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Mammals undergo regular cycles of fasting and feeding
that engage dynamic transcriptional responses in meta-
bolic tissues. Here we review advances in our understand-
ing of the gene regulatory networks that contribute to
hepatic responses to fasting and feeding. The advent of se-
quencing and -omics techniques have begun to facilitate a
holistic understanding of the transcriptional landscape
and its plasticity. We highlight transcription factors, their
cofactors, and the pathways that they impact. We also dis-
cuss physiological factors that impinge on these respons-
es, including circadian rhythms and sex differences.
Finally, we review how dietary modifications modulate
hepatic gene expression programs.

In mammals, the transitions between fasting and fed
states are accompanied by complex changes in hepatic
gene expression. The liver is a central hub for coordination
of fasting–feeding transitions given its roles in maintain-
ing blood glucose levels, processing dietary nutrients,
and regulating whole-body energy metabolism (for re-
view, see Trefts et al. 2017). During fasting the liver is
the target of hormones such as glucagon, which shift it
into an energy production mode (Sutherland and Cori
1951). In response, the liver takes up free fatty acids
(FFAs) released into the circulation by adipose lipolysis
to provide energy for itself and to generate ketones for
use by other tissues (Fine and Williams 1960). It also
breaks down glycogen and amino acids to generate glu-
cose for the brain (for review, see Berg et al. 2002). In the
postprandial state, signaled by insulin and the influx of di-
etary carbohydrates, liver suppresses the production of
glucose and switches to using it as its main fuel (for re-
view, see Rui 2014). Excess glucose is converted into gly-
cogen and fatty acids. Newly synthesized and dietary fatty
acids are esterified to generate triglycerides, which are
packaged and exported to the circulation (for review, see
Alves-Bezerra and Cohen 2017). Transcriptional regula-
tion is fundamental to the execution of each these physi-
ological responses. Regulation of transcription involves

the coordinated action of a bevy of transcription factors,
coregulators, and chromatin modifying enzymes, all act-
ing downstream from hormonal signaling pathways. Elu-
cidating the complex metabolic changes associated with
fasting and feeding and their transcriptional underpin-
nings is crucial for understanding both normal physiology
andmetabolic pathologies such as insulin resistance. Giv-
en the extent of transcriptional pathways affected, feeding
status can be a critical variable in the design of experi-
ments involving animals and humans.

Lipid metabolism

PPARα, fatty acid oxidation, and ketogenesis

The nuclear receptor peroxisome proliferator-activated re-
ceptor α (PPARα) sits atop a crucial node coordinating
changes in hepatic lipid metabolism during fasting. Semi-
nal studies by Gonzalez and colleagues showed that
PPARα-knockout mice are compromised in fatty acid oxi-
dation and ketogenesis (Kersten et al. 1999; Leone et al.
1999). PPARα governs the expression of a battery of genes
that coordinates fatty acid uptake and oxidation, ketogen-
esis, and lipid droplet dynamics during fasting. Regulation
of acyl-coAoxidase 1 (ACOX1) byPPARα facilitates perox-
isomal long chain fatty acid (LCFA) oxidation. PPARα in-
duces mitochondrial LCFA oxidation through up-
regulation of carnitine palmitoyltransferase 1a and 2
(CPT1A and CPT2, which transport LCFA into the mito-
chondria), malonyl-CoA decarboxylase (which degrades
the CPT1 inhibitor malonyl-CoA), and other β oxidation
enzymes. PPARα also induces ketogenesis pathway en-
zymes, including 3-hydroxy-3-methylglutaryl-CoA lyase
(HMGCL), acetyl-CoA acetyltransferase 1 (ACAT1), and
3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2)
(Lee et al. 2004; Cheon et al. 2005). PPARα regulates phos-
pholipid remodeling as well by influencing expression of
choline kinase isotypes a and b (CHKA and CHKB), as
well as the acyl-transferases glycerol-3-phosphate
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acyltransferase 3 (GPAT3) and monoacylglycerol O-acyl-
transferase 1 (MOGAT1) (Régnier et al. 2018). Additional-
ly, PPARα induces expression of fibroblast growth factor
21 (FGF21), a liver hormone that promotes β oxidation
and ketogenesis (Potthoff et al. 2009). FGF21 contributes
to the up-regulation of proliferator-activated receptor γ
coactivator protein-1α (PGC-1α), which serves as a tran-
scriptional coactivator of genes in LCFAoxidation and ke-
togenesis (Rhee et al. 2003).

Importantly, fatty acids and their derivatives are acti-
vating ligands for PPARα and thereby help to control their
own metabolism (Keller et al. 1993; Forman et al. 1997;
Kliewer et al. 1997). During fasting, PPARα has been
hypothesized to be activated by the influx of FFA from ad-
ipose lipolysis (Kersten et al. 1999;Montagner et al. 2016).
However, Sanderson et al. (2010) suggested that PPARδ
rather than PPARα is activated by FFA from adipose lipol-
ysis during fasting. Chakravarthy et al. (2005) suggested
that PPARα could be activated by hepatic lipid products
of fatty acid synthase (FASN). Other studies indicate
that PPARαmay be activated by lipolysis of locally stored
triglycerides (Ong et al. 2011). Glucagon, sirtuin 1 (SIRT1),
glucocorticoid receptor (GR), and PPARγ coactivator 1α
(PGC-1α) are known to promote PPARα activity during
fasting (Fig. 1B; Vega et al. 2000; Longuet et al. 2008; Puru-
shotham et al. 2009; Goldstein et al. 2017). Suppression of
the mechanistic target of rapamycin kinase (mTOR) sig-
naling in fasting was found to be necessary for PPARα
ketogenic activity (Sengupta et al. 2010). Additional evi-
dence suggests that SRY-box transcription factor 17
(SOX17) and cyclin-dependent kinase inhibitor 1a (p21)
might also play roles in activation of PPARα (Rommelaere
et al. 2014; Lopez-Guadamillas et al. 2016).

Transcription factors in feeding-induced lipogenesis

In the fed state, the liver receives dietary carbohydrates
from the portal vein, and the excess glucose is converted
into fatty acids through de novo lipogenesis. Fatty acids
are then esterified to make phospholipids, triglyceride,
and cholesterol esters. Sterol regulatory element binding
protein 1c (SREBP-1c) binds to sterol regulatory elements
(SREs) in the regulatory regions of its target genes (Guan
et al. 1997). SREBP-1c is induced in the fed state and plays
a central role in coordinating lipid synthesis. Immature
endoplasmic reticulum (ER) membrane-bound SREBP-1c
protein is processed in the Golgi, and the mature tran-
scription factor subsequently travels to the nucleus,
where it activates its target genes (Brown and Goldstein
1999). SREBP-1c induces the transcription of multiple
genes in fatty acid biosynthesis. It drives expression of
ATP citrate lyase (ACLY) to make acetyl-CoA, and ace-
tyl-CoA carboxylase α (ACC1) and FASN to convert ace-
tyl-CoA into palmitate. Regulation of elongation of very
long chain fatty acids protein 6 (ELOVL6) and stearoyl-
CoA desaturase (SCD-1) by SREBP-1c facilitates the elon-
gation and desaturation of fatty acids, respectively (Shi-
mano et al. 1999; Matsuzaka et al. 2002). Regulation of
fatty acid desaturases 1 and 2 (FADS1 and FADS2) by
SREBP-1c further influences polyunsaturated fatty acid

(PUFA) generation. SREBP-1c also regulates the expres-
sion of genes encoding proteins linked to triglyceride syn-
thesis, including patatin-like phospholipase domain
containing 3 (PNPLA3), mitochondrial glycerol-3-phos-
phate acyltransferase (GPAM), malic enzyme (ME), and
glucose-6-phosphate dehydrogenase (G6PD) (Huang
et al. 2010). Studies have shown that ∼50% of the hepatic
lipogenic response to feeding is abolished in SREBP-1c-
knockout mice (Liang et al. 2002).

