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Purpose: To develop a new high‐dimensionality undersampled patch‐based  
reconstruction (HD‐PROST) for highly accelerated 2D and 3D multi‐contrast MRI.
Methods: HD‐PROST jointly reconstructs multi‐contrast MR images by exploiting 
the highly redundant information, on a local and non‐local scale, and the strong cor-
relation shared between the multiple contrast images. This is achieved by enforcing 
multi‐dimensional low‐rank in the undersampled images. 2D magnetic resonance 
fingerprinting (MRF) phantom and in vivo brain acquisitions were performed to 
evaluate the performance of HD‐PROST for highly accelerated simultaneous T1 and 
T2 mapping. Additional in vivo experiments for reconstructing multiple undersam-
pled 3D magnetization transfer (MT)‐weighted images were conducted to illustrate 
the impact of HD‐PROST for high‐resolution multi‐contrast 3D imaging.
Results: In the 2D MRF phantom study, HD‐PROST provided accurate and precise 
estimation of the T1 and T2 values in comparison to gold standard spin echo acquisi-
tions. HD‐PROST achieved good quality maps for the in vivo 2D MRF experiments 
in comparison to conventional low‐rank inversion reconstruction. T1 and T2 values of 
white matter and gray matter were in good agreement with those reported in the lit-
erature for MRF acquisitions with reduced number of time point images (500 time 
point images, ~2.5 s scan time). For in vivo MT‐weighted 3D acquisitions (6 differ-
ent contrasts), HD‐PROST achieved similar image quality than the fully sampled 
reference image for an undersampling factor of 6.5‐fold.
Conclusion: HD‐PROST enables multi‐contrast 2D and 3D MR images in a short 
acquisition time without compromising image quality. Ultimately, this technique 
may increase the potential of conventional parameter mapping.
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1 |  INTRODUCTION

In MRI, multiple contrasts are exploited to extract clinically 
relevant tissue parameters and pathological tissue changes. 
These multiple contrasts are achieved using different imaging 
sequences and preparation pulses. Multi‐contrast acquisitions 
also find important applications in parameter mapping (e.g., 
T1 and T2 mapping) and magnetic resonance fingerprint-
ing (MRF).1,2 However, these acquisitions lead to long scan 
times because multiple images with different contrasts need 
to be acquired, making parameter imaging more sensitive to 
physiological motion.3-6

Parallel imaging (PI),7-11 compressed sensing (CS),12,13 as 
well as the combination of both undersampled reconstruction 
techniques14,15 have been proposed to overcome the long scan 
times associated with multi‐contrast imaging and parameter 
mapping. PI can accelerate multi‐contrast imaging by under-
sampling each individual image and exploiting the informa-
tion provided by multiple coil arrays, yet at a SNR penalty 
generally marked for high acceleration factors. Sparse CS 
alone has been shown to cope with the problem of undersam-
pling through the use of random or pseudo‐random sampling 
patterns and efficient regularized reconstructions that make 
the assumption that the multi‐contrast images share common 
and sparse information in a specific domain.16-21 Even though 
these strategies have achieved acceleration factors that have 
not previously been possible to attain with parallel imaging 
alone, CS‐based techniques still suffer from residual aliasing 
artifacts for high acceleration factors, which compromise the 
diagnostic value of the reconstructed multi‐contrast images.

Recently, novel techniques that exploit the strong ana-
tomical correlations observed in the contrast dimension (or 
parameter dimension) on a global or local scale have been 
proposed. Indeed, the nature of signal evolution in multi‐
contrast acquisitions exhibits a low‐rank structure in the 
contrast dimension that can be exploited to further reduce 
scan times.17,22-24 These types of reconstruction techniques, 
also known as the globally (GLR) or locally low‐rank (LLR) 
methods,25 have been efficiently used in many applications 
such as T2 mapping26 or dynamic contrast enhanced MRI.27 
More recently, high‐order tensor decomposition techniques, 
exploiting global correlation, have been efficiently used to 
allow for highly accelerated multi‐dimensional cardiac MRI 
acquisitions.28,29 Although those techniques have shown 
promise for motion‐resolved quantitative cardiac imaging by 
efficiently solving a global low‐rank tensor decomposition, 
they do not exploit the strong non‐local correlations between 
neighboring patches.

Motivated by the LLR techniques that exploit localized 
correlations in the contrast dimension, patch‐based image 
reconstructions exploiting non‐local spatial redundancies 
and low‐rank matrix structures have been introduced for 
single‐contrast MRI reconstruction to lead to even sparser 

representation.30,31 By modeling the similarity of image 
patches through block‐matching, low‐rank representation and 
filtering, 2D,32 and 3D33 patch‐based reconstructions have 
been shown to outperform conventional CS reconstructions 
by recovering better image details and edges and exhibiting 
better overall image quality.

In this study, we present a new reconstruction technique 
for highly accelerated 2D and 3D multi‐channel multi‐ 
contrast MRI that combines the promising performances of 
patch‐based reconstructions and the potential of low‐rank 
image reconstruction through higher‐order tensor decom-
position. The proposed high‐dimensionality undersampled 
patch‐based reconstruction (HD‐PROST) technique is first 
applied to accelerated 2D radial MRF, for various accelera-
tion factors, where a high degree of inherent redundancy can 
be exploited locally, non‐locally, and through the contrast 
dimension. In a second application, HD‐PROST is used to 
acquire multiple undersampled high‐resolution 3D Cartesian 
magnetization transfer contrast (MTC) images with several 
MT weightings in a reduced scan time.

