving less rewards.

For the unequal reward combinations (e.g., 60 points left vs. 40 points right, see Fig. 3A) participants less 
frequently walked towards the side with higher rewards when a cross-over step was dictated by the step into the 
zone (χ2 (1) = 6.55, p = 0.01, OR = 0.20, 95% CI [0.07, 0.63]).

Similarly, for the equal reward combination (50 points left/50 points right, see Fig. 3B), participants walked 
significantly more often than chance towards the side enabling a lateral step dictated by the step into the zone 
(Z = 7.41, p < 0.001, OR = 3.81, 95% CI [2.67, 5.43]). The different time constraints did not moderate the prefer-
ence to walk towards the side enabling a lateral step, neither for unequal rewards (χ2 (1) = 0.01, p = 0.90, OR = 1.07, 
95% CI [0.36, 3.17]) nor equal rewards (χ2 (1) = 0.78, p = 0.38, OR = 0.83, 95% CI [0.55, 1.24]). Additional model 
specifications and other estimations not related to the stepping strategy are presented in the SI (see Supplemen-
tary Tables S1 and S2).

Figure 2.   Adaptation of the step into the zone enabling a lateral step. When participants walked towards the 
left side, they stepped more frequently into the zone with the right foot and vice versa. This shows the preference 
for a lateral step over the cross-over step, thereby confirming that the cross-over step is indeed costlier. Each dot 
displays the probability for individual subjects of making a step with the right foot into the zone. Zero percent 
indicates that participants always made a left step into the zone. Dots are jittered for better visual inspection.
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To summarize, the results of Exp. 2 showed that the step into the zone and consequently the immediate 
body state at the time of reward information presentation influenced the value-based decision. Participants 
more frequently walked towards the side which afforded a lateral step and avoided the side of a costlier cross-
over step even at the expense of receiving less reward. This result confirms that the dynamic action costs of the 
immediate body state are integrated into the decision, as proposed by action-based models11 and the embodied 
choice10 framework.

Despite showing that dynamic action costs are integrated into the decision, Exp. 2 was not designed to address 
the second main question of our study regarding the time course of action cost integration in value-based deci-
sions. Therefore, in Exp. 3, next to the late presentation of reward information administered in Exp. 2, we sys-
tematically added two earlier time points of displaying the reward information during walking that potentially 
allowed participants to anticipate the final body state dictating the lateral or cross-over step. If the immediate 
body state at the time of reward presentation (and not the anticipated body state) affects the value-based deci-
sion, then the immediate body state should predict the final stepping direction independent of whether the 
immediate and the anticipated body state are congruent or incongruent, even when resulting in lower rewards 
at higher action costs.

The anticipated rather than the immediate body state influenced decision‑making.  To exam-
ine the time course of action cost integration in value-based decisions, in Exp. 3 the rewards were displayed at 
three different time points: the touch-down of the last step (identical to Exp. 2), the second-last step, and the 
third-last step before stepping into the zone. Because in Exp. 2 participants predominantly made four steps 
until reaching the zone, these time points corresponded to their first, second, and third step after initiating each 
trial (see “Methods” for how we ensured the four steps criterion). As a result, the different steps (i.e., immediate 
body state) at the time of reward presentation would differently affect lateral vs. cross-over stepping strategies. 
For instance, a third step making touch-down with left foot, thereby enacting a corresponding swing with the 
right leg for the final touch-down in the designated zone, would consequently lead to a lateral step to the left 
(see Exp. 2). In contrast, a second step making touch-down with right foot, thereby enacting a corresponding 
swing with left leg, would lead to a lateral step to the right. It follows that if the immediate body state accounted 
for a lateral vs. a cross-over stepping strategy, this would be different if predicted by the second step vs. the third 

Figure 3.   Influence of the step into the zone on decision-making in Exp. 2. Displayed are the estimates and 95% 
CI (Wald) of the respective GLMM. Note that the scale on the y-axis differs between both plots. (A) Effect of 
the step into the zone and time constraints on decisions for unequal rewards (e.g., 40/60 points left/right). If the 
step into the zone was incongruent to the side with higher reward (e.g., left step in the zone and higher rewards 
on the right side), this required a lateral stepping strategy to achieve higher rewards (orange circles). If the step 
into the zone was congruent to the side with higher reward (e.g., right step in the zone and higher rewards on 
the right side), this required a cross-over strategy to achieve higher rewards (blue circles). Participants walked 
more often to the side displaying lower rewards when a cross-over step was required, independent of the time 
to finish the task. (B) Probability to choose the side enabling a lateral step for equal rewards (50/50 points left/
right) within both time conditions. A decision for a lateral step indicated that participants walked towards the 
incongruent side of the step in the zone. Participants went more frequently than chance level towards the side 
which enabled a lateral step independent of the time constraint.
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step (see the previous example). However, if participants’ decisions were influenced by the anticipated body state 
when stepping into the zone, the direction of this effect should be independent of the time point and step (i.e., 
immediate body state) at which the rewards were presented. Note that such an anticipatory strategy may also 
be effectuated by means of stepping behavior adaptations, thereby reducing the influence of the body state on 
decisions. Consequently, Exp. 3 allowed us to differentiate between the integration of the dynamic action costs of 
the immediate vs. the anticipated body state (see Fig. 4A,B), and hence to scrutinize the time course of dynamic 
action cost integration.