Insulin secretion in response to a carbohydrate-rich diet
promotes both the transcription of Srebf1 (the gene encod-
ing SREBP-1c) and processing of immature SREBP-1c pro-
tein (Horton et al. 1998). Although it is clear from
knockout studies that SREBP-1c is a major mediator of in-
sulin’s lipogenic actions (Foretz et al. 1999; Matsuda et al.
2001), the underlying mechanisms by which insulin con-
trols SREBP-1c activity are incompletely understood. Ya-
mamoto et al. (2010) and Matsumoto et al. (2003)
provided evidence that inhibition of protein kinase Cβ
and Cλ (PKCβ and PKCλ) reduces insulin-dependent
SREBP-1c activation. Analysis of the Srebf1 promoter
has identified several transcription factors that contribute
its insulin responsiveness, including liver x receptors
(LXRs), CCAAT enhancer binding protein β (C/EBPβ),
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Figure 1. Transcription factors that regulate lipidmetabolism in
fasted and fed states. (A) Transcription factors such as ChREBP,
LXR, SREBP1c, XBP, USF-1, and SREBP2 are activated by various
factors in response to feeding signals such as glucose and insulin.
These transcription factors induce the expression of genes that
promote lipogenesis and cholesterol biosynthesis. Some of these
transcription factors are also known to be actively inhibited dur-
ing fasting. (B) Transcription factors such as PPARα and PGC-1α
are activated by glucagon, SIRT1, and glucocorticoid receptor
during fasting. These transcription factors induce the expression
of genes that promote fatty acid oxidation and ketogenesis during
fasting. Ketone bodies can be used as energy source for many oth-
er tissues.
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and basic helix-loop-helix family member e40 (BHLHE40)
(Fig. 1A; Chen et al. 2004; Tian et al. 2016; Berthier et al.
2018). SREBP-1c also induces its own promoter (Ame-
miya-Kudo et al. 2000).
Multiple studies have shown that feeding increases

SREBP-1c processing, and this effect appears to be in
part mTORC1-dependent and facilitated by protein ki-
nase B (also known as AKT) phosphorylation (Yellaturu
et al. 2009; Owen et al. 2012). Studies have further sug-
gested that SREBP-1c activity may be regulated by phos-
phorylation and acetylation. Phosphorylation by protein
kinase A (PKA) was reported to attenuate SREBP-1c bind-
ing at lipogenic promoters (Lu and Shyy 2006). SREBP-1c
may be acetylated under high-insulin and high-glucose
conditions by histone acetyltransferase p300 (Ponugoti
et al. 2010). E4 promoter-binding protein 4 (E4BP4), a tran-
scription factor that is up-regulated during feeding by
SREBP-1c, physically interacts with mature SREBP-1c
and protects it from degradation by promoting its acetyla-
tion (Fig. 1A; Tong et al. 2016). Conversely, the fasting-re-
sponsive factor SIRT1 deacetylates SREBP-1c, leading to
its degradation (Ponugoti et al. 2010).
Insulin-induced gene proteins (INSIG-1 and INSIG-2)

capture SREBP cleavage-activating protein (SCAP) and
prevent it from escorting SREBP-1c to the Golgi for cleav-
age. Regulation of Insig1 and Insig2 thereby provides an-
other layer of control for the feeding response of SREBP-
1c. Insulin reduces Insig2a expression in the fed liver, al-
lowing SREBP-1c to be processed (Yabe et al. 2003). Addi-
tionally, dietary PUFAs have been shown to inhibit
refeeding-induced SREBP-1c activation by suppressing
processing (Yahagi et al. 1999). Xu et al. (2001) also showed
that PUFAs can increase Srebf1c mRNA decay. More re-
cently, Kimet al. (2017a) showed that inhibitingACC1de-
creased PUFA biosynthesis, which led to increases in
Srebf1c mRNA expression. Other studies indicate that
ER phospholipid composition is a determinant of SREBP-
1c activity. In feeding and in obesity, increased levels of
polyunsaturated phosphatidylcholine generated by the re-
modeling enzyme lysophosphatidylcholine acyltransfer-
ase 3 (LPCAT3) promote SREBP-1c processing (Rong
et al. 2017). Further studies are needed to reveal the com-
plex relationship between the effects of free PUFAs and
polyunsaturated phospholipids on SREBP-1c activity.
LXRα is a nuclear receptor activated byoxysterols (Janow-

ski et al. 1999).AlthoughLXRα is required formaximal tran-
scription of Srebf1 (Repa et al. 2000), whether or not LXRα
itself conveys a feeding signal is less clear. Anthonisen
et al. (2010) suggested that glucose feeding can activate
LXRα via O-linked β-N-acetylglucosamine (O-GlcNAc)
modification (Fig. 1A). However, in contrast to Srebf1,
mostotherLXRα targetsgenes in liverarenot inducedappre-
ciably by feeding (e.g., Abcg5/8 and Abca1). Furthermore,
Srebf1 expression is still induced by feeding in LXRα/β dou-
ble-knockout mice, even though basal levels are reduced
(Beaven et al. 2013). Interestingly, Lpcat3 expression is
also controlled by LXRα in the liver. Induction of
LPCAT3-dependent ER phospholipid remodeling thus pro-
vides a mechanism whereby LXR can stimulate SREBP-1c
processing as well as transcription (Rong et al. 2017).

Upstream transcription factor 1 (USF-1) is another fac-
tor important in the lipogenic response. USF-1 is neces-
sary for the full activation of Fasn by feeding and
insulin. USF-1 binds to the Fasn promoter constitutively,
but its activity is modulated by post-translational modifi-
cations. USF-1 bound to the Fasn promoter is phosphory-
lated byDNA-dependent protein kinase (DNA-PK) during
feeding, thereby inducing transcription (Fig. 1A; Wong
et al. 2009). Studies suggest thatUSF-1 acts synergistically
with SREBP-1c on Fasn and Gpam (Jerkins et al. 1995;
Griffin et al. 2007). In contrast, USF-1 has been reported
to be deacetylated by histone deacetylase 9 (HDAC9) dur-
ing fasting, which prevents the recruitment of activating
factors (Wong et al. 2009).
Carbohydrate-responsive element-binding protein

(ChREBP) is a transcription factor that induces hepatic li-
pogenesis in response to glucose signals. ChREBP hetero-
dimerizes with Max-like protein X (MLX) and binds to
carbohydrate response elements (ChoREs) in its target
genes (Stoeckman et al. 2004). Known lipogenic targets
for ChREBP include Acly, Fasn, Acc1, and Scd1 (Iizuka
et al. 2004). ChREBP has been shown to physically inter-
act with hepatocyte nuclear factor 4α (HNF4α) on the
Fasn promoter, facilitating its binding during feeding
(Adamson et al. 2006). Hepatic ChREBP deficiency reduc-
es lipogenic gene expression along with SREBP-1c expres-
sion, suggesting that both ChREBP and SREBP-1c must to
be activated by glucose and insulin, respectively, to enable
the full lipogenic response to feeding (Linden et al. 2018).
Similar to SREBP-1c, ChREBP can induce its own gene

expression in a feed-forward loop (for review, see Iizuka
2013). The Chrebpa gene is also an LXR target, and
LXRα is necessary for induction of ChREBPα expression
and activity (Fan et al. 2017). Additionally, post-transcrip-
tional modifications, especially phosphorylation by PKA
and 5′-AMP-activated protein kinase (AMPK) during fast-
ing, have been shown to decrease ChREBP DNA binding
(Fig. 1A; Kawaguchi et al. 2001, 2002). In the setting of
high glucose availability, xylulose-5-phosphate (Xu5P),
an intermediate of the pentose-phosphate shunt, leads to
the dephosphorylation of ChREBP through Xu5P-activat-
ed protein phosphatase (PP2a) (Kabashima et al. 2003).
ChREBP is alsoO-GlcNAcylated under high glucose con-
ditions, thus stabilizing the protein (Guinez et al. 2011;
Sakiyama et al. 2010).
Cholesterol biosynthesis controlled by SREBP-2 is also

