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Abstract

Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual
system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision
loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to
tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation,
while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the
peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually
unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine
brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for
using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM
hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform
is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both
platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeu-
tics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce
tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific,
ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly
translatable platforms that can modulate the innate immune response to promote a positive functional outcome.
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Failed regeneration in CNS neurons is increasingly linked to the innate response of the immune system to
injury, which leads to tissue destructive inflammation and scarring. Extracellular matrix (ECM) technology
has been widely successful clinically in modulating the innate response of the immune system to reduce
inflammation and to increase positive tissue remodeling, over scarring. ECM technology is now being
developed to treat CNS injuries. Here we discuss recent advances in developing ECM technology in two
platforms, an injectable ECM hydrogel and an ECM hydrogel and polymer “biohybrid” sheet. Unlike
traditional immunosuppressive treatments that also suppress beneficial immune system functions, ECM-
based devices offer a natural biocompatible platform for modulating the innate immune response to
\promote functional CNS tissue repair. j
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Introduction

Approximately 2.5 million cases of ocular trauma are
reported annually in the United States, with about 50,000
of these cases resulting in permanent vision loss at an
estimated lifetime cost of approximately $900,000 per
person according to the National Federation of the Blind
(2013). Additionally, ~80 million people in the United
States experience eye-blinding diseases. Worldwide,
~285 million people are visually impaired, and this num-
ber is predicted to increase with increasing longevity
(Pascolini and Mariotti, 2012). However, we lack a clini-
cally relevant regenerative medicine approach to promot-
ing constructive tissue remodeling in the neural tissues of
the eye, the retina, and the optic nerve. This review dis-
cusses developing extracellular matrix (ECM) hydrogel
technology to promote constructive tissue remodeling,
over scarring, after trauma or disease by modulating the
innate immune response to injury. Tissue-specific ECM
hydrogels may also provide a more biologically relevant
delivery platform for existing retinal and optic nerve repair
technologies, like delivering neurotrophic factors, stem or
progenitor cells, or antioxidants, among others. Though
this review focuses primarily on the retinal ganglion cells
(RGCs), microglia, and macrophages, the potential bene-
fits of ECM technology are widely applicable to other
neural and glial populations throughout the CNS.

In adult mammalian CNS neurons, failed axon regener-
ation remains a persistent problem due to the variety of
factors prohibiting axon regeneration. In the visual sys-
tem, injury to RGC axons often leads to progressive RGC
axon degeneration, and ultimately to RGC death and
permanent vision loss. The inability of CNS neurons to
regenerate injured axons is due to multiple intrinsic and
injury-induced factors that suppress axon regeneration,
including poor intrinsic axon growth ability (Goldberg
et al.,, 2002), altered organelle dynamics (Lathrop and
Steketee, 2013), lost neurotrophic support, (Mansour-
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Robaey et al., 1994), glial expressed inhibitory molecules
like Nogo-A, myelin-associated glycoprotein, and oligo-
dendrocyte myelin glycoprotein (McKeon et al., 1999;
Tang et al., 2001), and the innate immune response (Horn
et al., 2008; Fig. 1), among others.

After injury, RGCs can regenerate axons over long dis-
tances, if provided a suitable substrate like a peripheral
nerve graft, to reinnervate visual centers in the rodent
brain (Vidal-Sanz et al., 1987). In rodent models, tran-
sected RGC axons initially display transitory axonal
sprouting, indicating that some intrinsic capacity for re-
generation exists, and then ~90% undergo apoptotic cell
death within 14 d (Berkelaar et al., 1994). After injury,
activated glia, both in the retina and in the optic nerve,
produce pro-regenerative neurotrophic factors (Hauk
et al., 2008), indicating that the glial population also has
some capacity for supporting axon regeneration in the
adult mammalian CNS. However, reactive astrocyte and
other glial cell-mediated remodeling of the ECM (Fisher
et al., 2005; Lewis et al., 2010; Luna et al., 2010; Kayama
et al.,, 2011) ultimately produces a glial scar containing
proteoglycans (Silver and Miller, 2004), including neuro-
can, brevican, phosphacan, and versican (Jones et al.,
2003; Butt et al., 2004), and myelin-derived molecules
that inhibit axon growth in CNS tissues (Trimmer and
Wunderlich, 1990; Schwab, 2010). Thus, in developing
new regenerative therapies for CNS injuries, a more com-
prehensive “tissue-level” approach is required that
includes modulating glial cell activation and ECM remod-
eling to suppress scarring.