As illustrated in Fig. 4C, for unequal reward combinations, independent of the time the reward information 
was presented, participants less frequently walked towards the side with higher rewards when a cross-over step 
was required by the final (anticipated) step into the zone (χ2 (1) = 24.61, p < 0.001, OR = 0.07, 95% CI [0.02–0.20]). 
Likewise, for the equal reward combination (see Fig. 4D), participants walked significantly more often than 
chance towards the side enabling a lateral step that was dictated by the anticipated step into the zone (Z = 10.96, 
p < 0.001, OR = 6.91, 95% CI [4.89, 9.76]). Together, these two findings support the hypothesis that the anticipated 
and not the immediate body state influenced decision-making (Fig. 4B).

Given that, in addition, the interaction between reward presentation and required stepping strategy also 
almost attained significance for unequal reward combinations (χ2 (2) = 5.03, p = 0.08, first step vs. second step: 
Z = − 0.99, p = 0.32, OR = 0.58, 95% CI [0.20, 1.69], second step vs. third step: Z = − 1.72, p = 0.09, OR = 0.45, 95% 
CI [0.18, 1.12]), we argue that the effect of the anticipated body state on decision-making was likely effectuated 
by means of step adaptations (see Fig. 4C). To test this, in a subsequent step we analyzed whether participants (i) 
adapted the number of steps (see Fig. 5A,B) and (ii) the foot placement (location and orientation, see Fig. 5C,D) 

Figure 4.   Alternative hypothesis and results for the influence of the stepping strategy and the timing of reward 
presentation on decision-making in Exp. 3. Reward timing (step) refers to the first (earliest presentation), 
second or third step after trial start. (A) Predicted results if the immediate step at reward presentation influences 
decisions. (B) Predicted results if the anticipated step into the zone influences decisions. (C) Estimates and 
95% CI for decisions with unequal rewards (e.g., 60 vs. 40 points). Participants walked more often to the side 
displaying lower rewards when a cross-over step was required, independent of the time to finish the task. This 
effect descriptively increased when rewards were displayed later. (D) Estimates and 95% CI for decisions to walk 
to the side enabling a lateral step for equal rewards (50 vs. 50 points). Participants went more often than chance 
level towards the side which enabled a lateral step. The frequency to walk towards the side enabling a lateral step 
decreased when rewards were presented later.
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of the step into the zone26 when the rewards were displayed early. Additional model specifications and other 
estimations not related to the stepping strategy are presented in the SI (see Supplementary Tables S3 and S4).

Participants adapted their stepping behavior when rewards were displayed early.  As illus-
trated in Fig. 5A, participants indeed adapted the number of steps more frequently the earlier the rewards were 
presented (χ2 (2) = 27.19, p < 0.001). This was true for the difference between the second step and the first step 
(Z = − 4.12, p < 0.001, OR = 0.33, 95% CI [0.20, 0.56] as well as the third step and the second step (Z = − 2.69, 
p = 0.007, OR = 0.40, 95% CI [0.21, 0.78]).

However, given that participants seemingly preferred to not adapt the number of steps when going for the 
higher reward by maintaining a cross-over step (see Fig. 5B), we further analyzed whether foot placement adap-
tations when stepping in the designated zone facilitated this stepping strategy. Participants indeed placed the 
foot further to the side they decided to walk to the earlier the rewards were presented (χ2 (2) = 47.88, p < 0.001, 
first step vs. second step: t = − 9.86, p < 0.001, estimated difference = − 3.79 cm, 95% CI [− 4.55 cm to − 3.04 cm], 
second step vs. third step: t = − 3.11, p = 0.002, estimated difference = − 2.53 cm, 95% CI [− 4.12 cm to − 0.93 cm], 
see Fig. 5C). Additionally, they oriented (i.e. pointed) the foot further towards the side they decided to walk to 
when rewards were presented earlier than the latest time point, (χ2 (2) = 14.98, p < 0.001, first step vs. second 
step: t = − 0.40, p = 0.69, estimated difference = − 0.57°, 95% CI [− 3.32° to 2.18°], second step vs. third step: 
t = − 4.23, p < 0.001, estimated difference = − 10.43°, 95% CI [− 15.26° to − 5.60°], see Fig. 5D). Together, these 
results indicate that participants sometimes adapted the number of steps and far more often—when they did 
not adapt the number of steps—changed the foot placement (location and orientation) of the step into the zone 
when the rewards were displayed early.