up-regulated in the fed state. Forkhead box protein O3
(FOXO3) was reported to cause down-regulation of the
SREBP-2 pathway during fasting by recruiting SIRT6 to
the promoter of Srebf2 (the gene encoding SREBP-2) (Fig.
1A;Tao et al. 2013).Using liver-specific glucose transporter
2 (GLUT2) knockout mice, Seyer et al. (2013) showed that
the up-regulation of cholesterol biosynthesis genes in the
fed conditionwas influenced by hepatic glucose uptake. In-
terestingly, a recent paper by Lu et al. (2020) indicates that
feeding also induces cholesterol synthesis by stabilizing
the SREBP-2 target 3-hydroxy-3-methylglutaryl-coenzyme
A reductase (HMGCR), which catalyzes the rate-limiting
enzyme in cholesterol synthesis. They showed that feed-
ing-activated mTORC phosphorylates ubiquitin
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C-terminal hydrolase 20 (USP20),which in turn is recruited
to the HMGCR complex to prevent its degradation.

There is conflicting evidence as to the role of inositol-
requiring, endoplasmic reticulum-to-nucleus signaling
protein 1a (IRE1a) and X-box-binding protein-1 (XBP1)
signaling in fasting and refeeding. Zhang et al. (2018a)
showed that hepatic growth differentiation factor 15
(GDF15), which promotes hepatic β oxidation and keto-
genesis, is activated by IRE1a-XBP1 during fasting. How-
ever, Pfaffenbach et al. (2010) reported that mTORC1
activates IRE1a-XBP1 in the postprandial period in the
context of lipogenesis.

Glucose metabolism

Transcriptional regulators of glucose metabolism
during fasting

CREB Cyclic AMP (cAMP) response element-binding
protein (CREB) plays a dominant role in driving hepatic
glucose production during fasting. CREB controls the
expression of enzymes catalyzing key steps for hepatic
glucose production such as glucose 6-phosphatase
(G6Pase; encoded by G6pc), which is necessary for both
glycogenolysis and gluconeogenesis, and phosphoenolpyr-
uvate carboxykinase (PEPCK; encoded by Pck1), which is
needed for gluconeogenesis from tricarboxylic acid
(TCA) cycle intermediates (Quinn and Granner 1990; Liu
et al. 1991). Inhibition ofCREB reduces fasting hepatic glu-
cose production (Herzig et al. 2001). The CREB homolog
CREB-H is also induced during fasting and binds to
CREB-regulated transcription coactivator 2 (CRTC2; also
knownasTORC-2) to promote the expression of gluconeo-
genic genes (Lee et al. 2010). In addition to its direct tar-
gets, CREB induces the expression of other transcription
factors that promote gluconeogenesis (such as yin yang 1
[YY1] and NUR77) and ketogenesis (such as transcription
factor EB [TFEB]) (Pei et al. 2006; Lu et al. 2013; Seok
et al. 2014). CREB is activated during acute fasting through
phosphorylation and dephosphorylation events. A cascade
involving glucagon receptor-cAMP-PKA leads to the for-
mation of an active CREB-CREB binding protein (CBP)–
CRTC2 complex (Fig. 2B; for review, see Altarejos and
Montminy 2011). In contrast, in long-term fasting, SIRT1
deacetylates and AMPK phosphorylates CRTC2. These
modifications reduceCREB activity and facilitate a switch
to FOXO1/PGC-1α-driven gluconeogenesis (Koo et al.
2005; Liu et al. 2008). In feeding, insulin signaling causes
phosphorylation of CBP and CRTC2 via PKCλ/ι and salt-
inducible kinase 2 (SIK2), respectively, triggering the dis-
sociation of the CREB–CBP–CRTC2 complex and cessa-
tion of CREB activity (Dentin et al. 2007; He et al. 2009).
Additionally, during refeeding after fasting, ER stress acti-
vates activating transcription factor 6 (ATF6) as part of the
unfolded protein response pathway.ATF6binds toCRTC2
and sequesters it fromCREB, thereby inhibiting gluconeo-
genic gene expression (Wang et al. 2009).

FOXO1 A member of the FOXO family of transcription
factors, FOXO1 regulates hepatic gluconeogenesis in both

fasting and feeding. FOXO1 binds to insulin response ele-
ments in the promoters of genes involved in gluconeogen-
esis (Haeusler et al. 2010). During fasting, mitogen-
activated protein kinase (MAPK) phosphatase 3 (MPK3)
dephosphorylates FOXO1, increasing its nuclear localiza-
tion and activation (Fig. 2B; Wu et al. 2010). In the fed
state, insulin suppresses gluconeogenesis by inhibiting
FOXO1. Insulin signaling leads to AKT-dependent phos-
phorylation of FOXO1, which drives its cytosolic localiza-
tion and proteosome-mediated degradation (Nakae et al.
1999). Interestingly, the absence of hepatic insulin signal-
ing is sufficient to induce inappropriate gluconeogenesis
that can be ameliorated by FOXO1 knockout (Dong
et al. 2008). FOXO1 is regulated negatively by acetylation,
such as by p300/CBP (Matsuzaki et al. 2005). In response
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Figure 2. Transcription factors that regulate glucose metabo-
lism in fasted and fed states. (A) Transcription factors such as
ChREBP, HIF2α-ARNT, IRE1, STAT3, LRH-1, and FXR are acti-
vated by various factors in response to feeding such as glucose
and insulin. These factors induce the transcription of genes that
promote glycolysis and glycogen synthesis. In response to an in-
crease in available glucose and insulin, energy metabolism
switches to using glucose as fuel and replenishes glycogen stores.
(B) Transcription factors such as FOXO1, GR, PGC-1α, CREB,
PPARα, and FXR are activated by glucagon, AMPK, SIRT1, and
glucocorticoids during fasting. These transcription factors induce
the expression of genes that promote gluconeogenesis and glyco-
genolysis. This switch is crucial in maintaining blood glucose
levels during fasting. There is evidence for cross talk between
these transcription factors, one inducing the expression of anoth-
er. Some of these transcription factors are also known to be ac-
tively inhibited by insulin signaling in response to feeding.
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to fasting, FOXO1 is deacetylated and thus activated by
zinc finger and BTB domain-containing 7c (ZBTB7C) and
SIRT1, as well as by histone deacetylases (HDACs) that
are phosphorylated by AMPK (Frescas et al. 2005; Mihay-
lova et al. 2011; Choi et al. 2019).
Similar to CREB, FOXO1 regulates rate-limiting steps

in gluconeogenesis (Zhang et al. 2006). The importance
of FOXO1 in hepatic glucose homeostasis has been exten-
sively documented by constitutive-active mutant and
knockout studies. Liver-specific FOXO1 knockout reduc-
es hepatic gluconeogenesis and glycogenolysis, leading to
a 30% decrease in fasting blood glucose (Matsumoto et al.
2007). Constitutively active FOXO1 prevents the inhibi-
tory effect of insulin on gluconeogenic genes (Puigserver
et al. 2003). There may be some redundancy between
FOXO1 and other FOXO family members in regulating
gluconeogenesis (Kim et al. 2011).
Interactions with other proteins can affect FOXO1 ac-

tivity. PGC-1α and β-catenin bind to FOXO1 and increase
its transcriptional activity, while transcription factor 7-
like 2 (TCF7L2) competes with FOXO1 on the promoters
of gluconeogenic genes, thereby inhibiting their transcrip-
tion (Puigserver et al. 2003; Liu et al. 2011; Oh et al. 2012).
The nuclear receptorNr0b2 (also known as SHP), which is
a FOXO1 target, inhibits gluconeogenic FOXO1 activity
in a negative feedback loop (Wei et al. 2011). Interestingly,
the promoter context determines how FOXO1 interacts
with HNF4α. In fasting, FOXO1 cooperates with HNF4α
on G6Pase but antagonizes HNF4α on the glucokinase
(Gck) promoter (Hirota et al. 2008).

