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Abstract: Background and objectives: Assessment of drugs toxicity and associated biomarker genes
is one of the most important tasks in the pre-clinical phase of drug development pipeline as well
as in toxicogenomic studies. There are few statistical methods for the assessment of doses of drugs
(DDs) toxicity and their associated biomarker genes. However, these methods consume more time
for computation of the model parameters using the EM (expectation-maximization) based iterative
approaches. To overcome this problem, in this paper, an attempt is made to propose an alternative
approach based on hierarchical clustering (HC) for the same purpose. Methods and materials: There
are several types of HC approaches whose performance depends on different similarity/distance
measures. Therefore, we explored suitable combinations of distance measures and HC methods based
on Japanese Toxicogenomics Project (TGP) datasets for better clustering/co-clustering between DDs
and genes as well as to detect toxic DDs and their associated biomarker genes. Results: We observed
that Word’s HC method with each of Euclidean, Manhattan, and Minkowski distance measures
produces better clustering/co-clustering results. For an example, in the case of the glutathione
metabolism pathway (GMP) dataset LOC100359539/Rrm2, Gpx6, RGD1562107, Gstm4, Gstm3,
G6pd, Gsta5, Gclc, Mgst2, Gsr, Gpx2, Gclm, Gstp1, LOC100912604/Srm, Gstm4, Odc1, Gsr, Gss
are the biomarker genes and Acetaminophen_Middle, Acetaminophen_High, Methapyrilene_High,
Nitrofurazone_High, Nitrofurazone_Middle, Isoniazid_Middle, Isoniazid_High are their regulatory
(associated) DDs explored by our proposed co-clustering algorithm based on the distance and HC
method combination Euclidean: Word. Similarly, for the peroxisome proliferator-activated receptor
signaling pathway (PPAR-SP) dataset Cpt1a, Cyp8b1, Cyp4a3, Ehhadh, Plin5, Plin2, Fabp3, Me1,
Fabp5, LOC100910385, Cpt2, Acaa1a, Cyp4a1, LOC100365047, Cpt1a, LOC100365047, Angptl4,
Aqp7, Cpt1c, Cpt1b, Me1 are the biomarker genes and Aspirin_Low, Aspirin_Middle, Aspirin_High,
Benzbromarone_Middle, Benzbromarone_High, Clofibrate_Middle, Clofibrate_High, WY14643_Low,
WY14643_High, WY14643_Middle, Gemfibrozil_Middle, Gemfibrozil_High are their regulatory DDs.
Conclusions: Overall, the methods proposed in this article, co-cluster the genes and DDs as well as
detect biomarker genes and their regulatory DDs simultaneously consuming less time compared to
other mentioned methods. The results produced by the proposed methods have been validated by
the available literature and functional annotation.
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1. Introduction

Assessment of groups of similar toxic doses of drugs (DDs) and their regulatory biomarker genes
is the most important objective of toxicity investigation in the pre-clinical phase of drug development
process as well as in toxicogenomic studies. Biomarker genes are a set of genes that are differentially
expressed in the treatment group of animal compared to the control group. This set of genes is also
efficient to differentiate the toxic DDs from the non-toxic DDs. Biomarker genes and their regulatory
DDs can be assessed by toxicogenomic study which emerges from toxicology. Toxicology is a field
of science which studies the adverse effects of chemicals and environmental exposures in living
organisms [1]. The prime objective of this study is the empirical and contextual characterization
of adverse effects of chemicals/drugs from tissue, the cell, and the intracellular molecular systems
of organisms. Presently, the rapid accumulation of omics (genomics, transcriptomics, proteomics,
metabolomics) data, development of sophisticated statistical tools and gene and protein annotation
techniques have capitalized the application of gene expression analysis to understand the toxicity
mechanism of drugs or chemical compounds and environmental stressors on biological systems.
The development of these technologies leads to the development of the new field “toxicogenomics”
from toxicology targeting to study the response of the whole genome to DDs or environmental
stressors [2–7]. The adverse effects of the toxicants in an organism cause pathological changes in
certain organs which can be detected by changes in the expression of genes, protein synthesis, and
metabolism. Among these, the gene expression or abundant of mRNA is the most sensitive measure of
these changes. Thus, toxicogenomics, which enables us to comprehensively analyze gene expression
changes caused by an external stimulus in a specific organ, is considered to be one of the most powerful
strategies [8,9]. But the toxicogenomic experiment produces a gigantic size of gene expression data.
Analysis of this gigantic size of data is very complex and sometimes produces non-robust results
for knowledge discovery about biomarker genes and toxicants. Therefore, pathway or molecular
network-based gene expression data analysis increases the predictive power and produces more stable
biomarkers [10–14].