2 |  THEORY

The framework presented hereafter jointly reconstructs 
multi‐channel multi‐contrast images from undersampled 2D 
or 3D MR acquisitions. This is achieved by generalizing our 
previously proposed PROST technique33 to high dimensional 
imaging. A description of the proposed HD‐PROST recon-
struction is presented, followed by the description of 2 multi‐
contrast applications (2D radial and 3D Cartesian) where 
high‐dimensionality can be exploited to reduce acquisition 
time, which is often a key factor for clinical translation.

2.1 | High‐dimensionality undersampled 
patch‐based reconstruction (HD‐PROST)
Let X∈ℂ

Mx ×My ×Mz ×L be the multi‐contrast complex im-
ages that we seek to reconstruct, where Mx, My and Mz are the  
number of voxels in the x, y and z spatial directions, and L  
is the number of contrast‐weighted images. The correspond-
ing complex receive‐coil sensitivity maps for the Nc channels 
are denoted as S∈ℂ

Mx ×My ×Mz ×Nc. Let Y ∈ℂ
Z ×L×Nc be the un-

dersampled k‐space data (with Z ≪Mx × My × Mz). The joint 
multi‐contrast undersampled reconstruction can be combined 
with parallel imaging and cast as the following inverse problem

where A is the undersampling operator that acquires  
k‐space data for each contrast‐weighted image, F denotes the 
Fourier transform operator and ‖ ⋅ ‖F is the Frobenius norm. 

(1)argmin
X

1

2
‖AFSX−Y‖2

F
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Mathematically, this inverse problem is ill‐posed, in the 
sense that the exact solution might not exist or not be unique, 
making precise recovery of X hardly possible, and prior as-
sumptions on the unknown solution X have to be considered.

The principle behind HD‐PROST reconstruction assumes 
that a multi‐contrast image X can be expressed as a high‐order 
low‐rank representation on a patch scale, with respect to an 
appropriately chosen patch selection operator. The recovery 
problem can be formulated as the following constrained opti-
mization on the high‐order low‐rank tensor 

where �p is the nonnegative sparsity‐promoting regulariza-
tion parameter and ‖ ⋅ ‖∗ is the nuclear norm that enforces 
multi‐dimensional low‐rank on a multi‐contrast patch scale. 
The patch selection operator Pp (⋅) forms a 3D tensor from a 
patch centered at pixel p from a set of multi‐contrast images 
(see optimization 2 below). Now considering the constraint 
p =Pp (X), and the encoding operator E=AFS, we can form 
the unconstrained Lagrangian of Equation 2 by linearly com-
bining the constraint and cost function31,33

where b is the Lagrange multiplier, and 𝜇>0 is the penalty 
parameter. Equation 3 can be efficiently solved through oper-
ator‐splitting via alternating direction method of multipliers 
(ADMM).34 ADMM simplifies the optimization process by  
alternating the minimization with respect to the multi‐ 
contrast set of images X (optimization 1) and the high‐order 
tensor   (optimization 2) followed by an update of the aug-
mented multiplier b, and repeating these 3 steps until a con-
vergence criterion is satisfied.

2.1.1 | Optimization 1: joint MR 
reconstruction update
The first sub‐problem is a joint multi‐contrast MR recon-
struction that incorporates the denoised tensor   (obtained at 
the end of optimization 2) as prior information in a parallel 
imaging fashion to obtain X

Equation 4 corresponds to a standard iterative SENSE 
reconstruction with Tikhonov regularization, where the 
solution X can be efficiently computed using the Conjugate 
Gradient35 algorithm.

2.1.2 | Optimization 2: high order singular 
value decomposition (HOSVD)‐based denoising
Considering the variable ̃p =Pp (X)+

bp

�
, the second sub‐

problem minimizes with respect to the high‐order tensor   
and is given by

X denotes multiple MR images with different contrasts. 
Several observations can be made about X: (1) on a local scale, 
voxels at a specific location for a given contrast exhibit simi-
lar intensity to their nearest neighbors (within a patch), (2) on  
a non‐local scale, images for a given contrast contain self‐ 
repeating patterns (measured as patch similarity within a neigh-
borhood), and (3) on a contrast scale, common structures and 
features are shared across multiple contrast images. Motivated 
by these observations, the proposed joint multi‐channel multi‐
contrast problem can be cast as a multi‐dimensional low‐rank 
reconstruction. Bearing this in mind, equation 5 can be solved 
on a multi‐contrast patch level. The construction of the high‐
order tensor   is performed as a 3‐step process:

Step 1 – Similar overlapping patches in X+
b

�
 are grouped 

together to form a third‐order tensor: considering a 3D+L 
reference patch of size Nx × Ny × Nz × L, we build a high 
dimensional tensor ̃p ∈ ℂ

N ×K × L of K−1 similar 3D+L 
patches, with N =Nx × Ny × Nz (see Figure 1, “unfolding” 
and “tensor stacking”). A fixed local window is used for 
the patch search, whereas the contrast signature remains 
unchanged. Along this line, the proposed reconstruction 
can exploit as much of the contrast and spatial correlations 
as possible.

Step 2 – The tensor ̃p exhibits a strong low multilinear rank 
structure and can therefore be compressed into a tensor of 
smaller size (i.e., the core tensor) through tensor decompo-
sition (see Supporting Information Table S1 and Figure 1,  
“High‐Order Tensor Decomposition”). The dominant com-
ponents of the core tensor can be extracted by computing 
a complex‐valued higher‐order singular value decomposi-
tion (HOSVD)36,37 and by only keeping the largest (given 
by the thresholding parameter 2�p

�
) multilinear singular vec-

tors and high‐order singular values. This step effectively 
acts as a high‐order denoising process where the small dis-
carded coefficients mainly reflect contributions from noise 
and noise‐like artifacts.