PGC-1α PGC-1α is a transcriptional coactivator induced
by glucagon and glucocorticoid signaling that facilitates
gluconeogenesis (Yoon et al. 2001). CREB induces the
gene encoding PGC-1α in the setting of long-term fasting
to sustain gluconeogenesis (Fig. 2B; Herzig et al. 2001).
FGF21 promotes the expression of PGC-1α as well (Potth-
off et al. 2009), but PGC-1α in return negatively regulates
the expression of FGF21 (Estall et al. 2009b). PGC-1α is
also regulated by post-transcriptional modifications. The
gluconeogenic functions of PGC-1α are inhibited in the
fed state as a result of phosphorylation by S6 kinase, an ef-
fector of mTOR and AKT signaling downstream insulin
(Li et al. 2007; Lustig et al. 2011). Moreover, lysine acetyl-
transferase 2A (KAT2A; also known as GCN5) acetylates
and inhibits PGC-1α in the fed state, while SIRT1 deacety-
lates PGC-1α during fasting, thereby increasing its activi-
ty (Rodgers et al. 2005; Lerin et al. 2006).
During fasting, PGC-1α interacts with several hepatic

transcription factors, including FOXO1 and the nuclear
receptors HNF4α, PPARα, and GR (Yoon et al. 2001; Puig-
server et al. 2003). Livers of PGC-1α knockout mice show
decreased gluconeogenesis alongwith decreased fatty acid
oxidation and increased hepatic steatosis (Burgess et al.
2006; Estall et al. 2009a). Conversely, PGC-1α overexpres-
sion increases hepatic glucose output and fatty acid oxida-
tion (Liang et al. 2009; Morris et al. 2012). Recently, PGC-
1αwas reported to impact insulin signaling during fasting
by altering the ratio of insulin receptor substrates 1 and 2
(IRS1 and IRS2) (Besse-Patin et al. 2019). While PGC-1α

deficiency increases insulin sensitivity, PGC-1α overex-
pression causes insulin resistance (Koo et al. 2004; Leone
et al. 2005; Liang et al. 2009). Additionally, insulin signal-
ing inhibits gluconeogenic PGC-1α activity by inducing
the expression of SHP-interacting leucine zipper protein
(SMILE). SMILE directly competes with PGC-1α and con-
sequently inhibits HNF4α (Lee et al. 2016).

Other transcriptional regulators in glucose metabolism
during fasting GR is activated by binding to stress-relat-
ed glucocorticoid hormone ligands during fasting (McCal-
lum et al. 1983; Opherk et al. 2004). GR induces the
expression of gluconeogenic genes such as Pck1 (Cassuto
et al. 2005). Hepatocyte-specific GR knockout mice have
a survival rate of ∼50% in the first 2 d of life due to hypo-
glycemia. If they survive to adulthood, the knockoutmice
exhibit fasting hypoglycemia (Opherk et al. 2004). Nucle-
ar transcription factor Y (NF-Y) and nuclear factor κb sub-
unit 2 (NF-κB2) have also been suggested respond to
glucagon in fasting and induce gluconeogenesis (Zhang
et al. 2019). NF-Y was shown to promote the expression
of gluconeogenic genes through interacting with CREB
(Zhang et al. 2018c). The bile acid receptor FXR, induced
by PKA and FOXA1, has also been reported to promote
gluconeogenic genes (Ploton et al. 2018; for review, see
Massafra and van Mil 2018)
In addition to its role in fasting-induced fatty acid oxida-

tion, PPARα also affects the expression of genes linked to
gluconeogenesis, glycerol metabolism, and glycogen syn-
thesis (for review, see Kersten 2014). Loss of PPARα causes
severe hypoglycemia in fasted mice and reduces hepatic
glycogen levels in refedmice. Loss of PPARα also prevents
hepatic glycogen breakdown during short-term fasting
(Bandsma et al. 2004).

Transcriptional regulators of glucose metabolism in the
fed state Consistent with its regulation by dietary glu-
cose, ChREBP induces genes linked to glycolysis. ChREBP
is necessary for the glucose-dependent induction of pyru-
vate kinase (PKLR), which catalyzes the last step of glycol-
ysis (Fig. 2A; Rufo et al. 2001). Loss of ChREBP in mice
decreases glycolysis at the pyruvate kinase and glucose-
6-phosphatase steps and consequently increases liver gly-
cogen content (Iizuka et al. 2004). ChREBPβ expression is
up-regulated by carbohydrate feeding, while ChREBPα ex-
pression is down-regulated (Stamatikos et al. 2016).
A number mechanisms inhibit gluconeogenesis in the

fed state. XBP1 can bind to FOXO1 and direct it to degrada-
tion (Fig. 2B; Zhou et al. 2011).During feeding, interleukins
6 and 13 (IL6 and IL13) activate signal transducer and acti-
vator of transcription 3 (STAT3) (Fig. 2A; Inoue et al. 2006;
Stanya et al. 2013), which represses gluconeogenic genes
such asPck1 andG6pase (Ramadoss et al. 2009). In the fast-
ed state, SIRT1 deacetylates STAT3, thus inactivating it to
negate its repression of gluconeogenesis (Nie et al. 2009).
Additionally, hypoxia-inducible factor 2α (HIF2a) is activat-
ed by hypoxia in postprandial liver, where it attenuates glu-
cagon signaling and gluconeogenesis together with its
partner aryl hydrocarbon receptor nuclear translocator
(ARNT) (Ramakrishnan et al. 2016; Scott et al. 2017).
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Nr5a2 (also known as LRH-1) plays a role in postprandi-
al glycolysis and glycogen synthesis by stimulating
Gck expression (Oosterveer et al. 2012). The postprandial
uptake of bile acids activates FXR to support glycogen
synthesis, while during fasting, FXR induced by PKA
and FOXA1 promotes gluconeogenic genes (Fig. 2A,B; Plo-
ton et al. 2018; for review, seeMassafra and vanMil 2018).

Other fasting/feeding responsive pathways

Several metabolic and nonmetabolic processes other than
glucose and lipid metabolism are affected by fasting and
feeding responses in the liver. We highlight some of these,
emphasizing how their regulation may contribute to the
adaptation to the nutritional state.

Amino acid metabolism

Amino acid catabolism appears to play an important role
in providing fuel for gluconeogenesis during fasting. Am-
monia resulting from amino acid catabolism is detoxified
through the urea cycle in periportal hepatocytes and
through glutamine synthesis pericentrally (Brosnan and
Brosnan 2009). Enzymes involved in both processes in-
cluding carbamoyl phosphate synthetase-1 (Cps1), argini-
nosuccinate synthetase 1 (Ass1), argininosuccinate lyase
(Asl), ornithine-aminotransferase (Oat), and proline dehy-
drogenase (Prodh) are up-regulated in fasting (Sokolović
et al. 2008). However, the up-regulation of amino acid ca-
tabolismenzymeshas been shown to be limited to the first
24 h of fasting and to enzymes involved in the degradation
of branched-chain keto-acids, such as acetyl-coenzyme A
dehydrogenase (Acaddm) and hydratase/3-hydroxyacyl-
coenzyme (Ehhadh). This finding indicates that fasting-in-
duced amino acid degradation happens primarily outside
of liver and that the liver’s role is to detoxify the resulting
ammonia. In contrast, protein biosynthesis is rapidly in-
duced during refeeding via mTOR (Mosoni et al. 1996;
Kimball et al. 2000).