On the other hand, toxicogenomic data analysis as well as knowledge discovery about the
biomarkers and the toxicity of the DDs and environmental stressors often becomes tardy due to the
following reasons. (1) Improper selection of statistical/computational tools. (2) Traditional ways of
interpretation on the results of computational tools which do not cover the objectives of the study.
For example, t-test and Mann–Whitney U test [12,15], and ANOVA [16,17] have been used to detect
toxicogenomic biomarker genes. However, none of these methods can assess the similar toxic DDs and
their associated biomarker genes which is one of the important objectives of toxicity investigation of
drug candidates in the pre-clinical phase of the drug development pipeline. The limitation of the above
mention methods can be overcome by using hidden variable models [14,18,19]. The hidden variable
models are capable to detect toxic DDs and their regulatory biomarker genes by co-clustering DDs
and genes. Nevertheless, since hidden variable models are EM (expectation-maximization) [20] based
iterative method, these methods require comparatively more time to compute the model parameters.
Therefore, to overcome this problem, in this paper, we propose an alternative algorithm based on
hierarchical clustering (HC) for co-clustering DDs and genes as well as to discover toxic DDs and
their associated biomarker genes. The term cluster analysis refers to the process of assigning data to
different groups (clusters) according to their similarity. This approach provides an intuitive method
for interpreting complex data such as microarray, transcriptomic, and epigenomic data. There are
several types of HC (ward, single, complete, average, mcquitty, median, centroid) approaches whose
performance depends on different similarity/distance (euclidean, maximum, manhattan, canberra,
minkowski) measures. Every combination of distance and HC methods do not perform equally in
grouping objects for all types of datasets. Even the performance of some of these combinations is very
poor in some specific fields of study. In the literature, any suitable combination of distance and HC
method is not suggested yet for clustering/co-clustering of toxicogenomic data.Hence, in this paper,
we explore suitable combinations of distance measures and HC methods based on known Japanese
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Toxicogenomics Project (TGP) datasets for better clustering/co-clustering between DDs and genes as
well as to detect toxic DDs and their associated biomarker genes.

2. Methods and Materials

2.1. Data Processing

To investigate toxicity of drugs, mRNA abundance in the liver of Rattus Norvegicus is measured
administering multiple dose levels and time points. A well-designed experiment set to measure gene
expression is measured from the treatment group samples where the treatments are the underlying
conditions (DDs with time combinations). There are also control samples concurrently to the treatment
group samples. The fold change gene expression (FCGE) ypqrt for the pth (p = 1, 2, · · ·P) drug,
qth (q = 1, 2, 3) dose level, tth (t = 1, 2, · · · , T) time point, and rth (r = 1, 2, 3) animal sample can be
computed from the gene expression of the treatment and control group of samples using the equation:

Ypqtr = log2

xpqtr

x′pqtr

 = log2
(
xpqtr

)
− log2

(
x′pqtr

)
. (1)

For single time point this equation can be written as

Ypqr = log2

xpqr

x′pqr

 = log2
(
xpqr

)
− log2

(
x′pqr

)
. (2)

In the Equation (1) xpqtr is the expression of a gene under the treatment group of animal and x′pqtr
is the expression of that gene under the control group of animal when the expression is measured
at multiple points of time. Similarly, in Equation (2) xpqr and x′pqr are the expression of a gene for
the treatment and control group of animal, respectively when expression is measured at single time
point. The average FCGE value over the animal samples of a gene are Ypqt. and Ypq. respectively for
multiple and single time point. From these average FCGE values the effect of DDs over the genes can
be measured. The values will be positive for upregulated genes and negative for downregulated genes.
The datasets of the average FCGE value are the input of our analysis.

2.2. Hierarchical Clustering (HC) Algorithms and Distance Measures

The clustering task is solved by the application of various methods depending on the data. Each
of these approaches will have peculiarities and the determination of what is the correct or what
determines accurate clustering is not easily defined. Hierarchical clustering can proceed using various
linkage/clustering and distance methods. The distance method determines how the distance between
two observations is calculated. The linkage/clustering method is used when deciding the distance for
observations that have already been merged together. Commonly used distance methods are shown in
Table 1. In the analysis of biological data, the most commonly used clustering methods are of two
types: Hierarchical and non-hierarchical (also known as partitioning). The hierarchical clustering
approach builds clusters by repeatedly joining and merging the objects separated by the shortest
distance. Following merging of the closest two points the distance matrix is updated and the process
repeated until all objects are joined. In this article we have considered five distance methods (euclidean,
maximum, manhattan, canberra, minkowski) and seven HC clustering methods (single, complete,
average, ward, mcquitty, median, and centroid). We compare all the combinations of distance and HC
methods for selecting more suitable combinations for clustering genes or DDs of toxicogenomic data.
The description of these HC algorithms is as follows:
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Table 1. Important distance measures used in hierarchical clustering.

Distance Measure Mathematical Form

Euclidean dGi,Gi′
=

 m∑
j=1

(
F
(
Gi, C j

)
− F

(
Gi′ , C j

))2
1/2

Minkowski dGi,Gi′
=

 m∑
j=1

∣∣∣∣F(Gi, C j
)
− F

(
Gi′ , C j

)∣∣∣∣v1/v

Manhattan dGi,Gi′
=

m∑
j=1

∣∣∣∣F(Gi, C j
)
− F

(
Gi′ , C j

)∣∣∣∣
Canbera dGi,Gi′

=
m∑

j=1

∣∣∣F(Gi,C j)−F(Gi′ ,C j)
∣∣∣

F(Gi,C j)+F(Gi′ ,C j)

Maximum dGi,Gi′
= max j

∣∣∣∣F(Gi, C j
)
− F

(
Gi′ , C j

)∣∣∣∣
2.2.1. Single Linkage

The single linkage HC algorithm clusters objects (genes or doses of chemical compounds) of
toxicogenomic data based on the distance or similarity between two pairs of genes/DDs. At the starting,
the smallest distance D =

{
dGi,Gi′

}
will be found and merge the corresponding genes and form a cluster

(GiGi′ ). In the next step, the distance between the clusters (GiGi′ ) and Gi′′ are computed by

d(Gi,Gi′ )Gi′′
= min

{
dGi,Gi′′

, dGi′ ,Gi′′

}
(3)

to form the cluster (Gi, Gi′Gi′′ ). This process continues until all genes merge into a single cluster.