Combinatorial approaches, targeting one or more axon
growth-inhibiting factors by molecular and/or genetic ma-
nipulations, can improve RGC survival and increase axon
regeneration in the visual system (Kurimoto et al., 2010).
In optic nerve crush studies, full-length axon regeneration
was reported in mice treated with combinatorial therapies
that increase intrinsic axon regeneration potential, indicat-
ing that injured RGC axons can regenerate through the
“host” optic nerve to reinnervate the brain. Though the
percentage of neurons that regenerated sufficiently to
reinnervate the brain was low, encouragingly, some func-
tional recovery was reported (de Lima et al., 2012).
Additionally, studies using peripheral nerve grafts and
bioengineered neural bridges have shown that transected
RGC axons can also regenerate over long distances
through nonhost tissues (Berry et al., 2008) and biomate-
rials (Wittmer et al., 2011). In some cases, transected RGC
axons regenerated sufficiently to reinnervate the brain.
However, these studies also reported that a low percent-
age of axons regenerated successfully (Bray et al., 1987).
Instead of trying to target numerous growth-inhibiting
factors, which may lead to a never-ending series of com-
plications due to off-target effects, or relying on foreign
tissue or bioengineered neural bridges, which may not be
compatible in the long term and are difficult to envision
routing properly to the numerous visual centers in the
brain, a more logical approach may be to treat CNS injury
at the tissue level by altering the default healing response
to injury.
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Figure 1. Numerous barriers must be overcome to prevent neural degeneration. The low intrinsic regeneration capacity of RGCs, lost
neurotrophic support, and an inflammatory immune response are three major factors leading to neurodegeneration. Therapies
overcoming these barriers are showing promise in preclinical and clinical models, including stem cell delivery from both exogenous
and endogenous sources; neurotrophin delivery; and immunomodulatory therapies using macrophage polarization, immunomodu-

latory drugs, and cytokines.

The innate immune response and CNS
regeneration

The default healing response in the CNS is closely linked
to the timing and nature of the innate immune response to
injury (Koh and DiPietro, 2011; Godwin et al., 2013). After
CNS trauma, damaged and dying cells release chemo-
kines and other molecules (Popovich and Longbrake,
2008; Brinkmann and Zychlinsky, 2012) that modulate
multiple innate immune system cells, including neutro-
phils (Schnell et al., 1999; Donnelly and Popovich, 2008),
macrophages (Soares et al., 1995), and microglia (Hains
and Waxman, 2006), among others. Studies from animals
that can regenerate CNS tissues, including retina, optic
nerve, and brain, indicate that the temporal and spatial
organization of macrophage phenotypes is a critical de-
terminant in the overall healing response (Shechter et al.,
2009, 2013). For example, in vertebrates like the axolotl,
the temporal and spatial patterning of macrophage phe-
notypes appears to determine whether injured tissues are
repaired functionally or whether scar tissue is formed
(Godwin and Rosenthal, 2014).

Macrophages and microglia, the resident macrophage-
like cells in the CNS, alter their phenotypes along a
spectrum, ranging from the classically activated proin-
flammatory, M1-like phenotype to the alternatively acti-
vated anti-inflammatory, M2-like phenotype (Martinez and
Gordon, 2014). This spectrum of phenotypes and their
spatial and temporal ratios to one another play distinct
roles in the healing process in most vertebrates, deter-
mining whether a tissue forms scar tissue or whether a
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tissue remodels to preserve or restore function. M1-like
and M2-like macrophages can generally be distinguished
by assessing cytokine, receptor, and enzyme expression
levels. Classic M1-like markers include, but are not lim-
ited, to proinflammatory markers like interleukin (IL)-1p,
IL-6, IL-12, tumor necrosis factor-«, inducible nitric oxide
synthase, and C-X-C motif chemokine 10, while alterna-
tively activated M2-like markers include transforming
growth factor-B (TGF-p), IL-10, IL-1 receptor antagonist,
arginase-1, CD206, and CD163 (Kawamura et al., 2009;
Hao et al., 2012; Martinez and Gordon, 2014). Of note,
M1- and M2-like markers can vary significantly depending
on species, tissue, or organ, and the nature of the injury or
pathogen. Thus, careful consideration of multiple markers
must be used to identify macrophage phenotypes. Gen-
erally, proinflammatory M1-like cells produce high levels
of oxidative metabolites (e.g., nitric oxide and superoxide)
and proinflammatory cytokines, which are essential for
host defense and tumor cell killing (Sica and Mantovani,
2012). However, these factors also cause secondary tis-
sue damage, expand the injury area, and contribute to
increased scarring (Mantovani et al., 2004). In contrast,
M2-like macrophages are generally thought to be anti-
inflammatory and promote functional tissue remodeling
(Kigerl et al., 2009). Immunodepleting M1-like macro-
phages in adult mammals can reduce scarring and im-
prove tissue preservation and functional outcomes.
Conversely, cytokines like IL-4 or IL-13 promote an M2-
like phenotype (Mokarram et al., 2012), which is thought
to reduce tissue-destructive inflammation and to increase
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Figure 2. ECMs can be derived from different animal tissues or organs, each with a unique compliment of proteins, carbohydrates,
extracellular matrix molecules, growth factors, and cytokines. The ECM is a flexible platform that can be used as a natural material
bioscaffold, an injectable hydrogel, or combined with polymeric materials to form biohybrid devices with controllable mechanical and
biochemical properties. Each form can be augmented with cells or other bioactive molecules to improve the healing response.