Step 3 – The denoised tensor p is then rearranged to form 
the denoised patches. Steps 1–3 are repeated over all 
patches in the image in a sliding window fashion. Because 
a single patch might belong to several groups in step 1, 
the final denoised multi‐contrast complex‐valued images 

(2)

argmin
X

1

2
‖AFSX−Y‖2

F
+
�

p

�p‖p‖∗ s.t. p =Pp (X)

(3)

HD−PROST (X, ,b) :=argmin
X, ,b

1

2
‖EX−Y‖2

F
+
∑

p �p‖p‖∗

+
�

2

∑
p ‖p−Pp (X)−

bp

�
‖2

F

(4)JointRecon (X) := argmin
X

1

2
‖EX−Y‖2

F
+
�

2
‖ −X−

b

�
‖2

F

(5)Tensor ( ) := argmin


�

p

2�p

�
‖p‖∗ +

�

p

‖p− ̃p‖2
F
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  are obtained by averaging (Figure 1, “Aggregation”) 
the different estimates.

The solution   to this optimization problem is a denoised 
version of ̃  that is incorporated in the optimization 1 as prior 
knowledge, as described before. The Lagrangian multiplier 
b is then updated and optimizations 1 and 2 are processed 
iteratively to improve the quality of the reconstructed images. 
In the spirit of reproducible research, codes and examples for 
the proposed HD‐PROST technique are made available at 
http://www.kclcardiacmr.com/downloads/.

The generalized reconstruction framework described before  
considers 2D or 3D Cartesian multi‐contrast acquisitions 
(as the 3D undersampled Cartesian multi MT‐weighted  
acquisitions considered in this study). Slight modifications 
in the reconstruction process are required for the accelerated 
non‐Cartesian 2D MRF application considered in this study 
and will be described in the next section.

2.2 | HD‐PROST for accelerated 2D radial 
parameter mapping with MRF
MRF1 is a novel quantitative MRI approach that allows 
the simultaneous acquisition of multi‐parametric maps  
(e.g., T1, T2, M0) in a single efficient scan. Conventional 
MRF sequences acquire in the order of thousands or more 

highly undersampled time point images by pseudo‐randomly  
collecting the MR data in a continuous fashion with time‐
varying acquisition parameters (e.g., repetition time, flip 
angle). The spatial and temporal incoherencies provide 
a unique signal evolution (or fingerprint) for each tissue. 
These unique fingerprints can be matched, through pattern 
matching, to a pre‐generated MRF dictionary representa-
tive of the MRF sequence, and whose atoms are com-
posed of simulated signal evolution curves. This matching  
process is performed on a voxel‐by‐voxel basis to identify the  
underlying tissue properties and generate quantitative  
parameter maps. The highly undersampled pseudo‐random 
MRF acquisition results in a high level of noise and alias-
ing in the reconstructed time point images. Several itera-
tive techniques have been recently proposed to improve the 
reconstruction quality of each time point image.38-42 Zhao 
et al38 proposed to enforce low‐rank and subspace mode-
ling in the temporal dimension to reconstruct high‐quality 
time point images. Assländer et al39 recently introduced a  
low‐rank ADMM reconstruction technique to temporally 
compress the time point images, resulting in a reduced 
number of singular value images. The reconstruction of the 
temporally compressed images is faster and better posed 
than reconstructing each time point image separately.39  
This temporal compression operator Ur is obtained through 
compression of the MRF dictionary at an appropriate rank r.  

F I G U R E  1  Flowchart of the optimization 2 of the proposed high‐dimensionality patch‐based reconstruction (HD‐PROST). Denoising of 
multi‐contrast images is performed using 2D (respectively 3D) block matching, which groups similar 2D (respectively 3D) patches in the multi‐
contrast images. Similar patches are then unfolded together in a simple 2D matrix. A third‐order tensor ̃p is formed by stacking the unfolded 
patches in the contrast dimension. The high‐order tensor of size N × K × L admits a low multilinear rank approximation and can be compressed, 
through tensor decomposition, by truncating the multilinear singular vectors that correspond to small multilinear singular values. The outputs of 
this step are the denoised multi‐contrast images that are then used in the joint MR reconstruction process (optimization 1) as prior knowledge. An 
overview of the algorithm is provided in Supporting Information Table S1

http://www.kclcardiacmr.com/downloads/
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Because of the multi‐contrast nature of MRF, HD‐PROST 
can be used to explicitly exploit the local, non‐local and 
contrast information of the temporally compressed images 
by integrating the compression operator into the encoding 
operator in Equation 3 as follows

3 |  METHODS

The proposed HD‐PROST reconstruction was evaluated on 
accelerated radial 2D MRF phantom and in vivo brain acqui-
sitions, and on accelerated Cartesian 3D magnetization trans-
fer imaging with varying MT‐weighting in in vivo brain data. 
The 2 applications are described in detail below along with 
imaging and reconstruction parameters. Written informed 
consent was obtained from all subjects before undergoing 
MRI scans and the study was approved by the Institutional 
Review Board.

3.1 | Accelerated 2D magnetic resonance 
fingerprinting
MRF acquisitions were performed on a 1.5 T Ingenia MR 
system (Philips, Best, the Netherlands) equipped with a  
15‐element head coil.