2.2.2. Complete Linkage

In the complete linkage HC algorithm two objects form a cluster together, when their distance
is the largest. The general agglomerative algorithm starts finding the minimum entry D =

{
dGi,Gi′

}
and merges corresponding genes, such as Gi and Gi′ , to get cluster (Gi, Gi′). In the next step clusters
(GiGi′) and Gi′′ will be merged into a cluster (Gi, Gi′Gi′′ ) based on their maximum distance which is
computed as

d(Gi,Gi′ )Gi′′
= max

{
dGi,Gi′′

, dGi′ ,Gi′′

}
. (4)

This process continues until all genes merge into a single cluster.

2.2.3. Average Linkage

Average linkage treats the distance between two clusters as the average between all pairs of
items where one member of a pair belongs to each cluster. We begin searching the distance matrix
D =

{
dGi,Gi′

}
to find the nearest genes, for example, Gi and Gi′ objects are merged to get the cluster

(GiGi′ ). In the subsequent step, the distance between (GiGi′ ) and cluster Gi′′ is obtained by

d(GiGi′ )Gi′′
=

∑
i
∑

i′′ dii′′

NGiGi′
NGi′′

(5)

where dii′′ is the distance between gene i in cluster (GiGi′) and gene i′′ in cluster Gi′′ and NGiGi′
and

NGi′′
are the number of genes in clusters (GiGi′ ) and Gi′′ respectively.

2.2.4. Centroid

The centroid method involves finding out the mean vector for each of the clusters and talking
distance between two centroids. Initially, each of the genes is a cluster then distance between two
clusters Gi and Gi′ is calculated as:

D = d
{F(Gi,C.), F(Gi′ ,C. )}

(6)
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2.2.5. Median

The median HC method seeks the median of each of the clusters and measures the distance
between two median points. The distance between the median of two clusters Gi and Gi′ is

D = d{F(Gi′ ,CMed), F(Gi′ ,CMed)}
. (7)

2.2.6. Ward’s Algorithm

Ward’s HC algorithm clusters objects based on minimizing ‘loss of information’ from joining two
groups. This algorithm used error sum of squares (ESS) to measure the loss of information. Firstly, for
a given cluster r, let ESSr be the sum of squared deviations of every item in the cluster from the cluster
mean (centroid). If there are r clusters, define ESS as ESS = ESS1 + ESS2 + · · ·+ ESSr. At each step in
the analysis, the union of every possible pair of clusters is considered, and the two clusters whose
combination results in the smallest increase in ESS (minimum loss of information) are joined. Initially,
each cluster consists of a single item, and, if there are N items, ESSr = 0, r = 1, 2, · · ·N, so ESS = 0.

2.2.7. Distance Measures for HC

Most of the distance measure quantifies the distance or dissimilarity among m-dimensional objects
or items of a dataset. For example, for a n×m gene-DDs toxicogenomic data matrix consisting of G
= (G1, G2, . . . , Gn) genes and C = (C1, C2, . . . , Cm) DDs. We consider the (i, j)th input in the data
matrix as F

(
Gi, C j

)
for convenient using. This input actually represents average FCGE value Ypq. or

Ypqt. for single or multiple time points. The following are important distance measure used in HC.

2.3. Selection of the Suitable Combination of Distance and HC Method

The hierarchical clustering methods group/cluster objects are based on distance matrix which is
obtained from the original data matrix. There are also different methods to obtain distance matrix.
We investigated the suitability of the combination of distance and HC methods for clustering genes
or DDs using DDs clustering error rate (ER) based on known pathway based real datasets. The ER
measures the percentage of miss-clustered DDs according to the known DDs which is calculated as:

ER =
Miss− clustered DDs

Total DDs
× 100. (8)

The HC algorithm in combination with distance method which produces the least clustering ER is
the more suitable combination of clustering and distance methods for grouping genes or DDs.

2.4. Co-Clustering between Genes and DDs and Detection of Toxic DDs and Associated Biomarker Genes
Using HC

In the toxicity study, the subsets of DDs regulate the expression profile of the subsets of genes.
Accordingly, the genes in a biological pathway perform specific functions and the toxic DDs alter the
expression pattern of a subset of biomarker genes in that pathway [19,21]. These biomarker genes and
the toxic DDs can be explored from the biomarker co-clusters. For this purpose, more suitable distance
and HC methods that produce less ER are used to cluster genes and DDs of toxicogenomic data. Our
proposed algorithm follows the following steps to make co-clusters between genes and DDs.

Step 1: Fix the number of clusters in the genes as well as in DDs observing the dendrogram produced
by HC according to the researchers’ interest.

Step 2: Take absolute of the FCGE values within intersection areas for all pairs of genes and DDs clusters
to give them equal weight in average calculations. Since the FCGE value for upregulated and
downregulated genes consists of positive and negative expression values, respectively.
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Step 3: Compute the average of the absolute FCGE value for intersection areas of all pairs of genes and
DDs clusters.

Step 4: Rank the average FCGE values (computed in step 3) and the respective genes and DDs
clusters simultaneously.

Step 5: Assign cluster numbers for genes and DDs newly, based on the ranked average FCGE values
which we get from step 4. For example, the gene and DD cluster intersection which produces
the largest average FCGE value; we assign both of these gene and DD clusters as cluster 1.
Simultaneously, the genes and DDs in cluster 1 together with form co-cluster 1. Similarly, we
assign both of the gene and DD cluster as cluster 2 which produces the second largest average
FCGE value and they form co-cluster 2 accordingly.