Hepatic C/EBPα expression is induced by glucagon in
fasting. It regulates the expression ofCps1 and several oth-
er urea cycle enzymes (Kimura et al. 1998). By regulating
these targets, it has been suggested to promote expression
of gluconeogenic genes such as Pck1 (Louet et al. 2010).
Furthermore, the tumor suppressor p53 is stabilized
by prolonged fasting through an AMK-dependent
mechanism. p53 along with Kruppel-like factor 15
(KLF15) facilitates amino acid catabolism, thus promoting
gluconeogenesis (Teshigawara et al. 2005; Gray et al.
2007; Prokesch et al. 2017).

Bile acid metabolism

Bile acids are inherently tied to the fasting and feeding cy-
cle. Bile acids are synthesized in liver from cholesterol and
stored in the gallbladder. They are secreted into the lumen
of small intestine to allow solubilization and absorption of
dietary fats and fat-soluble vitamins. Bile acids reabsorbed
in the gut are transported to liver, where they activate

FXR. In the fed state, FXR down-regulates bile acid syn-
thesis enzymes via SHP, FGF15, andMAF BZIP transcrip-
tion factor G (MAFG), in a negative feedback loop (Kong
et al. 2012; de Aguiar Vallim et al. 2015). Agonist and
knockout studies have revealed that FXR also plays a
role in keeping postabsorptive pathways in check, includ-
ing inhibiting SREBP-1c-driven fatty acid and triglyceride
synthesis and promoting triglyceride lipolysis by inhibit-
ing apolipoprotein C3 (APOCIII) and angiopoietin-like 3
(ANGPTL3) (Claudel et al. 2003; Watanabe et al. 2004;
Duran-Sandoval et al. 2005).

Iron metabolism

The fasting and feeding processes alter ironmetabolism in
the liver and plasma. Fasting-induced PGC-1α directly in-
duces the expression of 5′-aminolevulinate synthase 1
(ALAS1; the rate-limiting enzyme of hepatic heme biosyn-
thesis) andHEPCIDIN (which inhibits the iron transporter
ferroportin), thereby limiting iron efflux (Handschin et al.
2005; Vecchi et al. 2014). These two strategies increase
iron retention in liver during prolonged fasting. SREBP-
1c activated in the refed state was shown to induce heme
oxygenase 1 (HMOX1), the rate-limiting enzyme in
heme catabolism. This regulation is postulated to protect
cells from oxidative stress (Kallin et al. 2007).

Stress responses

ER and mitochondria are sites of high metabolic activity
during fasting and feeding cycles. In the 24-h fasted liver,
the capacity for ATP synthesis is increased. There is
increased TCA cycle activity and oxidative phosphoryla-
tion from amino acid and fatty acid oxidation (Sokolović
et al. 2008). Increased oxidative phosphorylation may
lead to oxidative stress owing to the accumulation of reac-
tive oxygen species (ROS). Dietary restriction and high-fat
feeding, both of which increase fatty acid oxidation, in-
crease the expression of oxidative stress defense genes
such as glutathione-S transferases and those involved in
glutathione synthesis (Renaud et al. 2014). ER stress path-
ways are also up-regulated in 24-h fasted liver (Sokolović
et al. 2008). ATF4 activated by ER stress induces the ex-
pression of FGF21 (Örd et al. 2018), which acts to reduce
ER stress (Maruyama et al. 2018). TheDNA repair enzyme
8-oxoguanineDNAglycosylase (Ogg1) protectsmitochon-
drial DNA from damage from metabolic reactions. Ogg1
has been shown to facilitate the channeling of glucose
into the glycolytic pathway, TCA cycle, andmitochondri-
al electron transport chain specifically in the fed liver
(Scheffler et al. 2018).

Autophagy

Autophagy is a critical adaptation to low nutrient states.
In fasting and starvation, autophagy is activated by multi-
ple pathways. FOXOs, activated by AMPK in fasting and
starvation, directly induce critical parts of the autophagy
machinery (van der Vos et al. 2012). In addition, FOXO3
and FOXO1 can activate autophagy by inhibiting mTOR
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and interacting with autophagy-related 7 (ATG7), a key
regulator of the autophagosome (Zhao et al. 2010). Addi-
tional mechanisms for regulation of autophagy are dis-
cussed below in the epigenetics section.

High-throughput sequencing and -omics studies

Next-generation sequencing has become an essential tool
for probing the transcriptome. RNA sequencing (RNA-
seq) has been very effective at identifying new genes, re-
vealing pathways that respond to specific stimuli, and
characterizing global transcriptomic profiles in various
contexts. As transcriptomic methods have continued to
evolve, studies have combined RNA-seq with othermeth-
ods in the -omics toolkit, such as DNase I hypersensitive
site sequencing (DNase-seq) and assay for transposase-ac-
cessible chromatin using sequencing (ATAC-seq), both of
which profile accessible chromatin regions, chromatin
immunoprecipitation followed by sequencing (ChIP-seq),
which defines sites of transcription factor binding or his-
tone modification, metabolomics, and proteomics. From
a bird’s eye view, studies comparing the fasted and fed
states, or different time points within in a fasting regimen,
have found hundreds to thousands of differentially ex-
pressed genes, or up to 10% of the hepatic transcriptome
(Robertson et al. 2011). The extent of these change under-
scores the complexity of the physiological response.

Pathway analysis

Pathway analysis tools aid in describing patterns in large
data sets and highlighting unexpected associations. Not
surprisingly, the top changing pathways in fasting versus
fed liver involve lipid, carbohydrate, and amino acid me-
tabolism (Sokolovic ́ et al. 2008). Mitochondrial LCFA up-
take, fatty acid β oxidation, ketogenesis, and PPARα
signaling are among the most prominent responses, peak-
ing at 24 h of fasting (Morgan et al. 2005; Sokolović et al.
2008; Zhang et al. 2011). Conversely, fatty acid and sterol
biosynthesis pathways are down-regulated in fasting liver
samples, reflecting suppression of SREBP-1c and SREBP-2
activity (Morgan et al. 2005; Hakvoort et al. 2011; Zhang
et al. 2011). Gluconeogenesis is up-regulated in fasting, re-
lying on enhanced TCA and malate-aspartate cycling en-
zymes and increased expression of Pck1 (Sokolović et al.
2008). Liver glycogen is depleted by 12 h of fasting in
mice (Geisler et al. 2016) and 17 h in rats (Morgan et al.
2005). Accordingly, at 12–24 h, glycolysis and glycogenol-
ysis genes are down-regulated. Amino acid degradation
and urea cycle enzymes are enriched in the up-regulated
genes in the 24-h fasted liver, consistent with amino
acid oxidation (Sokolovic ́ et al. 2008; Zhang et al. 2011).
These changes continue at 72 h of fasting, even though
other fasting-related transcriptomic changes are largely
resolved. Hellerstein et al. (1997) observed persistence of
gluconeogenic flux into glycogen and glycogen turnover
in humans even during prolonged fasting. Liver glycogen
was shown to accumulate in mouse liver after 72 h of
fasting, suggesting that amino acid oxidation is the

predominant source of fuel for glucose and glycogen syn-
thesis during prolonged fasting. TCAcycle, electron trans-
port chain, and oxidative phosphorylation pathways are
induced in the 24-h fasted liver (Sokolović et al. 2008;
Zhang et al. 2011). As these processes can cause oxidative
stress, it is not surprising that pathways for unfolded pro-
tein response/ER stress are up-regulated concurrently.
Last, fasting is also associated with a down-regulation of
immune and inflammation-related pathways (Zhang
et al. 2011).
Since feeding is used as the comparison state to fasting

inmost profiling studies, the reverse of what is reported in
the fasted is generally observed for fed and refed condi-
tions. When comparing refed with fasted mice, fatty acid
oxidation pathways dependent on PPARα and gluconeo-
genesis through PEPCK are down-regulated, while fatty
acid biosynthesis is up-regulated (Chi et al. 2020). Com-
paredwith the ad libitum-fed state, refed samples show in-
creased enrichment of pathways for the biosynthesis of
macromolecules. Zhang et al. (2011) observed that the
majority of fasting-induced changes are in fact reversed
by refeeding. Cholesterol biosynthesis is up-regulated in
the fed state compared with fasting and is further up-reg-
ulated in refed state. Notably, genes that do not change
in the fasting and refeeding response are enriched for
housekeeping functions, including nucleic acid metabo-
lism, RNA processing, and cell organization pathways
(Zhang et al. (2011).