3.1.1 | Phantom and in vivo experiments
A 2D MRF acquisition was performed on a standardized 
(T1MES) T1/T2 phantom containing 9 agarose‐based tubes 
with different T1 and T2 combinations (range, T1: 255 ms 
to 1489 ms, T2: 44 ms to 243 ms).43 Relevant scan param-
eters included: balanced steady‐state free precession radial 
sequence, TE = 2 ms, fixed TR = 4.4 ms, FOV = 160 × 
160 mm2, in‐plane resolution = 1 × 1 mm2, slice thickness 
= 8 mm, bandwidth = 723.4 Hz/pixel. Only 1 radial spoke 
was acquired at each time point (resulting in an accelera-
tion factor of ~251 with respect to a fully sampled radial 
acquisition). A total of 2000 time points were acquired in 
10 s. A flip angle (FA) pattern similar to the one proposed 
in Assländer et al44 for optimized T1/T2 mapping was used 
and is shown in Supporting Information Figure S1. This RF 
pattern, which has been shown to be optimal in a Cramér‐
Rao lower bound sense, consists of intrinsic repetitive  
loops that offers the advantage to lengthen the scan time 
by simple concatenation. The experiments consisted of  
undersampling the acquired data by keeping only  
[1:n] k‐space radial spokes, with n=[400:100:2000], result-
ing in scan time reductions up to a factor of 5 with respect 
to the 2000 time points sequence.

Reference T1 and T2 times for each vial were obtained 
from gold standard spin echo (SE) acquisitions. For T1 
values, an inversion‐recovery SE (IRSE) sequence was 
used with 8 inversion times from 25 ms to 3200 ms with  
TR = 10s, TE = 14.75 ms. For T2 values, the SE sequence 
was performed with 8 TEs from 10 ms to 640 ms. T1 and T2 
values were obtained by mono‐exponential curve fitting.

Single‐slice 2D MRF brain data were acquired in 5 
healthy subjects (4 men, mean age: 32 years; range: 28–37 
years) using the same scan parameters as in the phantom 
experiments.

3.1.2 | Image reconstruction
For both phantom and in vivo 2D MRF experiments, data 
was temporally compressed with r=10, leading to only 10 
singular value images to reconstruct (i.e., in this study, L=10 
and Mz =1).

HD‐PROST reconstruction was implemented using the 
algorithm described in Supporting Information Table S2 
and performed offline on a workstation with a 16‐core Dual 
Intel Xeon Processor (23 GHz, 256 GB RAM). The joint 
MR reconstruction step (optimization 1) was implemented 
in MATLAB (v7.1, The MathWorks, Natick, MA) and the 
multi‐contrast patch‐based denoising step (optimization 2) in 
C. Coil sensitivity maps were estimated using the eigenvalue‐
based approach ESPIRiT.45

The encoding operator EMRF was implemented using the 
nonuniform fast Fourier transform.46 The tolerance of the 
conjugate gradient was set to CGeps =1e−4 and a maximum 
number of CGiter =15 iterations was chosen as stopping cri-
terion. The regularization parameter �, which balances the 
contribution of the prior term (obtained at the end of optimi-
zation 2) and the data fidelity term, was set to 5e−3.

The proposed high‐order patch‐based denoising strategy 
was implemented as described in Supporting Information 
Table S1. The performance of the proposed strategy relies on 
the optimal selection of several parameters. The patch size, 
which controls the degree of local image features, was set to 
N =7 × 7. We set the search window radius around each pixel 
to 20 and restricted the number of similar patches selected to 
K =20 to form a third‐order tensor p of size 49 × 20 × 10. 
The l2 distance was chosen as measure of patch similarity and 
was defined as d

�
patchref ,patchj

�
= ‖patchref −patchj‖2 for  

j=1,… , K−1. To save computational complexity, a slid-
ing‐window approach was performed with a patch offset 
of 3 pixels at each image dimension. The performance of 
HD‐PROST was assessed on several data sets (not reported 
here) by comparing the quality of the reconstructions with 
several regularization parameters � (the same � was used for 
all patches: �p =� for all p). The optimal value was shown 
to be proportional to the number of MRF measurements and 
was set to �=−1e−3 × n + 0.4 for each decomposition, with  

(6)EMRF =AUrFS
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n being the number of MRF radial spokes. The joint MR 
reconstruction and denoising steps were iteratively inter-
leaved and the reconstruction was terminated after 5 ADMM 
iterations.

The proposed HD‐PROST reconstruction for 2D MRF 
was compared to the low‐rank inversion (LRI) reconstruc-
tion24,38 with r=10 and using 10 conjugate gradient itera-
tions, which were seen to be enough for convergence.

3.1.3 | Dictionary generation and pattern 
recognition
The MRF dictionary was generated using the extended  
phase graphs (EPG) formalism.47 The dictionary  
was calculated for a T1 in the range of 
([50:10:1400, 1430:30:1600, 1700:100:2200, 2400:200:3000] ms) 
and T2 in the range of ([5:2:80, 85:5:150, 160:10:300, 330:30:600] 
ms). Slice profile was simulated for each RF pulse using 51 
isochromats distributed along the slice selection direction and 
was included in the dictionary generation to correct for pro-
file imperfections.48 Template‐matching between fingerprints 
and dictionary were performed using the inner product as in  
Ma et al.1

3.2 | Accelerated 3D multi‐contrast 
magnetization transfer imaging

3.2.1 | Acquisition
A 3D accelerated MTC experiment was performed to evalu-
ate the proposed HD‐PROST reconstruction on 3D Cartesian 
acquisitions with multiple MT‐weighted images. In vivo 
brain acquisitions were performed on 3 healthy subjects  
(1 man, age range: 24–30 y) on a 1.5 T MR scanner 
(Magnetom Aera, Siemens Healthcare, Erlangen, Germany) 
equipped with a 20‐channel head coil. Acquisitions consisted 
of 1 reference image without magnetization preparation and 
5 images with different MT preparations (i.e., in this study, 
L=6 and Mz >1).