According to the characteristics of toxicogenomic data, a cluster of DDs can form co-cluster with
single or more than one cluster of genes, when a DDs cluster might upregulate a set of genes and
simultaneously downregulate another set of genes. Researchers consider a gene as differentially
expressed or biomarker if its FCGE value is greater than 1.5. In that case, the expression intensity of
that gene in the treatment group of samples is almost 3 times larger comparing to its expression in the
control group of samples. But when the expression of a gene in the treatment group is 2 times larger
than its expression in the control group, the FCGE value of that gene is 1. Therefore, we termed the
co-clusters, which average FCGE value greater than one as biomarker co-clusters, and the genes and
DDs in these co-clusters as biomarker genes and their regulatory DDs.

2.5. Real TGP Datasets to Investigate Clustering Performance

The Japanese Toxicogenomics Project (TGP) [22] collected gene expression data setting out a
well-planned experimental condition. There were mainly two types of experiments, one is an in vivo
experiment another is an in vitro experiment. The experimental condition pattern of the in vivo
experiment was the combination of four time points (3 h, 6 h, 9 h, 24 h) and three dose levels (low,
middle, high) and two organs (liver and kidney) of each of the drugs. These treatment conditions
were applied on the Rattus norvegicus for collecting gene expression data from the target organ. There
was also the control animal concurrently for each of the treatment group of animal in the experiment.
The FCGE data can be computed from the gene expression data of the treatment group and control
group samples produced by this experiment using the Equations (1) and (2). Toxygates a user-friendly
interactive data analysis platform as well as database [15] where the FCGE data of the TGP experiment
is available. The drugs’ toxicity effects are more clearly visible at 24 h time point compared to
the 3 h, 6 h, and 9 h time points [15]. That is why in this paper, we have considered pathway
level FCGE data from Rattus Norvegicus, in vivo, liver, and single and multiple dose experiments
at the 24 h time point. We have downloaded the glutathione metabolism pathway (GMP) and
peroxisome proliferator-activated receptor signaling pathway (PPAR-SP) datasets for some selected
drugs along with their dose levels whose toxicity mechanism are known [15,23] from Toxygates
(http://toxygates.nibiohn.go.jp/toxygates/#columns). Additionally, to investigate the performance of
the selected distance and HC methods for clustering toxicogenomic data, datasets for the mentioned
pathways for multiple time points and dose levels are also analyzed in this article.

3. Results

3.1. Selection of Suitable Combination of Distance and HC Methods

As mentioned earlier in the toxicogenomic data, the subsets of DDs regulates the expression
patterns of the respective subsets of genes. Therefore, clustering/co-clustering of genes and DDs is an
important issue in toxicogenomic studies. HC is a popular and widely used clustering algorithm that
uses various distance measures and clustering methods for clustering genes or DDs of toxicogenomic
data. However, none of the researchers suggested yet any suitable combination of distance and
HC clustering methods for toxicogenomic data. Therefore, to do this we have used two known

http://toxygates.nibiohn.go.jp/toxygates/#columns
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datasets GMP and PPAR-SP at the 24 h time point [14,15,23] because toxic effects of DDs are more
clearly visible at this time point compared to the 3 h, 6 h, or 9 h time points [15]. In the GMP
dataset, acetaminophen, methapyrilene, and nitrofurazone are considered as glutathione depleting
and erythromycin, hexachlorobenzene, isoniazid, gentamicin, glibenclamide, penicillamine, and
perhexilline are considered as non-glutathione depleting drugs [15]. In the PPAR-SP dataset WY-14643,
clofibrate, gemfibrozil, benzbromarone, and aspirin are considered as PPARs regulated gene influencing
drugs [23] and cisplatin, diltiazem, methapyrilene, phenobarbital, and triazolam are randomly selected
drugs. The detail description of the datasets is given in Section 2.5. For comparing the 35 combinations
of distance and HC clustering methods, we calculate the ER for both of the datasets in two ways. In
the first way, we consider the glutathione depleting and PPARs-regulatory gene influencing drugs in
one cluster and the others in another cluster for the respective datasets.

In that case, the FCGE value is merged into a single value averaging over the dose levels (low,
middle, and high). In the second way, we consider high and middle doses of glutathione depleting
drugs and PPARs-regulated gene influencing drugs in one cluster and other DDs in another cluster for
GMP and PPAR-SP datasets, respectively. Therefore, each of the datasets is split into two datasets.
For these datasets, the ER is displayed against the 35 combinations of distance and HC clustering
methods in Table 2. From this table it is observed that the distance and HC method combinations
euclidean: ward, manhattan: ward, and minkowski: ward produce smaller and stable ER in all datasets.

Table 2. Percent of error rate (ER) for 35 combinations of distance and HC clustering methods calculated
from the glutathione metabolism and PPAR signaling pathway datasets.