Multiomics and network analysis

Combining -omics technologies allows for integrative
analysis. Such analyses may incorporate different profil-
ing techniques (lipidomics, DNase-seq, and ChIP-seq)
and computational methods and/or correlate changes in
different tissues (adipose, muscle, and liver). For example,
studies that integrated transcriptomic analyses across
multiple organs during fasting found that the previously
accepted sequence of using carbohydrate, then lipids,
and finally proteins as the source of fuel was not well sup-
ported by their data. In fact, pathways for utilization of
these fuels were activated in parallel across different or-
gans (Sokolović et al. 2008; Hakvoort et al. 2011; Schupp
et al. 2013). The fatty acid oxidation pathway and genes in-
volved in ketone body synthesis were up-regulated in a
number ofmetabolic organs during fasting, such as the liv-
er, kidney, intestine, and muscle to preserve glucose for
brain (Hakvoort et al. 2011; Robertson et al. 2011). Ac-
cordingly, the transcriptome of the brain changes mini-
mally in fasting. Network and text mining analyses have
further shown that a number of transcription factors are
shared in the fasting and feeding process between meta-
bolically active organs, including PPARα, HNF4Α, GR,
SREBP-1/2, p53, FOXO, early growth response protein 1
(EGR1), AP-1 (c-FOS/c-JUN), Myc proto-oncogene protein
(c-MYC), transcription factor Sp1 (SP1), YY1, and protein
C-ets-1 (ETS1) (Hakvoort et al. 2011; Schupp et al. 2013).
Combining metabolomics and metabolic flux studies

with transcriptional analysis has provided insight into
the coordination of metabolic responses. Robertson
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et al. (2011) showed that changes in the serum and urine
metabolome in response to fasting are small inmagnitude
but broad in scope. The same study found that a reduction
in serum glucose coincides with down-regulation of the
hepatic glycolytic genesGck and Pklr. Serum glucose lev-
els partially recover between 12 and 16 h of fasting as Pck1
expression rises. Pck1 expression, thus gluconeogenesis,
is up-regulated when glycogen stores are depleted (Geisler
et al. 2016). As serum FFAs derived from adipose lipolysis
increase, the expression of genes for acyl-CoA synthesis,
genes facilitating fatty acid import into mitochondria,
and genes involved in fatty acid oxidation increases in par-
allel (Robertson et al. 2011). Since β oxidation and the
TCA cycle require NAD+, the expression of genes to pro-
duce NAD+ is up-regulated: uncoupling protein 2 (UCP2),
which is a PPARα target, and 3-hydroxybutyrate dehydro-
genase 1 (BDH1), which converts acetoacetate to the ke-
tone β-hydroxybutyrate (β-OH butyrate) (Geisler et al.
2016).

In contrast to fasting, responses to refeeding are quick
and robust. Within 1–2 h of refeeding, G6pc and Pck1 are
down-regulated along with increases in liver glycogen. Se-
rum β-OH butyrate levels are decreased as well as expres-
sion of PPARα, CPT1, and HMGCS2 (Geisler et al. 2016).
Moreover, combining transcriptomics and lipidomics,
Régnier et al. (2018) observed an increased abundance of
many phospholipid species in response to fasting in a
PPARα-dependent fashion, along with differential expres-
sion of genes involved in phospholipid homeostasis such
as Chka, Chkb, Agpat9, and Mogat1. Using metabolic
flux and quantitative modelling, Hui et al. (2017) suggest-
ed that glycolysis and TCA cycle are uncoupled during
fasting and that circulating lactate becomes themajor sub-
strate for TCA cycle for most tissues. These findings high-
light how integrating the transcriptome and metabolome
can provide a more complete picture of physiological
responses.

Network analysis and motif enrichment analysis can
provide insight into specific transcriptional regulators as-
sociated with global changes in the transcriptome (Zhang
et al. 2011; Lopez-Guadamillas et al. 2016; Kinouchi et al.
2018). Using transcription factor footprint depth and mo-
tif flanking accessibility analyses of DNase-seq and his-
tone 3 lysine 27 acetylation (H3K27Ac) ChIP-seq data,
Goldstein et al. (2017) identified two roles for GR during
fasting. For gluconeogenic genes, GR rapidly enhanced
CREB activity. However, with respect to ketogenesis-re-
lated genes, GR action increased the expression of PPARα
gradually, leading to slower ramp up of ketogenic genes
(Goldstein et al. 2017). Additionally, using self-organizing
maps to compare multiple conditions collectively, Ren-
nert et al. (2018) revealed that 24-h fasting initiated in
the morning stimulated glucose consumption and gluco-
neogenesis, while fasting initiated in the evening was as-
sociated with comparatively less gluconeogenesis and
more fatty acid and cholesterol synthesis. Sano et al.
(2016) used mathematical modeling and transcriptomics
to determine that genes up-regulated by insulin respond
faster than those down-regulated, but need a higher dose
of insulin to respond.

Epigenetics and transcription factor relationships

Chromatin structure, chromatin remodelers, and histone
modifiers all have regulatory roles in the fasting and feed-
ing response. Fasting and feeding dynamically change the
genomic accessibility landscape, opening up thousands of
new enhancers, rearranging transcription factor binding,
and altering cofactor interactions (Goldstein et al. 2017).
Several histone andDNAmodifiers have been found to in-
fluence the response to fasting and feeding, including the
well-characterized SWI/SNF chromatin remodeling com-
plexes. A subunit of this complex, SWI/SNF complex
60-kDa subunit (BAF60a) responds to glucagon to activate
fatty acid oxidation genes in fasting by interacting with
PGC-1α and engaging in cross talk with PPARα (Li et al.
2008). Conversely, in the fed state a different subunit,
BAF60c, forms a lipoBAF complex that interacts with
USF-1 specifically on lipogenic genes and thus promotes
their expression (Wang et al. 2013).

The deacetylase SIRT1, which largely targets transcrip-
tion factors, is involved in the induction of gluconeogene-
sis and β oxidation genes in fasting. SIRT1 is activated in
response to an increase in the NAD+/NADH ratio during
fasting (Bitterman et al. 2002). CREB induces SIRT1 ex-
pression in fasting (Noriega et al. 2011), and the cAMP/
PKA pathway has also been implicated in activating
SIRT1 through phosphorylation (Gerhart-Hines et al.
2011). PKA signaling has been reported to induce an inter-
action between SIRT1, PPARα, and lysine-specific deme-
thylase 6B (KDM6B; also known as JMJD3) (Seok et al.
2018), leading to the activation of β oxidation genes. In
the fed state, SIRT1 expression and activity are repressed
by ChREBP and glycosylation, respectively (Noriega
et al. 2011; Chattopadhyay et al. 2020). In contrast,
SIRT1 overexpression reduces hepatic steatosis and im-
proves glucose tolerance in obese mice (Li et al. 2011).
PPARα signaling and fatty acid β oxidation are also im-
paired in hepatocyte SIRT1 knockoutmice (Purushotham
et al. 2009). SIRT1 deacetylates PGC-1α during fasting
(thereby increasing its coactivator activity) (Rodgers
et al. 2005) and up-regulates FGF21 in a PPARα-dependent
and PGC-1α-dependent manner. Other studies have
shown that SIRT1 affects gluconeogenesis in long-term
fasting. SIRT1 deacetylates TORC2 and FOXO1, thereby
reducing CREB activity and facilitating a switch to
FOXO1/PGC-1α-driven gluconeogenesis (Frescas et al.
2005; Liu et al. 2008). SIRT1has been shown to induce glu-
coneogenesis by repressing antigluconeogenic STAT3
(Nie et al. 2009). At the same time, studies suggest that
SIRT1 helps to keeps FOXO1-driven gluconeogenesis in
check by providing negative feedback through SHP (Wei
et al. 2011).