A prototype 3D Cartesian variable‐density trajectory 
was integrated in the sequence to allow for fast acquisition 
of multiple MT‐weighted images. The Cartesian trajec-
tory with spiral profile order33,49 samples the ky‐kz phase‐ 
encoding plane following approximate spiral interleaves 
on the Cartesian grid with variable density along each spi-
ral arm and with 2 successive spiral interleaves being ro-
tated by the golden ratio. A golden angle rotation between  
different contrast acquisitions was incorporated here (shifted 
VD‐CASPR) to introduce incoherently distributed aliasing 
artifacts along the contrast dimension and noise‐like arti-
facts in the spatial dimension, which is beneficial from a CS 
and low‐rank point of view.50

The MT weighting was achieved by applying a train of 
sinc‐shaped, off‐resonance RF pulses before image acqui-
sition with the following parameters: MT off‐resonance 
frequency (ΔF) = 3 kHz, 20 MT pulse repetitions, MT band-
width = 401 Hz/pixel. Relevant scan parameters included: 
3D gradient echo sequence, axial orientation, FOV = 230 
× 230 × 160 mm3, nominal resolution 1 × 1 × 2 mm3, FA 
= 15°, TE = 1.78 ms, TR = 4.06 ms, receiver bandwidth 
= 925 Hz/pixel, 32 readouts per spiral interleave. Six mea-
surements were acquired with different MT pulse flip angles 
(�MT =[0◦, 160◦, 320◦, 480◦, 640◦, 800◦]) with a 5‐s pause 
between them. Acquisitions were performed with an accelera-
tion factor of 6.5‐fold for each weighted image. The total scan 
time to acquire the 6 measurements was 13:18 [min:s]. A fully 
sampled acquisition of the 6 measurements at this resolution 
would take more than 1 h. Therefore, for comparison purposes, 
an additional fully sampled acquisition was performed only 
for the reference image (�MT =0◦). The total scan time for this 
single‐contrast fully sampled acquisition was 12:57 [min:s].

3.2.2 | Reconstruction
The following parameters were used for the 3D multi‐MT 
reconstruction: patch size N =7 × 7 × 7, search window = 
20 × 20 × 20, number of similar 3D patches selected K =30,  
patch offset = 3, ADMM iterations = 5, CGeps =1e−7, 
CGiter =10. The threshold parameters � and � were empiri-
cally set to 0.1 and 5e−3, respectively. Coil sensitivity maps 
were estimated from the fully sampled k‐space center using 
the eigenvalue‐based approach ESPIRiT.

The proposed HD‐PROST reconstruction was compared 
with 2 well‐established state‐of‐the‐art reconstruction tech-
niques. The first technique is LLR, proposed by T. Zhang  
et al26 for accelerating MR parameter mapping. LLR  
exploits the redundancy in the contrast dimension on local 
image regions in an iterative low‐rank framework. LLR was 
implemented using our ADMM framework by replacing the 
patch‐based denoising step by the low‐rank thresholding. 
This allows for fair comparisons because the same optimi-
zation was used, and only the manner in which the denois-
ing is performed was modified. The rank threshold �LLR was 
fixed and set to 5% of the highest singular value. Because the 
acquired MT‐weighted data was fully sampled in the read‐
out direction, the MR reconstruction step was accelerated 
for both LLR and HD‐PROST reconstructions by comput-
ing a 1D inverse FFT and considering multiple separable 2D  
reconstruction problems independently.

The second technique is an iterative CS reconstruction 
with spatial Wavelet sparsity constraint as described in Lustig 
et al12 and implemented in the BART toolbox.51 CS recon-
struction was performed for each contrast independently. The 
regularization parameter �CS was optimized experimentally 
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and set to 0.01. Visual assessment was performed between 
the different techniques and the fully sampled acquisition.

4 |  RESULTS

4.1 | Accelerated 2D magnetic resonance 
fingerprinting

4.1.1 | Phantom study
Figure 2 shows T1 and T2 values for the 2D MRF phantom  
experiments with 2000, 1000, and 500 time points in com-
parison to the gold standard IRSE and SE acquisitions 
for both LRI and HD‐PROST reconstructions. T1 values  
obtained from both strategies were in good agreement with 
the IRSE acquisition even for reconstructions with 500 time 
points, with an excellent linear relationship with the refer-
ence T1 values (goodness‐to‐fit R2 >0.98). T2 accuracy 
was also preserved with the proposed reconstruction with a 
slight T2 degradation observed for long T2 values and high 
acceleration for both reconstructions. Figure 3 depicts the 
precision of T1 and T2 values, as characterized by the SD  
(aggregated based on the variance of each vial). An increase 
in precision was observed for both T1/T2 values using the 
proposed HD‐PROST reconstruction compared with LRI 

even for reconstructions with 500 time points, corresponding 
to 2.5s scan time. Corresponding T1 and T2 maps are shown 
in Supporting Information Figure S2. From the above anal-
ysis, it follows that 500 MRF time points or less might be 
sufficient and suitable for accurate and precise in vivo T1/T2 
maps acquisitions in <2.5 s.

4.1.2 | In vivo study
Figure 4 depicts the first 4 2D MRF singular images from 
the reference LRI and the proposed HD‐PROST reconstruc-
tion for 1 representative subject reconstructed with 1000 
time points. A clear superior image quality can be observed  
on the HD‐PROST singular images with a sharp and clear 
delineation of the brain structures. A high level of streaking 
artifacts and noise can be seen on the last singular value com-
ponents (e.g., singular images 3 and 4) with LRI, whereas 
HD‐PROST not only produces images with considerably less 
noise but is also able to recover small structures that were lost 
below the noise level with LRI (Figure 4, yellow arrows). T1 
and T2 maps are displayed in Figures 5 and 6 for 2 subjects 
and 3 different measurement lengths (2000, 1000, and 500 
time points) for both LRI and HD‐PROST reconstructions.