Sl
Combination of

Distance and HC
Clustering Methods

Drug
Clustering ER
for GMP Data

Drug Clustering
ER for PPAR-SP

Data

DDs
Clustering ER
for GMP Data

DDs Clustering
ER for PPAR-SP

Data
1 euclidean:ward 10 0 6.666666667 20
2 euclidean:single 10 40 16.66666667 36.66666667
3 euclidean:complete 10 30 26.66666667 20
4 euclidean:average 10 40 26.66666667 20
5 euclidean:mcquitty 40 40 26.66666667 13.33333333
6 euclidean:median 40 40 3.333333333 26.66666667
7 euclidean:centroid 40 40 16.66666667 30
8 maximum:ward 10 0 16.66666667 10
9 maximum:single 10 40 16.66666667 36.66666667
10 maximum:complete 20 0 16.66666667 26.66666667
11 maximum:average 10 40 26.66666667 36.66666667
12 maximum:mcquitty 10 40 26.66666667 36.66666667
13 maximum:median 40 40 26.66666667 36.66666667
14 maximum:centroid 40 40 16.66666667 30
15 manhattan:ward 10 0 6.666666667 20
16 manhattan:single 40 40 16.66666667 36.66666667
17 manhattan:complete 10 30 3.333333333 20
18 manhattan:average 10 40 26.66666667 20
19 manhattan:mcquitty 10 40 3.333333333 20
20 manhattan:median 40 40 26.66666667 36.66666667
21 manhattan:centroid 40 40 16.66666667 30
22 canberra:ward 50 10 30 20
23 canberra:single 50 10 23.33333333 36.66666667
24 canberra:complete 50 10 30 20
25 canberra:average 50 10 30 23.33333333
26 canberra:mcquitty 50 40 30 23.33333333
27 canberra:median 50 40 40 36.66666667
28 canberra:centroid 50 40 33.33333333 36.66666667
29 minkowski:ward 10 0 6.666666667 20
30 minkowski:single 10 40 16.66666667 36.66666667
31 minkowski:complete 10 30 26.66666667 20
32 minkowski:average 10 40 26.66666667 20
33 minkowski:mcquitty 40 40 26.66666667 13.33333333
34 minkowski:median 40 40 3.333333333 26.66666667
35 minkowski:centroid 40 40 16.66666667 30
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Therefore, we suggest these combinations of distance and HC methods for clustering DDs or
genes of toxicogenomic data.

3.2. Detection of Biomarker Genes and Their Regulatory DDs from the Co-Clusters

The important objective of the toxicogenomics studies is to explore subset of DDs which have
the similar mechanism of action over a subset of genes. This can be done by applying our proposed
algorithm described in Section 2.4 on the results obtained from the suitable combination of distance and
HC methods. It is observed from the results of the previous Section 3.1, the more suitable combinations
of distance and HC methods are euclidean: ward, manhattan: ward, and minkowski: ward. As
an example, in this article we show the analysis of GMP and PPAR-SP datasets at 24 h as well as
multiple (3 h, 6 h, 9 h, and 24 h) time points using the combinations of HC (ward) and distance
(Euclidean) methods.

The dendrogram of DDs and genes based on the distance (Euclidean) and HC (ward) methods for
GMP and PPAR-SP datasets at 24 h as well as multiple time points are depicted in the figures Figure 1
and Figure S1 (Supplementary File), respectively. The ranked clusters/co-clusters (according to average
FCGE value within the co-clusters) for the GMP and PPAR-SP datasets are given in Tables 3 and 4,
respectively. In these tables, the genes and DDs cluster numbers within the parenthesis represent the
newly assigned cluster numbers based on the proposed co-clustering algorithm described in Section 2.4.
For example, in the first row of Table 3 the original HC produced cluster number for both of the gene
and DDs is 3. Since, the intersection mean of these genes and DDs cluster is the largest than other
genes and DDs cluster intersection mean, we assign the both of the gene and DDs cluster as 1. Figure 2
represents the image of the co-clusters in which genes and DDs are arranged according to the ranked
average FCGE values within the co-clusters (Tables 3 and 4). The biomarker co-clusters along with
the proposed method assigned cluster number having the largest average FCGE values (consisting of
biomarker genes and their regulatory DDs) are given in Tables 5 and 6 for GMP and PPAR-SP datasets,
respectively. The results generated by the proposed methods for GMP and PPAR-SP datasets are
validated by the literature [14,15,23] and functional annotation by the DAVID database [24]. The results
of the functional annotation for biomarker genes are given in Tables 7–10. The detail results of genes
and DDs clustering results are given in Supplementary file (Tables S1–S4).

Table 3. Doses of drug and gene co-clustering mean (ranked) of the glutathione metabolism pathway
datasets for the combination (Euclidean: ward) of distance and hierarchical clustering methods.

Euclidean: ward, Dataset: glutathione metabolism pathway at 24 h time point

Gene and compound co-cluster Co-cluster mean

Gene-Cluster-3(1): Compound-Cluster-3(1) 2.5550390
Gene-Cluster-2(2): Compound-Cluster-2(2) 1.6619841
Gene-Cluster-3(1): Compound-Cluster-2(2) 0.8249199
Gene-Cluster-3(1): Compound-Cluster-1(3) 0.8129127
Gene-Cluster-2(2): Compound-Cluster-3(1) 0.5994644
Gene-Cluster-1(3): Compound-Cluster-3(1) 0.5991663
Gene-Cluster-1(3): Compound-Cluster-2(2) 0.4653372
Gene-Cluster-2(2): Compound-Cluster-1(3) 0.3402437
Gene-Cluster-1(3): Compound-Cluster-1(3) 0.2481545

Euclidean: ward, Dataset: glutathione metabolism pathway at 3 h, 6 h 9 h, and 24 h time points