functional tissue remodeling (Sica et al., 2006). In CNS
tissues, M1 macrophages are neurotoxic and possess
only moderate axon growth-promoting effects (Kigerl
et al., 2009), whereas M2 macrophages are non-neu-
rotoxic and can promote long-distance axon growth, even
in the presence of growth-inhibitory molecules like chon-
droitin sulfate proteoglycans (CSPG) or myelin (Kigerl
et al., 2009). The M2 phenotype has been implicated in
tissue repair through cytokine secretion that in turn sup-
ports new ECM deposition and tissue remodeling during
the wound-remodeling stage (Mosser and Edwards,
2008). Thus, after CNS injury, immunomodulatory thera-
peutics designed to positively modulate the ratio between
M1-like and M2-like macrophages are a logical approach
to improving CNS repair.

Extracellular matrix technology

How can we modulate microglia and macrophage pheno-
types to promote a more favorable healing outcome in
CNS tissues? Extracellular matrix technology is an attrac-
tive candidate. Naturally derived ECM bioscaffolds have
been shown to modulate the innate immune response in
wide-ranging applications throughout the body. ECM
technology uses ECM bioscaffolds derived by decellular-
izing various healthy mammalian tissues or organs primar-
ily from porcine or equine sources (Gilbert et al., 2006;
Badylak, 2007; Fig. 2). ECM bioscaffolds maintain many
of the bioactive molecules specific to the native tissue,
including collagens, glycosaminoglycans, laminins, and
growth factors (Crapo et al., 2012; Turner and Badylak,
2013), that are unavailable in synthetic materials. When
properly prepared, ECM does not produce an adverse
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immune response (Keane et al., 2012) and is highly trans-
latable clinically. Over 4 million patients have been treated
with >60 Food and Drug Administration-approved, ECM-
based products used to treat injuries in varied tissues,
including skin, heart, esophagus, bladder, muscle, bone,
and peripheral nerves, among others (Badylak et al., 2005;
Badylak, 2007; Valentin et al., 2010; Wolf et al., 2012).
However, few initial studies have analyzed whether ECM
technology can modulate the default healing response in
the brain or spinal cord (Liu et al., 2011; Bible et al., 2012;
Zhang et al., 2013), and applying ECM technology to
retinal or to optic nerve injuries has been virtually unex-
plored.

ECM bioscaffolds can modulate several components of
the default healing response relevant to constructive CNS
tissue remodeling. For example, porcine small intestine
ECM (SIS-ECM) bioscaffolds induce angiogenesis in an
esophageal resection and repair model in dog (Badylak
et al., 2000), and both angiogenesis and neurogenesis in
a murine model of volumetric skeletal muscle loss (Sicari
et al.,, 2012b). SIS-ECM bioscaffolds can also promote
innervation in a rodent abdominal wall reconstruction
model (Agrawal et al., 2009). ECM degradation products
derived from digesting urinary bladder ECM can direct
both progenitor cells and resident tissue-derived cells to
repopulate the injury site in a mouse model of digit am-
putation (Agrawal et al., 2011, 2012). Decellularized pe-
ripheral nerve ECM can stimulate axon regeneration in the
rodent sciatic nerve (Vasudevan et al., 2014) as well as in
human clinical studies in part by stimulating Schwann cell
migration and myelination (Karabekmez et al., 2009; Cho
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et al., 2012). ECM-based hydrogels can reduce glial acti-
vation in rodent CNS trauma models (Lin et al., 2009;
Khaing et al., 2011) with reports of improved neurologic
function (Huang et al., 2012). Finally, ECM bioscaffolds
also possess antimicrobial activities (Brennan et al., 2006;
Medberry et al., 2012), which are critical in any successful
wound-healing scenario.

However, modulating the innate response of the im-
mune system to injury is increasingly recognized as the
critical factor necessary to bias the default healing re-
sponse toward site-appropriate, functional tissue remod-
eling. ECM-derived factors are hypothesized to modulate
the innate immune response by regulating the spatial and
temporal ratios between M1-like and M2-like macrophage
and microglia phenotypes. Naturally derived ECM bio-
scaffolds have been shown to increase M2-like, pro-
regenerative macrophages at the ECM implantation site in
muscle defect models based on both immunohistochem-
ical and quantitative PCR for M1-like and M2-like macro-
phage markers (Badylak et al., 2008; Brown et al., 2009,
2012). However, whether ECM can similarly regulate
M1/M2 phenotypes in infiltrating macrophage and resi-
dent microglia, which differ considerably from monocyte-
derived macrophages (Cherry et al., 2014), in the CNS is
largely unknown. Depleting or inhibiting M1 macrophage
activity has long been recognized as being neuroprotec-
tive in the CNS (Giulian and Robertson, 1990; Gris et al.,
2004). In a rodent traumatic brain injury (TBI) model,
urinary bladder matrix (UBM) injected into the brain did
not detectably activate microglia or astrocytes, while de-
creasing the lesion volume and increasing functional re-
covery (Zhang et al., 2013). In a rodent spinal cord injury
model, M2-like macrophage-derived factors were shown
to reduce astrocyte activation, which in turn reduced
M1-like macrophage infiltration via a putative feedback
mechanism (Haan et al., 2015). Since the glial scar con-
tains inhibitory molecules like CSPGs, which not only
prohibit axon regeneration (McKeon et al., 1999) but also
appear to polarize macrophages toward an M1 phenotype
(Bartus et al., 2014; Didangelos et al., 2014), the glial scar
appears to promote proinflammatory signaling indefinitely
at the lesion site (Kigerl et al., 2009). Thus, the antigliotic
and immunomodulatory properties of naturally derived
ECM bioscaffolds should be further explored in the CNS
as a preemptive strategy for reducing scarring.