The reconstructed maps from 1 additional subject are 
shown in Supporting Information Figure S3. A number of 

F I G U R E  2  Phantom results for the 2D accelerated MRF using low‐rank inversion (LRI) and the proposed HD‐PROST reconstructions. Plots 
are comparing the mean T1 (A) and T2 (B) values derived from 2000, 1000, and 500 time points, with conventional inversion‐recovery spin‐echo 
(IRSE) and spin‐echo (SE) acquisitions (identity lines). T1 and T2 accuracies are preserved with the 2 strategies, with a slight bias observed for long 
T2s at high accelerations for both methods. The mean values were obtained from ROIs drawn around each phantom vial. Abbreviations: LRI, low‐
rank inversion; HD‐PROST, high‐dimensionality undersampled patch‐based reconstruction
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interesting observations can be made. Reducing the number 
of measurements tends to blur the T1 maps with LRI whereas 
the T2 maps suffer from noise amplification, showing an  
overall noisier appearance. Conversely, by enforcing low‐rank 
in the local, non‐local and contrast dimension, HD‐PROST 
reconstruction delivers higher image quality, recovering 
sharpness for T1 and reducing the noise for T2. The improve-
ment is more pronounced for the 500 time points acquisition 

(2.5 s scan time). In vivo T1 and T2 relaxation times measured 
in regions of interest in the white and gray matters with LRI 
and the proposed HD‐PROST are shown in Table 1. Both 
reconstructions converged to very comparable values that are 
in good agreement with values obtained from the literature 
for T1. Moreover, the proposed HD‐PROST reconstruction  
tends to lower the SDs of T1 and T2 times, which is in  
accordance with the noise reduction seen in the quantitative 

F I G U R E  3  Standard deviations of T1 (A) and T2 (B) relaxation times for the phantom study are shown for LRI and HD‐PROST 
reconstructions for [400:200:2000] acquired time point images. The precision, as indicated by the SD, was considerably higher with the proposed 
HD‐PROST reconstruction, even for shorter acquisitions, whereas LRI resulted in systematic higher standard deviations. The SDs were obtained 
from ROIs drawn around each phantom vial. Abbreviations: LRI, low‐rank inversion; HD‐PROST, high‐dimensionality undersampled patch‐based 
reconstruction

F I G U R E  4  Reconstructed first 4 MRF singular images with low‐rank inversion (LRI) (A) and the proposed HD‐PROST (B) in in vivo brain 
experiments in a representative subject acquired with 1000 time points. A clear improvement in image quality and image sharpness can be observed 
on the HD‐PROST reconstruction with considerable reduction of noise and streaking artifacts, particularly for the last singular images
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maps. Note that the T2 relaxation times for both techniques 
are slightly biased and depart from the literature values. This 
may be partly explained by the fact that B1 imperfections52 
as well as other sources of bias such as magnetization trans-
fer53 and diffusion‐weighting54 were not considered in the 
proposed study. The average reconstruction time for 2D MRF  
with HD‐PROST was ~10 min per data set. Additional 
comparisons with single‐contrast PROST reconstruction  
(i.e., reconstructing each singular image independently) and 
with a global low‐rank tensor decomposition (in the spirit 
of cardiac multitasking)28,29 are provided in Supporting 
Information Figure S4.

4.2 | Accelerated 3D multi‐contrast 
magnetization transfer imaging
Figure 7 depicts 4 axial slices obtained with HD‐PROST re-
construction of the 6.5‐fold undersampled 3D MT‐weighted 
images in a representative subject in comparison to the fully 
sampled acquisition. Only the reference image obtained with 

�MT =0◦, is shown here. Similar image quality is observed 
between the 6.5‐fold accelerated HD‐PROST approach and 
the fully sampled scan. Line profiles going through a struc-
ture with sharp edges are shown in Figure 7C, showing excel-
lent agreement between HD‐PROST and the fully sampled 
reference. Six different undersampled MT‐weighted images 
were acquired in 13 min 18s, whereas the fully sampled ac-
quisition of a single contrast took 12 min 57 s. Figure 8 com-
pares HD‐PROST to conventional CS reconstruction from 
a 6.5‐fold acceleration. Comparisons with zero‐filling and 
LLR reconstructions are provided in Supporting Information 
Figures S5 and S6. As expected, zero‐filling exhibits a low 
image quality with apparent aliasing artifacts and blurring. 
Exploiting contrast redundancy through local image regions 
with LLR improves the overall image quality and enables 
the recovery of small structures, particularly for low‐contrast 
images (e.g., �MT =800◦), while the apparent noise is still 
large. By contrast, CS reconstruction with spatial regulari-
zation is able to recover images with reduced level of noise 
but fails to recover small structures for low contrast images  

F I G U R E  5  In vivo MRF‐derived 
quantitative T1 (top) and T2 (bottom) maps 
for subject 1 reconstructed with low‐rank 
inversion (LRI) MRF and the proposed HD‐
PROST reconstruction with 2000, 1000, and 
500 time points
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(see Figure 8, red arrows). Enforcing multi‐dimensional low‐
rank and capturing 3D information of local and non‐local 
3D patches through the multiple MT‐weighted images with 

HD‐PROST allows to recover small structures and reduced 
the level of apparent noise, resulting in high image quality for 
all different contrasts. Reconstructions from 2 other subjects 

F I G U R E  6  T1 (top) and T2 (bottom) maps for subject 2 reconstructed with low‐rank inversion (LRI) MRF and the proposed HD‐PROST 
reconstruction with 2000, 1000, and 500 time points. The yellow and red rectangles on the top‐left map indicate the regions of interest used to 
determine the T1 and T2 relaxation times (see Table 1)