To conclude, with earlier reward presentations participants adapted their stepping behavior to receive higher 
rewards. This provides additional (and perhaps more fine-grained) evidence for an effect of the anticipated 
body state on decision-making, thereby supporting the idea that dynamic actions costs affect the value-based 
decisions10–13.

Figure 5.   Adaptation of stepping behavior for different timings of the reward presentation. Illustrated are 
only trials in which participants received higher rewards and—to achieve those—the regular four steps would 
have led to a cross-over step. Displayed are the estimates and 95% CI for individual (generalized) linear mixed 
models. (A) Probability that participants adapted the number of steps (three or five steps instead of four) to 
change the step into the zone and enable a lateral stepping strategy when walking towards the side with a higher 
reward. The probability of adaptation decreased the later the rewards were shown. (B) Probability for cross-
over steps when participants did not adapt their number of steps to walk towards the side with higher rewards. 
The frequency of cross-over steps decreased particularly between the reward presentation at the second and 
third steps. The probability of cross-over steps was notably higher compared to the probability of adaption of 
the number of steps to enable a lateral step [see (A)]. (C) Side independent lateral foot position (marker at the 
lateral malleolus) for the step into the designated zone. Only trials where the final step into the zone required a 
cross-over step were included [see (B)]. Positive values indicate a foot positioning towards the side participants 
finally walked to. (D) Side independent foot orientation for the step into the designated zone. Only trials 
where the final step into the zone required a cross-over step were included [see (B)]. Positive values indicate 
orientations towards the side participants finally walked to.
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Discussion
The embodied choice framework10 and action-based models11–13 predict that action dynamics of concurrent 
movement are part of the decision process. To test this prediction, we first examined whether the action dynam-
ics of walking, a complex whole-body motor behavior, affect value-based decision-making. In a second step, we 
scrutinized the time course of action cost integration.

Prior to addressing the first aim, we developed and validated our experimental paradigm by elucidating the 
preference for stepping strategies within sequential decisions (Exp. 1). In line with previous findings, we predicted 
a preference for the lateral rather than the cross-over stepping strategy19–21. Results confirmed this prediction, 
thereby indicating that cross-over steps are indeed costlier than lateral steps in our setup.

To address the first aim, Exp. 2 was then designed to investigate the integration of the immediate body state 
and associated action dynamics into the decision process by presenting the reward information so late that the 
immediate body state would necessarily dictate the subsequent lateral or a more costly cross-over step. Indeed, the 
immediate body state influenced the value-based decision: that is, participants walked more frequently towards 
the side which enabled a lateral step, and avoided the side of a costlier cross-over step even at the expense of 
receiving less reward. In keeping with research on reaching17, this finding seems to confirm that the dynamic 
action costs of the immediate body state are part of the decision process, thereby substantiating predictions of 
action-based models11 and the embodied choice framework10.

Subsequently, in Exp. 3 we replicated Exp. 2 and further aimed at scrutinizing the time course of action cost 
integration in value-based decisions by systematically manipulating the time points of displaying the reward 
information during walking. This manipulation allowed us to disentangle the influence of the immediate vs. 
the anticipated body state on decision-making. Results showed that, in contrast to research with passive move-
ment on reaching17, the anticipated body state influenced decision-making: first, participants less frequently 
walked towards the side with higher rewards when a cross-over step was required by the final (anticipated) step 
into the zone independent of the time point of reward presentation. Second, in the case of walking towards the 
side with higher rewards, participants tended to adapt their action dynamics based on the (anticipated) body state 
that would finally facilitate this decision. This adaptation effect showed the earlier the rewards were presented.

Our findings provide first evidence that whole-body action dynamics affect value-based decisions, thereby 
on the one hand extending research on sequential decision-making in which cost and reward information are 
available before an action is initiated3–7. On the other hand, our findings also extend previous research that 
examined the effect of action dynamics on decision-making in (manual) reaching or finger tracking tasks16–18, 
by showing that the impact of dynamic action cost on value-based decision-making translates to whole-body 
motor behaviors such as walking.