Gene and compound co-cluster Co-cluster mean

Gene-Cluster-3(1): Compound-Cluster-2(1) 1.2954907
Gene-Cluster-1(2): Compound-Cluster-1(2) 0.6118177
Gene-Cluster-2(3): Compound-Cluster-1(2) 0.5850958
Gene-Cluster-3(1): Compound-Cluster-1(2) 0.5157947
Gene-Cluster-3(1): Compound-Cluster-3(3) 0.3513179
Gene-Cluster-1(2): Compound-Cluster-2(1) 0.3360666
Gene-Cluster-2(3): Compound-Cluster-2(1) 0.3285539
Gene-Cluster-1(1): Compound-Cluster-3(3) 0.2478899
Gene-Cluster-2(3): Compound-Cluster-3(3) 0.2424664
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Figure 1. Doses of drugs (DDs) clustering of GMP and PPAR-SP datasets based on the Euclidean
distance method in combination with the ward HC method. (A) DDs clustering of GMP dataset at 24 h
time point. (B) DDs clustering of GMP dataset at multiple (3 h, 6 h, 9 h, and 24 h) time points. (C) DDs
clustering of PPAR-SP dataset at 24 h time point. (D) DDs clustering of PPAR-SP dataset at multiple (3
h, 6 h, 9 h, and 24 h) time point.

Table 4. Doses of drug and gene co-clustering mean (ranked) of the PPAR signaling pathway datasets
for the combination (Euclidean: ward) of distance and hierarchical clustering methods.

Euclidean: ward, Dataset: PPAR signaling pathway at 24 h time point

Gene and compound co-cluster Co-cluster mean

Gene-Cluster-1(1): Compound-Cluster-1(1) 1.5972416
Gene-Cluster-3(2): Compound-Cluster-2(2) 0.6596625
Gene-Cluster-3(2): Compound-Cluster-1(1) 0.6522308
Gene-Cluster-1(1): Compound-Cluster-2(2) 0.4973316
Gene-Cluster-2(3): Compound-Cluster-1(1) 0.3994878
Gene-Cluster-2(3): Compound-Cluster-2(2) 0.2378871

Euclidean: ward, Dataset: PPAR signaling pathway at 3 h, 6 h 9 h, and 24 h time points

Gene and compound co-cluster Co-cluster mean

Gene-Cluster-3(1): Compound-Cluster-2(1) 1.5863836
Gene-Cluster-1(2): Compound-Cluster-2(1) 0.5842037
Gene-Cluster-1(2): Compound-Cluster-1(2) 0.4385611
Gene-Cluster-3(1): Compound-Cluster-1(2) 0.4025768
Gene-Cluster-2(3): Compound-Cluster-2(1) 0.2569643
Gene-Cluster-2(3): Compound-Cluster-1(2) 0.1757952
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Figure 2. Structural view of co-clusters retrieved by our HC based proposed co-clustering algorithm of
the GMP and PPAR-SP datasets. (A) GMP dataset for 24 h time point. (B) GMP dataset for multiple
time points. (C) PPAR-SP dataset for 24 h time point. (D) PPAR-SP dataset for multiple time points.

Table 5. Biomarker co-clusters consisting of biomarker genes and their regulatory doses of drugs
explored by the combination (Euclidean: ward) of distance and hierarchical clustering methods for
glutathione metabolism pathway datasets.

Biomarker Genes Regulatory Doses of Drugs

Euclidean: ward, Dataset: glutathione metabolism pathway at 24 h time point

Gene-cluster-3: LOC100359539/Rrm2,
LOC100359539/Rrm2, Gpx6, RGD1562107 DCCs-cluster-3: isoniazid_Middle, isoniazid_High

Gene-cluster-2: Gclc, Gstm4, Gstm3, G6pd, Gsta5,
Gclc, Mgst2, Gsr, Gpx2, Gclm, Gstp1

DCCs-cluster-2: acetaminophen_Middle,
acetaminophen_High, methapyrilene_High,

nitrofurazone_High

Euclidean:ward, Dataset: glutathione metabolism pathway at 3 h, 6 h 9 h, and 24 h time points

Gene-cluster-2: LOC100912604/Srm, Gclc, Gstm4,
Gstm3, G6pd, Gsta5, Gclc, Odc1, Mgst2, Gsr, Gss,

Gpx2, Gclm, Gstp1

DCCs-cluster-3: acetaminophen_High_24.hr,
acetaminophen_Middle_24.hr,

methapyrilene_High_6.hr,
methapyrilene_High_24.hr,

methapyrilene_High_9.hr, nitrofurazone_High_24.hr,
nitrofurazone_High_6.hr, nitrofurazone_Middle_6.hr,
nitrofurazone_High_9.hr, nitrofurazone_Middle_9.hr,
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Table 6. Biomarker co-clusters consisting of biomarker genes and their regulatory doses of drugs
explored by the combination (Euclidean: ward) of distance and hierarchical clustering methods for
PPAR signaling pathway datasets.

Biomarker Genes Regulatory Doses of Drugs

Euclidean: ward, Dataset: PPAR signaling pathway at 24 h time point

Gene-cluster-1: Cpt1a, Cyp8b1, Cyp4a3, Ehhadh,
Plin5, Fabp3, Me1, Fabp5, LOC100910385, Cpt2,

Acaa1a, Cyp4a1, LOC100365047, Cpt1a,
LOC100365047, Angptl4, Aqp7, Cpt1c, Cpt1b, Me1

DCCs-cluster-1: aspirin_Low, aspirin_High,
aspirin_Middle, benzbromarone_High,

clofibrate_High, WY14643_Low, WY14643_High,
WY14643_Middle

Euclidean: ward, Dataset: PPAR signaling pathway at 3 h, 6 h 9 h, and 24 h time points

Gene-cluster-3: Cyp4a3, Ehhadh, Plin2, Plin5, Me1,
LOC100910385, Cpt2, Acaa1a, Cyp4a1, Angptl4,