How do ECM bioscaffolds modulate the default healing
response at a signaling level? ECM-induced changes in
the default healing response are attributed to both
chemotactic and chemotrophic factors, released during
ECM degradation (Reing et al., 2009), that direct site-
appropriate cellular migration and differentiation. In turn,
appropriately differentiated cells feedback positively by
exerting site-appropriate changes in the extracellular ma-
trix in a process termed “dynamic reciprocity” (Bissell and
Barcellos-Hoff, 1987; Berthiaume et al., 1996; Nelson and
Bissell, 2006). After ECM is applied in vivo, ECM bioscaf-
folds are rapidly invaded and degraded by macrophages
and other immune cells. During degradation, factors are
released, including growth factors that contribute to heal-
ing, like VEGF (Sage, 1997; Hodde et al., 2001), TGF-p,
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PDGF, BMP4, and bFGF (McDeuvitt et al., 2003; Badylak,
2004). Recent studies have demonstrated that biologically
active ECM degradation products are released from col-
lagen, laminin, and fibronectin molecules (Davis et al.,
2000; Adair-Kirk and Senior, 2008; Brennan et al., 2008;
Crisan et al., 2008; Reing et al., 2009) and from angio-
genic proteins (Sage, 1997; Hodde et al., 2001). These
so-called “matricryptic peptides” can recruit endogenous
stem cells and direct their migration (Agrawal et al., 2011),
proliferation (Reing et al., 2009), and differentiation into
site-appropriate cell types. For example, peptides gener-
ated by enzymatic degradation of urinary bladder ECM
identified a C-terminal telopeptide of collagen llla that can
direct stem cell chemotaxis in vitro and attract Sox2™"/
Scal™/Lin~ progenitor cells in vivo in a mouse digit am-
putation model (Agrawal et al., 2011). Moreover, in a dog
musculoskeletal model, ECM-derived scaffolds have
been shown to recruit CD133™ myogenic progenitor cells
(Turner et al., 2012) as well as Scal™/PW1™ interstitial
muscle stem cells (Perniconi et al., 2011). Whether similar
mechanisms can direct CNS stem cell populations re-
mains to be determined but is an ongoing area of inves-
tigation.

Both age and tissue type are important factors with
ECM-derived from younger, tissue-matched sources, of-
ten achieving increased progenitor cell recruitment and
enhanced ECM-mediated alteration of the default immune
response toward a pro-repair M2 macrophage phenotype
(Brennan et al., 2008; Sicari et al., 2012a). Thus, tissue-
matched ECM bioscaffolds, like porcine brain, optic
nerve, or retinal ECMs, may be good candidates for mod-
ulating the innate immune response in CNS-specific,
brain, spinal cord, retinal, or optic nerve injuries. Further-
more, recent advances in decellularization techniques
have permitted ECM to be derived from delicate tissues
previously not decellularizable using established proto-
cols, including fetal brain, optic nerve, and retina (Fig. 3).
The ability to use hydrogels derived from fetal, tissue-
matched sources, particularly in delicate CNS tissues like
the retina, is an exciting and open area for investigation.
Preliminary in vitro studies indicate fetal, tissue-specific
ECMs can increase retinal ganglion cell survival and axon
regeneration significantly over adult tissue-derived ver-
sions (Fig. 4).

Modulating inflammation is critical to a
positive outcome in CNS tissues like
retina and optic nerve

Inflammation plays a central role in the healing outcome
and in the rate of disease progression. Inflammation ex-
erts both positive and negative effects on RGC regener-
ation. After incisional or penetrating trauma to the retina,
cells die in all retinal layers adjacent to the wound (Sip-
perley et al., 1978; Turner et al., 1986). Similarly, all pho-
toreceptors adjacent to the wound die by apoptosis or
programmed necrosis. Retinal cell death is accompanied
by the rapid onset of glial activation (Yoshida et al., 1995;
Fisher et al., 2005). Within 30 min of injury, cell cycle-
related transcription factors that regulate astrocyte prolif-
eration, like c-Fos and Jun-B, are upregulated (Fisher
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Fetal ECM can be derived from porcine sources.