While we were able to show that action dynamics and their associated costs affect value-based decisions, 
future research needs to identify and further specify the nature of action costs. We deem it likely that biome-
chanical costs20 as well as stability costs19 associated with walking play a major role in action dynamic integration 
in decision-making. It is also conceivable that other costs such as cognitive costs, including switching motor 
plans27,28, temporal discounting29 or weighting risks30 (see information about the time to finish and task success 
in the SI) may be involved.

Finally, Exp. 3 revealed that participants integrated the anticipated body state into their concurrent action 
planning and execution, thereby possibly reducing their action costs. More adaptation of action dynamics was 
observed the more time there was (i.e., the earlier the rewards were displayed) to implement the decision. The 
observed adaptation rules out that participants delayed their decision to the last step, thereby specifying the time 
course of action cost integration.

Next to revealing that adaptation was dependent on the time of reward presentation, Exp. 3 also showed that 
the effect of the anticipated body state on the decision trended to be dependent on the time of reward presenta-
tion. In other words, and as illustrated in Fig. 4C, this effect of the anticipated body state on decision-making 
diminished the earlier the reward information was presented, and hence the more time was given to adapt. We 
speculate that participants continuously update the anticipated body state and consequently have the opportunity 
to more effectively reduce the associated actions costs the earlier the reward information is provided.

There are some limitations that need to be addressed in future research. In our study, the effect of body state 
showed relatively large variations between participants for unequal rewards (see the standard deviation of the 
required stepping strategy in the Supplementary Table S1 and S3 and Supplementary Fig. S1B and S1C). We 
speculate that perhaps different levels of physical activity and/or motivational factors might explain part of the 
variance. In addition, it is noteworthy that some participants even demonstrated ceiling effects for unequal 
rewards, especially in Exp. 2 and with early reward presentations in Exp. 3. That is, some participants always 
walked towards the side with higher reward, and some participants almost exclusively walked towards the side 
with lower reward when a cross-over step was required. This generates no effect for participants with a ceiling 
effect and comparatively high odds ratios for the latter kind of participants. As we used a mixed model with 
participants as a random effect, this led to high shrinkage of the estimates for participants with comparatively 
high odds ratios towards the population estimate, thereby resulting in values close to 100% (see Figs. 3A and 
4C). We suggest that the ceiling effects could arise because of our fixed level of difficulty between participants. 
To avoid ceiling effects in future studies, the difficulty of the task or cost difference of the body state could be 
individualized (e.g. varying time constraints for individuals, scaling the setup based on participants’ height, 
physical activity, or constraining the required step placement when making a directional change).

Finally, in our experiments, rewards were presented by means of points, and the motor behavior was con-
strained by stepping into a designated zone before bypassing the obstacle. It follows that future studies may look 
into different kinds of rewards and choices (e.g. monetary reward, subjective preferences for goods, performance-
related choices in sports, perceptual decisions) and do so while putting fewer constraints on participants’ motor 
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behavior. Likewise, there are a plethora of other factors that may moderate the subjective value of choices in daily 
behavior, such as the cultural embedding31, emotional states32, and age33. Therefore, we recommend examining 
these and other potentially moderating factors to test whether our results prove robust and generalizable to other 
commonplace real-life situations.

To conclude, here we provide initial evidence that whole-body action dynamics during ongoing movement 
affect value-based decision-making. This finding may generalize to many daily situations including when walking 
down the aisle in the candy section and deciding which snack to go for.

Methods
Participants.  Participants were recruited via a mailing list of the psychology department, and billboard 
postings at the sports science department at the Friedrich Schiller University Jena. Participants were compen-
sated with payment (10.00 €/hour) independent of their overall performance. Each participant attended only one 
experiment. We based our sample size on prior studies with decision-making as a binary outcome variable3,16–18. 
Participants provided written informed consent before experimentation. The study was carried out following 
institutional guidelines. All experiments were approved by the ethics committee of the Faculty of Social and 
Behavioral Sciences of the Friedrich Schiller University Jena. Table 1 provides demographic information about 
the sample used in Exp. 1 to Exp. 3.

Experiment 1.  Thirty-six healthy adults were recruited. All participants were included in the final data analysis.

Experiment 2.  Forty-one subjects were recruited. Overall, four participants had to be excluded from further 
analyses. For two participants the reward signal was displayed too late in most trials because of a long stride. 
One participant was removed because the instruction was not properly understood. Another participant was 
removed because the same foot stepped in the designated zone in every trial, making a comparison between left 
and right impossible. The remaining thirty-seven participants were analyzed.