Cpt1b

DCCs-cluster-2: aspirin_Low_9.hr,
aspirin_Low_24.hr, aspirin_High_9.hr,

aspirin_High_24.hr, aspirin_Middle_24.hr,
benzbromarone_Middle_6.hr,
benzbromarone_High_9.hr,
benzbromarone_High_3.hr,

benzbromarone_Middle_9.hr,
enzbromarone_High_24.hr,
benzbromarone_High_6.hr,

benzbromarone_Middle_3.hr, clofibrate_Middle_6.hr,
clofibrate_High_24.hr, clofibrate_Middle_9.hr,

clofibrate_High_6.hr, clofibrate_High_9.hr,
gemfibrozil_High_24.hr, gemfibrozil_Middle_24.hr,

gemfibrozil_High_9.hr, WY.14643_High_6.hr,
WY.14643_Middle_6.hr, WY.14643_Middle_24.hr,

WY.14643_Low_3.hr, WY.14643_Low_24.hr,
WY.14643_Middle_9.hr, WY.14643_Low_6.hr,
WY.14643_High_9.hr, WY.14643_Middle_3.hr,

WY.14643_High_3.hr, WY.14643_Low_9.hr,
WY.14643_High_24.hr

Table 7. Functional annotation of KEGG pathway on the biomarker genes in co-cluster-1 discovered by
the distance and HC method combination Euclidean: ward, Dataset: glutathione metabolism pathway
at 24 h time point.

Term Count % p-Value FDR Genes

rno00480:
Glutathione
metabolism

2 66.66 7.48E−3 2.04E−38 RGD1562107,
Gpx6

Table 8. Functional annotation of KEGG pathway on the biomarker genes in co-cluster-2 discovered by
the distance and HC method combination Euclidean: ward, Dataset: glutathione metabolism pathway
at 24 h time point.

Term Count % p-Value Genes

rno00480: Glutathione
metabolism 10 100 3.85E−20

Mgst2, Gpx2, G6pd, Gclm,
Gsr, Gsta5, Gclc, Gclc,
Gstp1, Gstm3, Gstm4

rno00980: Metabolism of
xenobiotics by cytochrome P450 5 50.0 7.43E−7 Mgst2, Gsta5, Gstp1,

Gstm3, Gstm4

rno00982: Drug
metabolism—cytochrome P450 5 50.0 7.87E−7 Mgst2, Gsta5, Gstp1,

Gstm3, Gstm4

rno05204: Chemical
carcinogenesis 5 50.0 2.14E−6 Mgst2, Gsta5, Gstp1,

Gstm3, Gstm4

rno04918: Thyroid hormone
synthesis 2 20.0 0.076 Gpx2, Gsr
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Table 9. Functional annotation of KEGG pathway on the biomarker genes in co-cluster-1 discovered by
the distance and HC method combination Euclidean: ward, Dataset: PPAR signaling pathway at 24 h
time point.

Term Count % p-Value Genes

rno03320: PPAR signaling
pathway 13 76.47 4.88E−24

Cpt1b, Aqp7, Cpt1c, Cpt1a,
Cyp4a3, Cpt1a, Cpt2,

Cyp8b1, Fabp3, Ehhadh,
Acaa1a, Cyp4a1, Angptl4,

Fabp5

rno00071: Fatty acid degradation 8 47.06 3.16E−13
Cpt1b, Cpt2, Ehhadh,
Acaa1a, Cpt1c, Cpt1a,

Cyp4a3, Cpt1a, Cyp4a1

rno01212: Fatty acid metabolism 6 35.29 1.67E−8
Cpt1b, Cpt2, Ehhadh,
Acaa1a, Cpt1c, Cpt1a,

Cpt1a

rno04920: Adipocytokine
signaling pathway 3 17.65 0.0067 Cpt1b, Cpt1c, Cpt1a, Cpt1a

rno04922: Glucagon signaling
pathway 3 17.65 0.0117 Cpt1b, Cpt1c, Cpt1a, Cpt1a

rno04152: AMPK signaling
pathway 3 17.65 0.0187 Cpt1b, Cpt1c, Cpt1a, Cpt1a

rno01100: Metabolic pathways 6 35.29 0.0500
Me1, Me1, Cyp8b1,

Ehhadh, Acaa1a, Cyp4a3,
Cyp4a1

rno00280: Valine, leucine and
isoleucine degradation 2 11.76 0.0885 Ehhadh, Acaa1a

Table 10. Functional annotation of KEGG pathway on the biomarker genes in co-cluster-1 discovered
by the distance and HC method combination Euclidean: ward, Dataset: PPAR signaling pathway at 3
h, 6 h, 9 h, and 24 h time points.

Term Count % p-Value Genes

rno03320: PPAR signaling
pathway 7 63.63 5.49E−12

Cpt1b, Cpt2, Ehhadh,
Acaa1a, Cyp4a3, Angptl4,

Cyp4a1

rno00071: Fatty acid degradation 6 54.54 1.37E−10 Cpt1b, Cpt2, Ehhadh,
Acaa1a, Cyp4a3, Cyp4a1

rno01212: Fatty acid metabolism 4 36.36 1.09E−5 Cpt1b, Cpt2, Ehhadh,
Acaa1a

rno01100: Metabolic pathways 5 45.45 0.0172 Me1, Ehhadh, Acaa1a,
Cyp4a3, Cyp4a1

rno00280: Valine, leucine and
isoleucine degradation 2 18.18 0.0486 Ehhadh, Acaa1a

rno00590: Arachidonic acid
metabolism 2 18.18 0.0709 Cyp4a3, Cyp4a1

rno00830: Retinol metabolism 2 18.18 0.0726 Cyp4a3, Cyp4a1

rno04146: Peroxisome 2 18.18 0.0743 Ehhadh, Acaa1a

rno04750: Inflammatory mediator
regulation of TRP channels 2 18.18 0.0994 Cyp4a3, Cyp4a1
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4. Discussion