Figure 3. Images and H&E staining of different decellularized
CNS ECMs derived from fetal porcine tissues.

et al., 2005). Within 3 d, glial fibrillary acidic protein and
proliferating cell nuclear antigen, markers of activated and
proliferating glial cells, are upregulated (Yoshida et al.,
1995; Vazquez-Chona et al., 2004). Activated glia in the
retina and in the optic nerve produce multiple pro-
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Figure 4. RGCs grow longer processes in ECM derived from
younger, homologous tissue sources. A, Fluorescence images of
purified primary rat RGCs cultured in adult or fetal brain ECMs.
B, Quantification: p < 0.001, ANOVA.
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regenerative neurotrophic factors (Hauk et al., 2008;
Ahmed et al., 2010). However, reactive astrocytes also
contribute to injury-induced ECM remodeling; altered
synaptic connectivity in the retinal layers; and altered
photoreceptor cellular organization, function, and synap-
tic connectivity (Fisher et al., 2005; Lewis et al., 2010;
Luna et al., 2010; Kayama et al., 2011). Various proinflam-
matory stimuli, including lens injury, intravitreal injection of
zymosan (macrophage activator) or stem cells, and intra-
vitreal peripheral nerve grafting, can all reduce injury-
induced RGC death (Berry et al., 1996; Leon et al., 2000;
Yin et al., 2003; Mead et al., 2013), presumably by mod-
ulating the nature of the inflammatory response. For ex-
ample, after lens injury and intravitreal zymosan injection,
retinal astrocytes and Miller cells release CNTF, which
supports axon regeneration (Muller et al., 2007). Immuno-
modulation combined with endogenous or exogenous
growth factors can enhance RGC regeneration synergis-
tically (Kerschensteiner et al., 2003; Lorber et al., 2008).
After incision-induced trauma to the retina, some types of
inflammation appear to reduce retinal cell death and in-
crease RGC axon regeneration (Berry et al., 2008). Immu-
nosuppressive agents like corticosteroids have also been
used to treat intermediate and posterior segment uveitis
with some success. Corticosteroids can reduce inflam-
mation and alleviate other structural complications. How-
ever, complete suppression of the immune system leads
to secondary complications (Thiyagarajan et al., 2013)
that may actually prohibit long-term recovery in the CNS.
In general, inflammation due to retinal trauma promotes
an M1-like phenotype, which decreases RGC survival and
increases scarring (Cruz-Guilloty et al., 2013; He and
Marneros, 2013), emphasizing the importance of identify-
ing the type and the scope of the inflammatory response,
as well as highlighting the need for readily available and
versatile immunomodulatory therapeutic platforms.

Can ECM-based immunomodulatory devices fill this
need in the CNS, for example by slowing or halting retinal
disease progression? Increasingly, microglial activation is
implicated in retinal disease pathogenesis, including glau-
coma (Yuan and Neufeld, 2001), diabetic retinopathy
(Zeng et al., 2008), age-related macular degeneration
(AMD; Gupta et al., 2003), and retinitis pigmentosa (RP;
Gupta et al.,, 2003), among others. Transplantation of
human induced pluripotent stem cell-derived retinal cell
types has been proposed as a potential treatment for
AMD and RP. However, this treatment strategy needs to
be optimized with regard to characterizing and preparing
donor cells (Ramsden et al., 2013). Current clinical immu-
notherapies can inhibit microglial activity (Yrjanheikki
et al., 1998). However, such strategies can also disrupt
microglial regulation of CNS homeostasis (Edan et al.,
2013). Thus, a more biocompatible immunotherapy like
ECM may be advantageous under certain conditions
alone or as an adjunct therapy. For example, in AMD,
macrophages penetrate the interphotoreceptor matrix
and polarize toward an M1-like phenotype, which is rec-
ognized as a key factor in dry AMD pathogenesis (Cruz-
Guilloty et al.,, 2013). In retinal diseases, can ECM
hydrogels be used to modulate microglial activation di-
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rectly or in combination by delivering other therapeutics in
a natural, injectable, biodegradable device? And, if so,
can sustained modulation be achieved in various dis-
eases?

ECM technology can mitigate secondary

trauma

Primary mechanical injuries are often followed by addi-
tional tissue destruction and expanded scarring due to the
inflammatory response. In the visual system, secondary
ocular trauma in the retina or in the optic nerve can rapidly
increase the injury area and lead to increased vision loss.
One of the most detrimental injury conditions is during
warfare, where significant delays in ocular treatment are
common. In modern warfare, blast injuries are the most
common wounded-in-action injuries accounting for
~60% of all injuries as of July 2009, with up to 40% of
blast injuries expressing concomitant eye injuries. To treat
ocular trauma due to penetrating injuries and intraocular
foreign bodies, the current standard of care requires a
vitreoretinal service and a microsurgical operating suite,
which is generally not possible on the battlefield or in
Level lll combat support hospitals. In a combat support
hospital, patients do receive an eye evaluation and pri-
mary surgical repair by an experienced ophthalmologist
(Weichel and Colyer, 2008), often within hours of injury.
However, in cases where a microsurgical suite and a
vitreoretinal service are required, patients typically expe-
rience a minimum 72-96 h delay before evacuation. These
delays are during a critical period in the healing process
since secondary inflammatory trauma can increase pro-
gressively and is often more damaging than the primary
trauma. For example, secondary inflammatory responses
to penetrating injuries can contribute to endophthalmitis,
which can lead to vision and even eye loss (Lemley and
Han, 2007), or proliferative vitreoretinopathy (PVR), which
can result in progressive retinal traction, tears, and retinal
detachment (Charteris, 1995). The molecular cascades
leading to PVR are detectable within hours in rodent
models of PVR (Wen et al., 1995; Ozaki et al., 2000; Penn
et al., 2006), again emphasizing the need for therapies to
suppress secondary inflammation, like ECM-based de-
vices, which are safe, derived from renewable resources,
and relatively inexpensive, and can be tailored to the
nature and scope of the injury.