GCN5/KAT2A, an epigenetic modifier, can wear differ-
ent hats based on nutritional status. It can function as a
histone acetyltransferase (HAT) in fasting when PKA
phosphorylates GCN5 in a CBP/p300-interacting transac-
tivator 2 (CITED2)-dependent manner (Sakai et al. 2016).
GCN5 is recruited to and acetylates histone H3 at gluco-
neogenic gene promoters, thus driving fasting gluconeo-
genesis. However, in the fed state, GCN5 can function
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as an acetyltransferase for PGC-1α. Insulin inhibits the in-
teraction between GCN5 and CITED2 (Sakai et al. 2012).
GCN5 directly acetylates PGC-1α (countering PGC-1α
deacetylation by SIRT1), repressing its transcriptional ac-
tivity (Lerin et al. 2006).
Other epigenetic factors have also been identified as

modulators of glucose and lipid metabolism in fasting.
For instance, tet methylcytosine dioxygenase 3 (TET3), a
DNA demethylation enzyme, is recruited to the Hnf4a
promoter by FOXA2 during fasting (Li et al. 2020a). It de-
methylates the promoter, leading to increased expression
ofHnf4a and its gluconeogenic target genes. Additionally,
glucocorticoids induce the histone-lysine N-methyltrans-
ferase SETDB2 to regulate Insig2 transcription during fast-
ing, negatively regulating SREBP-driven lipid synthesis
(Roqueta-Rivera et al. 2016). These examples highlight
how DNA and histone modifications contribute to exe-
cuting responses to nutritional demands.
Noncoding RNAs are an exciting new class of regula-

tors that brings another layer of fine-tuning to transcrip-
tional and translational responses in fasting/feeding.
MicroRNAs have been noted to be involved in the dynam-
ic transition from fasted to fed state (Maniyadath et al.
2019). MicroRNAs abundant in the fed state, such as let-
7i, miR-221, and miR-222, target fasting-induced SIRT1,
PGC-1α, and their target genes Cpt1, medium chain-spe-
cific acyl-CoA dehydrogenase (Acadm), Sirt3, and tran-
scription factor a, mitochondrial (Tfam). In the absence
of these fed-state microRNAs, gluconeogenesis is disin-
hibited and cells are unable to switch from catabolism
to anabolism, as evidenced by activated AMPK and re-
duced phosphorylation of AKT (Maniyadath et al. 2019).
Batista et al. (2019) found that >150 noncoding RNAs re-
spond to insulin or fasting and refeeding. Among these,
long noncoding RNA (lncRNA) Gm15441 was shown to
regulate fatty acid oxidation in hepatocytes (Batista et al.
2019). Zhang et al. (2018b) showed that lncRNAH19 is in-
duced by fasting and regulates hepatic glucose output by
altering the promoter methylation and expression of
Hnf4a. Another recent study found that 5-methylcytosine
is enriched on enhancer RNAs with fasting (Aguilo et al.
2016). Additional research is needed to determine
how this RNA modification fine-tunes transcriptional
regulation.

Transcription factor interactions

Multiomics methods have highlighted cooperation and
antagonism between transcription factors during fasting
and feeding. For example, Everett et al. (2013) used tran-
scriptomics and ChIP-seq to reveal that although CREB
is constitutively bound to its target genes, it engages in co-
operative interactions with other factors such as C/EBPβ,
GR, PPARα, and FOXA2 during fasting. In addition,
TORC2, p300, ATF5, andNF-Y are all activated by fasting
and promote gluconeogenic gene expression by enhancing
CREB activity (Koo et al. 2005; Shimizu et al. 2009; He
et al. 2012; Zhang et al. 2018c). Glucagon stimulates glu-
coneogenesis by dephosphorylating TORC2, which then
travels to the nucleus and complexes with CREB (Koo

et al. 2005). TORC2 also associates with p300 upon gluca-
gon signaling, and this enhances its activity (Liu et al.
2008). Interestingly, Liu et al. (2008) observed that
SIRT1 deacetylates TORC2 in the late stages of fasting,
thereby down-regulating it.
Transcription factor interactions also impact regulation

of hepatic glucose metabolism in the fed state. Insulin
phosphorylates CBP, destroying the CREB–CBP complex
(He et al. 2009). However, the closely related coactivator
p300 lacks a similar phosphorylation site and therefore
does not get inactivated by insulin. p300 continues to
bind to CREB on the Ppargc1 gene (encoding PGC-1α) to
maintain basal hepatic glucose production for glycogen
synthesis even in the postprandial state (He et al. 2012,
2013). FXR also influences glucose metabolism in the
fed state by interacting with ChREBP. FXR binds to the
same site as the ChREBP–HNF-4α complex on the Pklr
promoter and triggers the release of ChREBP, leading to re-
pression in the fed state (Caron et al. 2013). FXR knockout
mice show an increased Pklr response to refeeding along
with reduced plasma glucose and hepatic glycogen levels
(Duran-Sandoval et al. 2005).
The activity of transcription factors important in post-

prandial lipid metabolism is also modulated by coopera-
tive interactions. For instance, HNF-4α physically
interacts with ChREBP on the Fasn promoter to fully
up-regulate its expression in response to glucose feeding
(Adamson et al. 2006). Furthermore, SREBP-1c was shown
to cooperate with NY-F and LXR at the promoters of lipo-
genic genes such as Fasn and Acc1 to induce their expres-
sion in response to insulin (Joseph et al. 2002; Talukdar
and Hillgartner 2006; Bennett et al. 2008). Recently B-
cell lymphoma 6 protein (BCL6) was shown to colocalize
with and represses PPARα activity at genes involved in
lipid catabolism in the fed state (Sommars et al. 2019).
Transcriptional regulation of autophagy during fasting

also involves transcription factor interactions and epige-
netic modifiers. Fasting-induced FGF21 phosphorylates
JMJD3, increasing its nuclear transport and interaction
with PPARα (Byun et al. 2020). This interaction induces
a number of PPARα autophagy target genes, including
Tfeb, Atg7, and Pnpla2 (also known as Atgl). In addition,
the CREB–TORC2 complex promotes expression of genes
involved in autophagy and lipophagy under nutrient-de-
prived conditions (Seok et al. 2014). In contrast, during
feeding, FXR disrupts the CREB–TORC2 complex and
competes with PPARα to trans-repress these genes (Lee
et al. 2014; Seok et al. 2014). In later stages of feeding,
FGF19 induces SHP, which recruits the lysine-specific
histone demethylase 1A (KDM1A; also known as LSD1)
to CREB-bound autophagy genes and promotes the disas-
sociation of TORC2, leading to inhibition of autophagy
(Byun et al. 2017).

Insulin signaling and insulin resistance

Insulin signaling and the mechanisms by which it is al-
tered in insulin resistance have been the focus of intense
study. Insulin is secreted by glucose-sensing pancreatic β
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cells in the postprandial state. In the liver, insulin induces
lipogenesis and lipoprotein synthesis, allowing conver-
sion of dietary carbohydrates to triglycerides and their ex-
port to adipose tissue for storage. Insulin also suppresses
gluconeogenesis and glycogenolysis and promotes glyco-
gen synthesis. Insulin-induced hepatic lipogenesis is de-
pendent on cell-autonomous signaling. Insulin reaches
the liver through the periportal vein and binds to the insu-
lin receptor (IR) on hepatocytes. IRS1 and IRS2 are direct
targets of insulin receptor, and their expression is dynam-
ically regulated in fasting/feeding (Ide et al. 2004). Upon
insulin binding, they recruit phosphoinositide 3-kinase
(PI3K), which generates phosphatidylinositol (3,4,5)-tri-
sphosphate (PIP3). PIP3 promotes recruitment of pyruvate
dehydrogenase kinase 1 (PDK1), which activates AKT by
phosphorylation (for review, see Titchenell et al. 2017).
Activation of mTOR and suppression of FOXO1 by
AKT are necessary for insulin induction of lipogenesis
through SREBP-1c (Titchenell et al. 2016). Insulin also
suppresses expression of INSIG1 and INSIG2, which in-
hibits SREBP-1c processing and activation (Boden et al.
2013).