Experiment 3.  Fifty-four participants attended Exp. 3. In contrast to the second experiment (see “Data anal-
ysis”), participants more frequently changed the number of steps in the neutral reward condition when the 
rewards were presented one step before the designated zone (19/54 participants). As it is not possible to predict 
the step into the designated zone when the number of steps varies in this chosen “baseline” condition, this sub-
group was excluded from further analyses. Thirty-five participants remained.

Apparatus and stimulus.  Figure 1 displays the general setup and dimensions of the experiments. Dimen-
sions from the start to the obstacle and targeted desks were derived from van der Wel and Rosenbaum23. On each 
desk (height = 0.73 m) a 22″ screen (Asus VW222U) was positioned for the visual display of reward and feedback 
after the trial. Each screen displayed numerical points in the center with a white font on a black background. In 
Exp. 1, rewards were displayed immediately after a trial was initiated, and before participants started walking. In 
Exp. 2 and Exp. 3, both monitors first alerted the participants to prepare for the upcoming trial by displaying the 
German word for ready (“Bereit”). Additionally, the displays indicated the starting position for the feet via two 
shifted zeros (i.e., a higher zero on the left indicated that the left foot had to be in front of the right foot before 
starting a trial and vice versa). After the trial was initiated, both monitors displayed a go signal in the form of 
a “+” in the center of the screen. The go signal was replaced by the point combination while participants were 
walking towards the obstacle. After completion of a trial, the temporal feedback of the trial was displayed below 
the reward feedback (i.e., awarded points).

A black protective grating was used as an obstacle (HWC-B34, height = 1.03 m). Black tape was used as a 
mark on the floor and on the desk to provide orientation for the start area, the designated zone in front of the 
obstacle, and the position of the hand to finish a trial (see Fig. 1). Gait behavior was recorded by a 3D infrared 
system (Prime 17W, Optitrack, Corvallis, US) with eleven cameras (120 Hz). Participants wore self-brought 
non-reflective running shoes during the experiment and a tight-fitting top for the placement of the reflective 
marker on the body.

Table 1.   Demographic information. We used the Edinburgh Inventory34 to classify participants’ handedness 
and the Lateral Preference Inventory35 for footedness. Additional analyses (available in the public depository 
online) indicated that neither footedness nor handedness shifted (i.e. affected) participants’ overall side 
preference or effect of the body state in Exp. 2 and Exp. 3. f female, m male, ri right, le left, n no preference, md 
missing data.

Exp. 1 Exp. 2 Exp. 3

Sex 16 f, 20 m 15 f, 22 m 19 f, 16 m

Age (mean ± SD) 21.8 ± 2.4 years 22.6 ± 2.5 years 22.5 ± 3.0 years

Handedness 31 ri, 4 le, 1 n 32 ri, 1 le, 0 n, 4 md 31 ri, 0 n, 4 le

Footedness 31 ri, 2 le, 3 n 30 ri, 2 le, 4 n, 1 md 27 ri, 2 le, 6 n
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Procedure.  After providing informed consent and demographic information, nine reflective markers 
(12 mm) were placed on the lateral malleolus, heel, between the first and second metatarsal head and dorsum of 
the hand on both body sides as well as the fifth lumbar vertebrae. Subsequently, participants were given instruc-
tions.

Experiment 1.  Before a trial began both feet had to stand in parallel at the starting line (see Fig. 1). Participants 
initiated a trial by bringing their hands close together (i.e., clapping) and subsequently rewards were displayed 
for both sides. Participants were instructed to collect rewards and to pick a side before starting to walk towards 
the obstacle. They were further instructed that they had to step into the designated zone in front of the obstacle 
and bypass it to get to the desk on which the chosen reward was displayed. A trial was completed by touching 
a mark on the desk. If the participant had at least one foot in the designated zone during the trial, the chosen 
reward was displayed in green, otherwise in red. After the trial participants walked back to the starting line and 
began with the next trial. For the reward, nine different reward combinations (i.e., point combinations) could 
be displayed (left/right: 20/80, 30/70, 40/60, 45/55, 50/50, 55/45, 60/40, 70/30, 80/20). Both rewards always 
summed to 100, so that the reward on the left side could be inferred based on the reward on the right side and 
vice versa. Each participant began the experiment with five familiarization trials followed by 135 trials (9 reward 
conditions, each condition containing 15 trials). All trials were randomized within participants. Unintentionally, 
the randomization seed was not altered in the first experiment for most participants (31/36 participants), which 
means that the order of trials was random within but mostly the same between participants. The experiment 
lasted approximately 50–60 min.