ECM hydrogels are a highly tunable
biologic platform

To address this problem, ECM hydrogel technology is
being developed in two platforms designed to rapidly
mitigate secondary trauma in varied injuries. The first
platform is an injectable hydrogel (Medberry et al., 2013)
that can be injected into or around the eye, whereas the
second platform is a convenient ECM and polymer bio-
hybrid sheet (Hong et al., 2011). These technologies are
designed to stabilize retinal or optic nerve injury, reduce
scarring, and increase the potential for vision preserva-
tion. Both platforms are tunable, both mechanically and
biochemically, to deliver drugs, cells, or other therapeu-
tics in a biocompatible, immunomodulatory platform.
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ECM hydrogels

ECM-based hydrogel scaffolds are advantageous be-
cause of their potential for minimally invasive delivery.
Applying ECM technology to injured neural tissues has
been limited, as previously reviewed (Meng et al., 2014),
particularly in the CNS where intrinsic regenerative ability
is low (Goldberg et al., 2002). However, a number of
studies in spinal cord have shown that acellular ECM
matrices can integrate within host spinal cords after trau-
matic brain injury and even improve motor function (Li
et al., 2012; Zhang et al., 2012; Liu et al., 2013). UBM has
been shown to promote constructive cellular responses to
and neuroprotection of injured brain tissues (Zhang et al.,
2013). After injection into healthy brains, UBM did not
increase microglia accumulation or astrocyte activation,
or promote neuronal degeneration. After TBI in rats, UBM
treatment reduced lesion volume and myelin disruption,
and improved vestibulomotor function. However, cogni-
tive recovery was undetected over the time points ana-
lyzed. Recently, Wang et al. (2013) reported similar results
following TBI, showing that UBM decreased sensorimotor
skill loss, indicating that ECM hydrogels may be a viable
treatment option in CNS tissues. In cases of penetrating
ocular trauma, local ECM hydrogel injection provides a
biocompatible, tunable gel for filling acellular injury-
induced defects, recruiting and directing endogenous
stem cell localization and differentiation, and modulating
the immune system to promote positive tissue remodel-

ing.

ECM biohybrid bioscaffolds

Biohybrid scaffolds confer several advantages to ECM
hydrogels by combining the mechanical and biochemical
tunability of an electrospun polymer sheet with the bio-
logic properties of ECM (Hong et al., 2011; Fig. 5). In
regenerative medicine approaches that require bioscaf-
folds with a higher tensile strength, hydrogels are disad-
vantageous due to rapid degradation rates and poor
mechanical properties. The mechanical strength of ECM
hydrogels can be improved by chemical crosslinking
(Baiguera et al., 2014). However, crosslinking changes
ECM composition, leading to increased risk of inflamma-
tion (Valentin et al., 2009), altered degradation rates and
products, and altered biological efficacy and effects.
Combining ECM hydrogels with a synthetic biocompatible
and biodegradable polymer has been shown to be a
viable option (Stankus et al., 2008; Yoon and Kim, 2010).
Hong et al. (2011) used dual-stream electrospinning to
blend synthetic poly(etherurethane urea) (PEUU) polymer
and urinary bladder matrix. The resulting ECM biohybrid
scaffolds have tunable degradation properties and tun-
able mechanical properties. For example, electrospun fi-
bers can be aligned to direct axon growth. Kador et al.
(2014) created a scaffold with aligned fibers by electro-
spinning, which guided retinal ganglion axon growth
directionally. By integrating ECM hydrogels, biohybrid
scaffolds possess higher biocompatibility compared with
purely synthetic scaffold materials. In non-CNS models,
biohybrid scaffolds have been shown to promote con-
structive tissue remodeling in ligament, heart, and body
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Extracellular matrix sheets
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Figure 5. Extracellular matrix in two sheet forms. ECM biohybrid sheets can be made by dual-stream electrospinning. PEUU and ECM
electrospinning setup consists of two syringe pumps and two high-voltage power supply units (not shown). A high positive voltage
(+7-10 kV) is used to charge the steel capillary containing the polymer or ECM solution, and a high negative voltage (—4 kV) is used
to charge the stainless steel mandrel (w). The mandrel is rotated at 200 rpm with a slow lateral translation over a distance of 15 cm,
A, Yielding a tubular, uniform PEUU/ECM sheet. B, Fetal urinary bladder sheet after vacuum pressing. C, D, Scanning electron
microscopy showing the random fibers in the PEUU/ECM biohybrid wrap.

wall (Hong et al., 2011; Thayer et al., 2014; Jahnavi et al.,
2015). In nervous system tissue repair scenarios, the abil-
ity to readily form biohybrid scaffolds into a suturable
nerve wrap or a patch to protect exposed tissues makes
ECM biohybrid scaffolds attractive devices for both me-
chanical and biochemical support.