T A B L E  1  T1 and T2 relaxation times at 1.5 T for LRI and the proposed HD‐PROST in regions of interest covering white and gray matters in 
the 5 healthy subjects (regions of interest are drawn in the maps in Figure 6)

Number time  
points

T1 (ms) T2 (ms)

LRI HD‐PROST Literature LRI HD‐PROST Literature

White matter 2000 737 ± 61 743 ± 37 45 ± 5 45 ± 4

1000 718 ± 63 732 ± 36 608–756 47 ± 6 46 ± 4 54–81

500 741 ± 64 746 ± 44 42 ± 4 45 ± 3

Gray matter 2000 999 ± 117 992 ± 106 55 ± 6 54 ± 4

1000 988 ± 125 982 ± 108 998–1034 57 ± 6 56 ± 4 78–98

500 1059 ± 151 1024 ± 128 52 ± 7 55 ± 4

Abbreviations: LRI, low‐rank inversion; HD‐PROST, high‐dimensionality undersampled patch‐based reconstruction.
Values are shown for different MRF measurement lengths and compared with the corresponding literature values. Values are expressed as mean ± SD.
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can be seen in Supporting Information Figures S7 and S8. 
The average computation time for 3D HD‐PROST recon-
struction was ~27 min for all 6 contrasts in the acquisitions 
performed in this study.

5 |  DISCUSSION

HD‐PROST reconstruction enables accelerated acquisition 
of 2D or 3D multi‐contrast MR images by exploiting the high 
local and non‐local redundancies and the similarities between 
the multi‐contrast images through a high‐order low‐rank  
tensor approximation.

The proposed technique was applied to accelerated non‐
Cartesian 2D MRF and accelerated Cartesian 3D MTC 

imaging to enable undersampling factors that go beyond 
the limit of traditional PI and CS reconstructions (i.e., ~2.5 
s acquisition for 2D MRF and 6.5‐fold acceleration for 3D 
MTC), while removing residual aliasing artifacts. Phantom 
experiments in accelerated 2D MRF were carried out to in-
vestigate the impact of rapid acquisition (i.e., reduced num-
ber of time point images) on accuracy and precision of T1 
and T2 relaxation times. High agreement with reference T1/T2 
values was observed using HD‐PROST, even for high accel-
erations, with increased precision compared to conventional 
LRI reconstruction.

For in vivo MRF, streaking artifacts and noise amplifica-
tion often propagated in the T1 maps with LRI reconstruction, 
whereas blurring was observed on the T2 maps for high accel-
eration factors. HD‐PROST achieved improved sharpness and 

F I G U R E  7  Three‐dimensional reconstruction of a MT‐weighted 6.5‐fold undersampled brain data in a healthy subject (subject 1). HD‐
PROST reconstruction (B) is compared to the fully sampled acquisition (A) for the reference image only (�MT =0

◦). Line profiles going through a 
structure with sharp edges are shown in (C). HD‐PROST is able to recover high fidelity 3D images and retrieve sharp edges in agreement with the 
fully sampled acquisition. Six different undersampled MT‐weighted images were acquired in 13 min 18 s, whereas the fully sampled acquisition of 
a single contrast took 12 min 57 s

F I G U R E  8  6.5‐fold accelerated 3D MT‐weighted images for 6 different contrasts from 1 representative subject (subject 1) reconstructed with 
compressed‐sensing (CS) and the proposed HD‐PROST reconstruction. Fine anatomic structures can be efficiently retrieved with HD‐PROST as 
shown by the arrows. See Supporting Information Figure S5 for the visualization of the whole axial images and Supporting Information Figure S6 
for comparisons with zero‐filling and locally low‐rank reconstructions
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reduced noise level in comparison to the low‐rank inversion re-
construction, especially for acquisitions with reduced number 
of time points. Nevertheless, a systemic underestimation of the 
T2 values, previously reported in MRF literature, was observed 
in the in vivo study. This finding may be partly explained by 
the fact that B1 imperfection,52 magnetization transfer,53 and 
diffusion‐weighting54 were not considered in this MRF study 
and could lead to inaccurate T2 measurements.

HD‐PROST has a modular design, which allows for its 
straightforward extension to 3D or n‐D imaging by simple patch 
vectorization. In line with the previous 2D MRF study, accel-
erated 3D MTC using HD‐PROST showed improved image 
quality over conventional CS and low‐rank reconstructions for 
an acceleration factor of 6.5, with visual quality comparable to 
the fully sampled acquisition. High denoising performance was 
achieved because of the existence of multiple MT‐weighted 
images of the same object with varying contrasts, leading to 
high redundancy that can be exploited by HD‐PROST. The 
pseudo‐random sampling, given by the proposed shifted VD‐
CASPR, causes aliasing artifacts that spread incoherently in the 
contrast dimension and exhibits noise‐like perturbations at the 
image scale, providing an excellent basis for HD‐PROST recon-
struction. This study was only performed on a small number of 
subjects and further evaluations on larger cohorts are needed. 
Nevertheless, this proof of concept suggests an opportunity for 
high‐resolution quantitative magnetization transfer imaging in a 
clinically feasible scan time.