Experiment 2.  The procedure was similar compared to the first experiment, but at the start of the trial the 
starting positioning of the feet were predetermined and instructed, a time constraint to finish the task was 
added, and the rewards were displayed when participants were already close to the obstacle. Participants were 
instructed to get into the indicated starting position (left or right leg in front) before self-initiating a trial. At this 
time point, the timing of the trial started, and the go signal appeared. Participants were asked to walk towards 
the obstacle and were told that the reward combination would appear on their way to the designated zone in 
front of the obstacle. The goal was again to collect the reward by touching the mark on one of the desks within 
a time constraint (4 s or 6 s). The time conditions of 4 s and 6 s were based on the speed preferences observed 
in Exp. 1 (m = 4.9, sd = 0.6 s). 6 s was easily achievable for all subjects, while 4 s was faster compared to the pre-
ferred time in Exp. 1, thereby inducing time pressure. At the end of the trial, the reward changed color, and time 
feedback was displayed on the chosen side. If the time constraint was not met, the color was displayed red, and 
participants received no reward for this trial. If the foot at the touch-down (see “Data analysis” for the definition 
of touch down) was not completely positioned in the designated zone, the reward color was yellow and partici-
pants received the reward, but they were encouraged to make sure to fully step into the designated zone in future 
trials. If both conditions were met, the reward color was green, and points were awarded. After the feedback 
participants walked back to the starting position and began the next trial. The different reward combinations 
with a higher reward on one side had similar effects on the lateral decision in Exp. 1. Therefore, in Exp. 2 only five 
different reward combinations were displayed (left/right: 20/80, 60/40, 50/50, 60/40, 80/20). The experiment was 
divided into two blocks for the time conditions (4 s or 6 s to finish the task). The order of the blocks for the time 
conditions was counterbalanced across participants. Before each block 20 familiarization trials were performed, 
10 without time evaluation and 10 with time evaluation. Each block consisted of 100 trials (5 reward combina-
tions × 2 starting positions × 10 trials per condition). Overall, 240 trials were completed in one session of about 
80–90 min. After the first block, participants had a 1-min break. Reward combinations and starting positions 
were randomized between trials.

Experiment 3.  The procedure was almost the same as in Exp. 2. All trials were performed in the 4  s time 
constraint condition. The timing of the reward display was either after the first, second, or third touch-down 
(i.e., step making ground contact). Different reward combinations with a higher reward on one side had similar 
effects on the lateral decision in Exp. 2. Therefore, in Exp. 3 only three different reward combinations were dis-
played (left/right: 40/60, 50/50, 60/40). After the instruction, participants started with 18 familiarization trials, 
9 without timing evaluation, and 9 with timing evaluation. The experimental session consisted of 180 trials (3 
reward combinations × 3 timings of the reward × 2 starting positions × 10 trials per condition) and lasted around 
60 min. After 90 trials participants had a 1-min break. All conditions were randomized between trials.

Real‑time analysis.  To identify the start, the success of stepping in the designated zone, and the completion 
of a trial in real-time, the position of the tracked marker was streamed from Motive 2.1.1 (Optitrack software 
interface) with the NatNet SDK to a self-written written MATLAB 2018a script (The Mathworks, Inc., Natick, 
MA, USA). A trial started, when the distance between two markers in the expected hand area was below 15 cm. 
Additionally, in Exp. 2 and Exp. 3, the malleolus marker of the correct foot had to be 20 cm in front of the other 
foot. To prevent an early launch, the displacement of the calcaneus marker between two consecutive frames had 
to be below 2 mm when the trial was started by bringing the hands together.

The assignment of marker positions to body parts was achieved by utilizing the standardized starting position 
at the start of the trial. The positioning of hand markers was assumed to be in front of the L5 marker, the toe 
markers were in front of the heel marker, left body parts were more to the left, and so forth. The body-specific 
marker ID given by the Motive software was used for the assignment of markers for the rest of the trial. In rare 
cases, this ID changed because of the occlusion of a marker. When a relevant marker was missing because of a 
wrong assignment before reward feedback was displayed, the trial was repeated. To check if participants stepped 



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11894  | https://doi.org/10.1038/s41598-021-91285-1

www.nature.com/scientificreports/

into the designated zone and for the timing of the reward presentation in Exp. 2 and Exp. 3, the touch-down of 
every step was calculated as the maximal horizontal displacement of the heel marker of the swing foot and the 
malleolus marker of the stance limb25. To ensure only one maximum and touch down per step, after each maxi-
mum further analysis was skipped for 20 frames (0.167 s). In Exp. 2 we aimed to present the rewards one step 
before stepping into the designated zone. To do so, rewards were presented when the malleolus marker exceeded 
the 1.84 m distance from the starting line at touch-down. In Exp. 1, a step exceeding 1.84 m was in 97% the last 
step before stepping into the zone. In Exp. 3, we aimed to present rewards one step, two steps, or three steps 
before stepping into the zone. In Exp. 2 participants mainly made four steps with a 4 s time constraint. Therefore, 
rewards were displayed at the touch-down of the first, second, or third step in Exp. 3.