ECM hydrogels for cellular
transplantation

ECM hydrogels provide a tissue-specific, naturally de-
rived platform for delivering transplanted cells in an inject-
able platform. Transplanting purified retinal progenitor
cells or neural stem cells (NSCs) has emerged as a prom-
ising therapy for preserving visual function. Intravitreal or
optic nerve injections of RGCs, RGC progenitors, or stem
cells are minimally invasive and have been shown in some
neurodegenerative disease models to be neuroprotective
(Klassen et al., 2008; Eveleth, 2013). Transplanted RGCs
or stem cells are hypothesized to slow retinal degenera-
tion by modulating multiple prosurvival pathways simul-
taneously via locally secreted neurotrophic factors and/or
via modulation of the intraocular microenvironment (Mi-
yata et al., 2005; Hertz et al., 2014). And clinical trials have
been performed to test these hypotheses (Ning et al.,
2011). However, RGCs injected into the vitreous integrate
randomly without the correct spatial and cellular organi-
zation. Moreover, although transplanted RGCs can ex-
tend long axons, their orientation is generally not directed
toward the optic nerve head, a prerequisite for restoring
RGC connectivity to the brain. Transplanting sheets of
fetus-derived retinal progenitor cells subretinally can re-
store some vision in both animal models and humans. In
Phase Il clinical trials, visual acuity was improved in pa-
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tients with retinitis pigmentosa or macular degeneration
(Seiler and Aramant, 2012), demonstrating that cellular
transplantation strategies can preserve retinal function in
cases where the ganglion cell connectivity to the brain is
intact. Moreover, retinal sheets hold promise for replacing
RGCs with the proper cellular organization in the retina.
However, similar to single-cell RGC transplantation, reti-
nal sheets cannot replace lost RGCs with the correct
retinal and optic nerve organization, and thus cannot
currently restore vision loss due to lost RGCs. By using
CNS tissue-specific ECM hydrogels, stem or progenitor
cells can be encapsulated and then injected precisely
within a biocompatible matrix, which may offer greater
potential for integration and preservation of function.

In other cases, ECM biohybrid sheets may provide a
better option for delivering cells. For example, mesenchy-
mal stem cells (MSCs) can modulate immune and inflam-
matory effects after injury in both the CNS and peripheral
nervous systems (PNS). MSC delivery into the injury site
can provide anti-inflammatory, immunomodulatory, and
neuroprotective benefits. For example, in dogs with acute
spinal cord injury, the injection of MSCs significantly im-
proved functional recovery (Penha et al., 2014). However,
further studies have shown these injections cause addi-
tional injury due to needle penetration, spinal cord motion
during injection, creation of intraparenchymal pressure
gradients, and hydrodynamic dissection, instilling de-
formed cell masses and possible cord ischemia (Donnelly
et al., 2012). Other studies, using scaffolds, have shown
that fibrin sheets incorporating MSCs demonstrate longi-
tudinal alignment of MSCs and infiltration of host neurites,
which are correlated with further improvement of func-
tional outcomes (Hyatt et al., 2014). Several mechanisms
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Using ECM to promote positive tissue remodeling
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Figure 6. ECM technology can promote positive tissue remodeling by modulating several factors that contribute to the default healing

response in the CNS.

have been proposed for the improved axonal regeneration
seen after injecting MSCs, including paracrine effects due
to the release of trophic factors, including BDNF, NGF,
VEGF, FGF-2, TGF-B, and interferon gamma-1 (Mead
et al., 2014). By incorporating mesenchymal stem cells
into ECM biohybrid sheets, the neuroprotective potential
of stem cells is combined with the immunomodulatory
benefits of ECM. Moreover, incorporating stem cells into
a polymer with tunable biodegradability provides more
control over restricting the cells to a defined location, like
subretinal implantation or as an optic nerve wrap, while
permitting the soluble factors released from both stem
cell and macrophage degradation of the ECM compo-
nents, which have been shown in some systems to have
positive synergistic effects with regard to tissue repair (Liu
et al., 2011)