The efficient multithreaded implementation of the high‐
order patch‐based denoising allowed for fast image denoising 
of large data sets (e.g., in the order of 200 s for a 3D data set 
with a matrix size of 200 × 256 × 104 × 6). Further speed-
ups could be achieved to reach clinically acceptable runtimes 
by implementing the joint MR optimization step on multiple 
GPUs55 and using coil compression algorithms.56

HD‐PROST imposes low‐rank in the complex domain and 
therefore captures the possible cross‐correlation observed be-
tween the real and imaginary components, allowing for accu-
rate and faithful reconstruction of both phase and magnitude. 
Our framework makes use of ADMM to decouple the main 
optimization problem into 2 simpler sub‐problems that have 
straightforward solutions. Although most of the noise and un-
dersampling artifacts can be efficiently removed after the first 
iteration, aliasing may still exist depending on the quality of 
the input images. This behavior mainly stems from the fact that 
corrupted images can negatively affect the block matching step, 
resulting in a sub‐optimal grouping. Therefore, several ADMM 
iterations (5 in this study) are needed to achieve good image 
quality reconstructions (see Supporting Information Figure S9).

The technique proposed in this article can potentially 
change conventional multi‐contrast imaging by making  
efficient use of the rich and redundant information available 
locally and temporally. Two applications were introduced in 
this study, nonetheless HD‐PROST stays generic and should 

be easily extendable to many MR applications where mul-
tiple contrasts are involved, such as conventional T1 and T2 
mapping, perfusion imaging,57 4D flow MRI,58 or low SNR 
applications such as arterial spin labeling.59

6 |  CONCLUSION

We present a new framework, termed HD‐PROST, for  
efficient reconstruction of undersampled multi‐channel 
multi‐contrast MR images. HD‐PROST aims at achieving 
high image quality by exploiting the high local and non‐
local redundancies, and the similarities between the multi‐
contrast images through a high‐dimensionality low‐rank 
tensor decomposition. HD‐PROST was validated in acceler-
ated 2D MRF to generate precise T1 and T2 maps in ~2.5 
s without affecting T1/T2 accuracy. For accelerated multi-
ple 3D MT‐weighted acquisitions, HD‐PROST can recover 
high quality images, comparable to a fully sampled acquisi-
tion, in a clinically reasonable time frame. The straightfor-
ward, yet efficient, application of HD‐PROST to 2D and 3D  
multi‐contrast data sets provides several opportunities for fu-
ture research, particularly in areas where high‐dimensionality 
is likely to increase in importance.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Variable flip angle pattern used in the accelerated 
2D MRF study. This pattern was described in Assländer et al44

FIGURE S2 T1 map (A) and T2 map (B) of the 2D MRF 
phantom acquisition. The quantitative values for all phantom 
tubes are reported in Figure 2. Abbreviations: LRI, low‐rank 
inversion; HD‐PROST, high‐dimensionality undersampled 
patch‐based reconstruction
FIGURE S3 T1 (top) and T2 (bottom) maps for subject 3 
reconstructed with low‐rank inversion MRF and the proposed 
HD‐PROST reconstruction with 2000, 1000, and 500 time 
points
FIGURE S4 2D MRF singular images (A) and corresponding 
T1 (top) and T2 (bottom) maps (B) for subject 2 reconstructed 
with low‐rank inversion (LRI), PROST (i.e., reconstructing 
each MRF singular image independently), global low‐rank 
tensor decomposition (global LR) and the proposed HD‐
PROST reconstruction. The white rectangle on the top‐left 
map indicates the region of interest used to determine the T1 
an T2 relaxation times. By exploiting local, non‐local, and 
contrast redundancies, the proposed HD‐PROST technique 
obtains better performance than the other techniques and re-
constructs high‐quality T1 and T2 maps with great noise‐like 
artefacts reduction, contrast preservation, as well as sharp-
ness enhancement, with T1 and T2 accuracies similar to the 
unregularized LRI reconstruction
FIGURE S5 6.5‐fold accelerated 3D MT‐weighted images 
for 6 different contrasts from subject 1 reconstructed with 
zero‐filling, locally low‐rank, compressed‐sensing, and the 
proposed HD‐PROST
FIGURE S6 6.5‐fold accelerated 3D MT‐weighted im-
ages for 6 different contrasts from 1 representative subject 
(subject 1) reconstructed with zero‐filling, locally low‐
rank (LLR), compressed‐sensing (CS), and the proposed 
HD‐PROST. Fine anatomical structures can be efficiently 
retrieved with HD‐PROST as shown by the arrows. See 
Supporting Information Figure S5 for the visualization of 
the whole axial images. Note that slight residual motion 
can be observed on the sharp HD‐PROST reconstruction, 
which is lost in blurring on the compressed sensing recon-
struction (because of regularization) and in the noise of 
LLR reconstruction
FIGURE S7 6.5‐fold accelerated 3D MT‐weighted images 
for 6 different contrasts from subject 2 reconstructed with 
zero‐filling, locally low‐rank, compressed‐sensing, and the 
proposed HD‐PROST
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FIGURE S8 Three‐dimensional reconstruction of a MT‐
weighted 6.5‐fold undersampled brain data in a healthy sub-
ject (subject 3). HD‐PROST reconstruction is compared to 
the fully sampled acquisition for the reference image only  
(�

MT
=0

◦). Six different undersampled MT‐weighted images 
were acquired in 13 min 18 s, whereas the fully sampled ac-
quisition of a single contrast took 12 min 57 s
FIGURE S9 (A) plots of the residual norms for the primal, 
dual and Lagrangian variables as defined in the proposed 
HD‐PROST reconstruction against the number of ADMM 
iterations. (B) MRF T1 and T2 maps obtained with LRI and 
HD‐PROST are shown for different ADMM iterations (iter-
ations 1, 5, and 10)

TABLE S1 Algorithm I: high‐order tensor decomposition 
algorithm for HD‐PROST reconstruction
TABLE S2 Algorithm II: high‐dimensionality undersampled 
patch‐based reconstruction (HD‐PROST)
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