To test if the participant stepped into the designated zone, the position of the foot markers at every touch-
down was compared with the area of the designated zone. All foot markers of the corresponding foot had to be 
in the designated zone. The trial was completed when a hand marker exceeded the horizontal position of the 
table marker at the beginning of the table and the hand marker was below 10 cm over the vertical height of the 
desk. The time between the start and end of the trial was used as time feedback after the trial.

We analyzed the lag of display for three pilot sessions. The frame of the touch-down was compared with the 
frame the display switched towards the reward stimulus with a synchronized reference camera. The lag between 
TD and the display of the rewards was consistent within one frame across trials and sessions (63 ± 7 ms, n = 32).

Data analysis.  Data preparation of kinematic data was accomplished using a self-written MATLAB 2018a 
code. The touch-down of every step was recalculated after the kinematic data were filtered at 12  Hz with a 
bidirectional fourth-order low-pass Butterworth filter. The foot stepping in the designated zone was identified 
as the first touch-down of a lateral malleolus marker into the designated zone (0.6 m in front of the marker at 
the obstacle, 0.3 cm towards both sides). The number of steps towards the obstacle was evaluated as the num-
ber of touch-downs until the step in the designated zone occurred. All touch-downs were double-checked by 
a second algorithm which was based on the relative velocity of both feet. As walking has a double stance phase 
with both feet on the floor, a step onto the ground should also be found by a minimum of the relative velocity of 
both malleoli markers. If there was an incongruence between both touch-down algorithms, the number of steps 
and step into the zone was visually checked and the algorithm with the correct values was picked. The position-
ing of the L5-marker in the y-axis at the end of the trial was used for assigning the lateral decision. Statistical 
analyses were performed with R36. All conditions were repeated measures over subjects. For the analyses of the 
dichotomous outcome of the lateral choice in each Experiment, a generalized linear mixed model (GLMM) was 
fitted with the glmer function of the lme4 package37. To account for the non-independence of repeated measure-
ments, random intercepts and slopes for participants were entered as random effects. At first, the full random 
effect structure was fitted (random intercept, slope main effects, and all interactions). Because of convergence 
problems the full model was not acceptable for further analyses in most cases. If the model did not converge, 
we reduced the random effect structure by excluding random slopes each at a time, which were not relevant for 
our hypothesis, until the model converged38–40. Inference for the fixed effects was based on likelihood ratio tests 
between the model with and without the predictor variable. For the confidence intervals of the estimations, the 
Wald intervals were used. All tests were two-sided.

Experiment 1.  The influence of the predictor “Lateral decision” (factor with 2 levels: left, right, simple contrast) 
on the outcome “Foot in the designated zone” (binary outcome: left, right) was analyzed by fitting a GLMM.

Experiment 2.  Trials were omitted if the 1.84 m boundary for the reward display was not reached before step-
ping into the designated zone (overstepping, rewards were displayed too late). Two participants did this regu-
larly (> 90% of trials) and were excluded from further analyses. Five individual trials were excluded because of 
problems with marker identification in the real-time analyses. After exclusion of trials and participants, a total 
of 7148 out of 8200 trials (i.e., 87.2%) entered statistical analyses.

In Exp. 2 five reward combinations were displayed. To reduce model complexity, we reduced the number 
of reward combinations to two levels, that is unequal reward combinations (e.g., 60/40 for the left/right side) 
and equal reward combination with no reward difference (50/50 for the left/right side). The unequal reward 
combinations were merged by mirroring the decision (left = right, right = left) and step into the zone (left = right, 
right = left) for reward combinations with more reward on the left side (80/20 and 60/40). After mirroring, the 
meaning of the “Decision” and “step in the zone” variable changed (decision: right = side with higher reward, 
left = side with lower reward; step in the zone: left = lateral stepping required to get towards the side with higher 
rewards, right = cross-over step required to get to the side with lower rewards).