Can tissue-specific ECMs provide a more efficacious
platform for stem or progenitor cell differentiation and
integration? Numerous studies have shown that ECM
bioscaffolds can direct site-appropriate cellular differen-
tiation from both endogenous (Horne et al., 2010) and
mesenchymal stem cell (Wang et al., 2010) sources. There
are numerous examples of tissue-specific ECMs directing
tissue-specific cellular phenotype differentiation and
function. For example, cartilage-derived ECM can pro-
mote chondrogenic differentiation of adipose-derived
stromal stem cells (Wang et al., 2014), while cardiac ECM
can direct cardiac myocyte differentiation (Xu et al., 2014).
Acellular spinal cord scaffolds can promote positive tissue
remodeling in spinal cord injury models, similar to MSCs
(Liu et al., 2013; Xue et al., 2013). Methods for decellular-
izing spinal cord (Guo et al., 2010), brain (DeQuach et al.,
2011), and optic nerve (Crapo et al.,, 2012) have been
developed from adult and even from fetal sources (Fig. 3).
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Acelluar CNS ECM scaffolds retain neurosupportive pro-
teins, growth factors in a three-dimensional scaffold.
Compared with UBM, CNS-derived ECMs induced PC12
cell migration, while UBM inhibited migration (Crapo et al.,
2012). Brain-derived ECM improved neurite growth of
neural stem cells (Medberry et al., 2013) and neuronal
differentiation of induced pluripotent stem cells. (Crapo
et al., 2012). These studies suggest that ECM may provide
tissue-specific advantages in CNS regenerative medicine
applications and that ECM scaffolds in general may aid
functional recovery after retinal disease.

Non-tissue-specific ECMs can also

promote positive CNS repair

Acellular muscle ECM has been used to treat spinal cord
hemi-sections in rats. With the help of its parallel tubule
structure, sprouting axons grew the full length of the
scaffold in a strikingly parallel and linear fashion (Zhang
et al., 2012). Loaded with amniotic epithelial cells, acellu-
lar muscle scaffolds further promoted nerve fiber sprout-
ing and remyelination, resulting in more functional
recovery (Xue et al., 2013). Acellular vessels are also a
candidate for nerve regeneration scaffolds. Acellular ves-
sels were used as nerve conduits connecting the two
stumps of injured peripheral nerves (Sun et al., 2011).
Acellular PNS scaffolds may also be a good choice for
optic nerve repair. Sciatic nerves were decellularized with
different methods (Gao et al., 2014), and their function in
nerve regeneration was evaluated (Li et al., 2012; Gao
et al., 2014). Schwann cells can support RGC axon
growth, possibly due to neurotrophic factor secretion
and/or the neurotrophic cell receptors on the membrane
of Schwann cells (Baehr and Bunge, 1989; Hu et al,
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2005). Treating ECM with neurotrophic factors can also
improve their ability in CNS regeneration (Li et al., 2012).

Cellular viability and retinal integration are improved by
using various hydrogel materials, including hyaluronic
acid (Gao et al., 2012, Carey et al., 2014), Matrigel (Sharp
and Archer, 2015), alginate (Yang et al., 2015), collagen,
(Cruz-Guilloty et al., 2013), and fibrin (Meng et al., 2014).
Brain ECM hydrogels promoted neuronal differentiation of
induced pluripotent stem cells better than Matrigel-
coated surfaces (DeQuach et al., 2011). DeQuach et al.
(2011) produced brain ECMs and found that neurons
derived from human induced pluripotent stem cells plated
on the brain matrix express neuronal markers and assume
neuronal morphology. Crapo et al. (2014) showed that
CNS-derived ECMs show higher ability in inducing neuron
differentiation of neuronal stem cells compared with UBM.
Liu et al. (2013) developed MSCs that loaded acelluar
spinal cord ECM, which promoted long-distance axon
regeneration in vivo. Moreover, UBM hydrogel has been
used as a carrier for NSCs and injected into rodent brain.
The transplants reduced neuron/tissue loss and white
matter injury, and also significantly ameliorated motor,
memory, and cognitive impairments (Wang et al., 2013).
Stem cells delivered by UBM hydrogels in a murine stroke
model distributed uniformly throughout the lesion cavity
instead of integrating into the host parenchyma. Better
distribution was associated with better primitive tissue
formation (Bible et al., 2012).

Conclusion

ECM-derived hydrogels are natural, biocompatible de-
vices that can modulate inflammation, attract and direct
stem cell proliferation and differentiation, and serve as a
tunable platform for delivering an almost unlimited com-
bination of genetic, molecular, and cellular therapeutic
factors. ECM bioscaffolds have been shown to reduce
inflammation and scarring while improving positive tissue
reconstruction in tissues throughout the body. We hy-
pothesize that tissue-specific hydrogels can do the same
in CNS tissues generally as well as specifically within the
retina and the optic nerve (Fig. 6). Ultimately, a highly
defined and targeted approach is desired to treat CNS
injuries with specificity. Thus, future studies should in-
clude further characterization of the bioactive compo-
nents in the ECM, how various ECM components impact
the innate immune response, and, in turn, how soluble
and nonsoluble factors act on other cells within the CNS,
including the glia, primary neurons, and progenitor and
stem cells.
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