The important objectives of the toxicity investigation in the pre-clinical phase of the drug
development process as well as in toxicogenomic studies are the subsets of DDs which have the
similar mechanism of action over the respective subsets of genes and to assess toxic DDs and
their regulatory toxicogenomic biomarker genes. With a view to satisfy these objectives, different
authors have incorporated a number of statistical tools in their works. For example, t-test and
Mann–Whitney U test [12,15], and ANOVA [16,17] were used for the exploration of biomarker
genes. Nonetheless, these methods cannot satisfy the mentioned objectives. Although, there are few
statistical methods [14,18,19] for the assessment of doses of drugs (DDs) toxicity and their associated
biomarker genes, these methods consume more time for computation of the model parameters using
the EM (expectation-maximization) [20] based iterative approaches. To overcome this problem, in
this paper, we have proposed an alternative approach based on hierarchical clustering (HC) for the
same purpose. However, there are several types of HC approaches whose performance depend on
different similarity/distance measures. Therefore, we explored suitable combinations of distance
measures and HC methods based on Japanese Toxicogenomics Project (TGP) datasets for better
clustering/co-clustering between DDs and genes as well as to detect toxic DDs and their associated
biomarker genes.

We investigated the performance of 35 combinations of distance (euclidean, maximum, manhattan,
canberra, minkowski) and HC (ward, single, complete, average, mcquitty, median, centroid)
methods based on the known real glutathione metabolism pathway (GMP) and PPAR signaling
pathway (PPAR-SP) datasets [15,23] using ER. It is observed that the combinations euclidean: ward,
manhattan: ward, and minkowski: ward produce more stable and lower ER for the mentioned
datasets. Therefore, we have proposed ward’s HC methods in combination with distance methods
euclidean, manhattan, or minkowski for clustering/co-clustering genes and DCCs of toxicogenomic
data. For example, we have analyzed GMP and PPAR-SP for single and multiple time points datasets
using the distance and HC method combination euclidean: ward based proposed co-clustering
algorithm described in Section 2.4. In the case of the glutathione metabolism pathway (GMP)
dataset LOC100359539/Rrm2, Gpx6, RGD1562107, Gstm4, Gstm3, G6pd, Gsta5, Gclc, Mgst2,
Gsr, Gpx2, Gclm, Gstp1, LOC100912604/Srm, Gstm4, Odc1, Gsr, Gss are the biomarker genes
explored from biomarker co-clusters (for single and multiple time points datasets combined)
and Acetaminophen_Middle, Acetaminophen_High, Methapyrilene_High, Nitrofurazone_High,
Nitrofurazone_Middle, Isoniazid_Middle, Isoniazid_High are their regulatory (associated) DDs.
Similarly, for the PPAR signaling pathway (PPAR-SP) dataset Cpt1a, Cyp8b1, Cyp4a3, Ehhadh, Plin5,
Plin2, Fabp3, Me1, Fabp5, LOC100910385, Cpt2, Acaa1a, Cyp4a1, LOC100365047, Cpt1a, LOC100365047,
Angptl4, Aqp7, Cpt1c, Cpt1b, Me1 are the biomarker genes and Aspirin_Low, Aspirin_Middle,
Aspirin_High, Benzbromarone_Middle, Benzbromarone_High, Clofibrate_Middle, Clofibrate_High,
WY14643_Low, WY14643_High, WY14643_Middle, Gemfibrozil_Middle, Gemfibrozil_High are
their regulatory DDs. These results are validated by the available literature [14,15,23] and
functional annotation.

5. Conclusions

Overall, the study has shown that the proposed methods have significant advantage over the
existing biomarker gene detection as well as co-clustering methods due to the following reasons.

• Detect the biomarker genes and the regulatory (associated) DDs simultaneously.
• The method safe time, since it requires less time for preparing results compared to the other EM

based iterative co-clustering methods.
• The results produced by the method conform to the literature and database results.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1010-660X/55/8/451/s1.
Figure S1: Gene clustering of glutathione metabolism (GMP) and PPAR signaling pathway (PPAR-SP) datasets
based on Euclidean distance method in combination with ward HC method. Table S1: Gene and DDs clusters
as well as co-clusters generated by the proposed co-clustering algorithm based on the combination of distance
(Euclidean) and HC (ward) methods for glutathione metabolism pathway datasets at 24 h time point. Table S2:
Gene and DDs clusters as well as co-clusters generated by the proposed co-clustering algorithm based on the
combination of distance (Euclidean) and HC (ward) methods for glutathione metabolism pathway datasets at 3 h,
6 h, 9 h, and 24 h time points. Table S3: Gene and DDs clusters as well as co-clusters generated by the proposed
co-clustering algorithm based on the combination of distance (Euclidean) and HC (ward) methods for PPAR
signaling pathway dataset at 24 h time point. Table S4: Gene and DCCs clusters as well as co-clusters generated by
the proposed co-clustering algorithm based on the combination of distance (Euclidean) and HC (ward) methods
for PPAR signaling pathway dataset at 3 h, 6 h, 9 h, and 24 h time points.
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