For the statistical analysis of unequal rewards, the influence of the “Required stepping strategy” (factor with 
2 levels: lateral or crossover step, simple contrast) and “Time constraint” (factor with 2 levels: 6 s and 4 s, simple 
contrast) and their interaction on the decision (binary outcome: higher reward, lower reward) was analyzed by 
fitting a GLMM. The requirement of a lateral step was defined as the step into the zone being incongruent to the 
side with higher reward (e.g., a left step into the zone and higher reward for the right target). The requirement 
of a cross-over step was defined as the step into the zone being congruent to the side with higher reward (e.g., a 
left step into the zone and higher reward for the left target).

For the statistical analysis of equal rewards, the influence of “Time constraint” (factor with 2 levels: 6 s and 
4 s, simple contrast) on the decision to walk towards the side requiring a lateral step (binary outcome: yes, no) 
was analyzed by fitting a GLMM. For equal rewards requirement of a lateral step was defined as the step into the 
zone being incongruent to the side of the decision (e.g., a left step into the zone and walking towards the right 
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target). The requirement of a cross-over step was defined as the step into the zone being congruent to the side 
of the decision (e.g., a left step into the zone and walking towards the left target).

Experiment 3.  In Exp. 2, 31 out of 37 participants predominantly made four steps before stepping into the 
designated zone (mean = 98.8%, sd = 0.02%). In Exp. 3, the reward stimulus was supposed to be presented three 
steps, two steps, or one step before entering the designated zone. Therefore, we decided a priori to exclusively 
analyze participants who predominantly used four steps in the equal reward condition when the reward would 
be presented with the third step, like in Exp. 2. This criterion resulted in an unexpected exclusion of 19 out of 54 
participants (based on k-means clustering with two clusters), who often did not use predominantly four steps 
before stepping into the designated zone (below 80% of the trials).

In Exp. 3 only three reward combinations were displayed. Like in Exp. 2, unequal reward combinations were 
merged. For the statistical analysis of unequal rewards, the influence of the “Required stepping strategy” (factor 
with 2 levels: lateral or crossover step, simple contrast), “Timing of reward presentation” (factor with 3 levels: 1. 
Step, 2. Step, 3. Step, sliding difference contrast) and their interaction on the decision (binary outcome: higher 
reward, lower reward) was analyzed by fitting a GLMM.

For the statistical analysis of equal rewards, the influence of “Timing of reward presentation” (factor with 3 
levels: 1. Step, 2. Step, 3. Step, sliding difference contrast) on the decision to walk towards the side requiring a 
lateral step (binary outcome: yes, no) was analyzed by fitting a GLMM. The definition of the required stepping 
strategy was similar to Exp. 2, the only difference being that the expected step into the zone was used (given by 
the starting position and 4 steps before reaching the zone) and not the actual step into the zone.

Additionally, we analyzed adaptation strategies when participants starting position was in an unfavored body 
state (predicted cross-over step if participants would make the regular four steps) for getting towards the side 
the higher reward. First, participants could adapt their number of steps to change the body state when stepping 
into the designated zone, meaning that the step into the zone is not equal to the predicted step into the zone 
based on the starting position to make a lateral step towards the side with a higher reward. The influence of the 
“Timing of the reward presentation” (factor with 3 levels: 1. Step, 2. Step, 3. Step, sliding difference contrast on 
the binary outcome “Adaptation of the number of steps” (yes/no) was analyzed by a GLMM.

Second, they could make a crossover step and not adapt their stepping behavior to get to the side with a 
higher reward. For trials in which participants did a cross-over step the lateral positioning and orientation of 
the foot stepping into the zone were analyzed. For the lateral position, the malleolus marker of the foot stepping 
into the zone was used. The orientation was defined as the angle between the line of the global y-direction (in 
walking direction) and the vector spanning between the heel marker and the toe marker in the x–y-plane (lateral 
direction, walking direction). Foot position and orientation were analyzed with individual linear mixed models 
with the procedure used for GLMMs. Side-specific effects (left/right) were neutralized by merging over cross-
over steps towards the left and right side and taking the negative for cross-oversteps towards the right side. The 
outcome position and angle (continuous scale) were predicted by the factor “Timing of reward presentation” 
(factor with 3 levels: 1. Step, 2. Step, 3. Step, sliding difference contrast).

Data availability
The data will be made available at: https://​osf.​io/​2srwb/?​view_​only=​218db​3c5e5​8147a​29738​62550​e7c57​59.

Code availability
Custom codes for the statistical analysis will be made available at: https://​osf.​io/​2srwb/?​view_​only=​218db​3c5e5​
8147a​29738​62550​e7c57​59.
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