Studies point to hepatic and extrahepatic insulin ef-
fects on liver glucose output in the postprandial state.
Liver IR knockout (LIRKO) mice show hyperglycemia,
confirming that FOXO1 is derepressed without hepatic
insulin signaling (Michael et al. 2000). However, in the
absence of both AKT and FOXO1, hepatic glucose pro-
duction remains responsive to insulin, indicating that ad-
ditional modes of regulation exist (Lu et al. 2012). Insulin
has widespread effects on the hepatic transcriptome. Ba-
tista et al. (2019) profiled the transcriptomic effects of in-
sulin in the absence of changing glucose levels. They
reported that hepatic insulin alters not only glucose
and lipid metabolic pathways, mitochondrial function,
and autophagy but also nonmetabolic pathways such as
Toll-like receptors (TLRs) and Notch signaling. Using
proteomics, Capuani et al. (2015) showed that loss of IR
induces oxidative stress pathways, suggesting that insu-
lin signaling in liver is protective against oxidative
stress. Insulin has also been shown to repress the expres-
sion of adiponectin receptors (AdipoR1 and AdipoR2), re-
ducing sensitivity to adiponectin, which mediates fatty
acid oxidation through AMPK and PPARα (Tsuchida
et al. 2004).

Diet-induced obesity can lead to selective hepatic insu-
lin resistance, in which suppression of glucose production
in the postprandial state is impaired, but insulin-stimulat-
ed lipogenesis and very low-density protein (VLDL) secre-
tion remain intact. Diet-induced obesity and insulin
resistance alter the expression of number of genes in-
volved in fasting and feeding. IRS1 and IRS2 expression
is altered in insulin resistance. Kubota et al. (2016) de-
scribed that in obese mice, insulin signaling is impaired
in the periportal zone, the primary site for gluconeogene-
sis, as Irs2 expression is reduced there. At the same time,
insulin signaling is enhanced in the primary site for lipo-
genesis (the perivenous zone) as the predominant Irs1 in
this zone remains unaffected. This phenomenon may
shed light on how differential regulation of insulin signal-

ing can lead to selective insulin resistance. Additionally,
PGC-1α induced in fasting was shown to increase the
IRS2 to IRS1 ratio in hepatocytes, increasing the sensitiv-
ity for insulin-induced suppression of glucose production
(Besse-Patin et al. 2019). This phenomenon may help ex-
plain how continuous feeding could reduce the IRS2 to
IRS1 ratio and impair glucose suppression. Further sup-
porting this point, FGF21 secreted in fasting has been sug-
gested to sensitize insulin signaling at the beginning of
feeding (Markan et al. 2014).

Effect of time on fasting and feeding response

Circadian rhythm

Light input to the suprachiasmatic nucleus (SCN) of the
hypothalamus creates oscillations in circadian clock pro-
teins to set the body’s daily sleep–wake cycle. The sleep–
wake cycle establishes an intrinsic fasting–feeding
rhythm. In peripheral tissues such as the liver, up to
12% of the total transcriptome has been shown to vary
with the circadian cycle, with many of these transcripts
encoding metabolic proteins (Panda et al. 2002; Storch
et al. 2002; Li et al. 2020b). The circadian cycle is driven
by the actions of a complex consisting of the proteins
clock circadian regulator (CLOCK) and brain and muscle
ARNT-like 1 (BMAL1). This complex promotes transcrip-
tion of the Per andCry families of genes. The period circa-
dian regulator (PER) and cryptochrome (CRY) proteins
subsequently form a heterodimeric complex that repress-
es the transcription of Clock and Bmal1, creating the
characteristic back-and-forth 24-h rhythmof the circadian
cycle (Fig. 3). In mice, which are nocturnal, BMAL1 and
CLOCK protein expression increases during the light
phase, while PER andCRY increase during the dark. How-
ever, in humans, this cycle is reversed, with BMAL1 and
CLOCK increasing during the night and PER and CRY in-
creasing during the day.

In the liver, the CLOCK:BMAL1 complex functions as a
pioneer factor, opening chromatin to allow binding of oth-
er transcription factors such as HNF6 (Menet et al. 2014).
CLOCK:BMAL1 also regulates daily fluctuations in blood
cholesterol through its activation of low-density lipopro-
tein (LDL) receptor transcription (Lee et al. 2012), and
regulateshepatic glycogen content byactivating transcrip-
tionof glycogen synthase2 (Gys2) (Doi et al. 2010).As feed-
ing occurs, insulin suppresses BMAL1:CLOCK by causing
AKT to phosphorylate BMAL1 at Ser42, leading to its nu-
clear exclusion (Dang et al. 2016).During fasting, glucagon
causes recruitment of the CREB:CRTC2 complex to the
Bmal1 promoter to enhance its expression (Sun et al.
2015). Recent studies have shown, however, that this fast-
ing-induced increase in expression is accompanied by a
loss in BMAL1 phosphorylation and acetylation and a
decrease in expression of its target genes (Kinouchi et al.
2018).

During feeding and acute fasting, PER2 promotes glyco-
genesis by binding E-boxes in the promoters of genes en-
coding the protein phosphatase 1 subunits PP1R3A and
PP1R3B, which activate Gys2 (Zani et al. 2013).
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Accordingly, whole-body loss of Per2 lowers fasting hepat-
ic glycogen and glycogen synthase levels (Carvas et al.
2012). Degradation of CRY1 by the DNA damage-binding
protein 1-Cullin 4A (DDB1-CUL4A) E3 ligase enhances
FOXO1-mediated gluconeogenesis in the liver (Tong
et al. 2017). Small molecule activators of CRY have been
shown to inhibit glucagon-mediated gluconeogenesis in
primary hepatocytes (Hirota et al. 2012). In humans, poly-
morphisms causing increased CRY2 levels have been cor-
related with increased hepatic triglyceride content and
fasting hyperglycemia (Machicao et al. 2016). Cry1−/

−Cry2−/− mice show elevated blood glucose upon refeed-
ing following an overnight fast and severely impaired glu-
cose clearance (Lamia et al. 2011).
In the accessory circadian loop, the BMAL1:CLOCK

transcriptional targets ROR and REV-ERB compete for
the ROR/REV-ERB Response Element (RRE) in the
BMAL1 promoter (Guillaumond et al. 2005). REV-ERB
levels rise during the dark phase to repress Bmal1 expres-
sion, while ROR levels rise during the light phase to in-
crease expression (Takeda et al. 2012). REV-ERB controls
diurnal recruitment of HDAC3 and the nuclear receptor
corepressor complex to the Bmal1 promoter to repress
transcription (Yin and Lazar 2005; Feng et al. 2011). In
the liver, REV-ERBα and REV-ERBβ are required for circa-
dian oscillations of core clock genes such as Bmal1 and
Cry1. Whole-body REV-ERBα/β-deficient mice have dis-
rupted daily wheel-running patterns, as well as elevated
fasting glucose and triglycerides (Cho et al. 2012). RORα
and RORγ both regulate circadian variations in Insig2 ex-
pression to provide a check on SREBP-1c-mediated lipo-
genesis during feeding (Zhang et al. 2017). Liver-specific
RORα deletion in mice leads to hepatic steatosis, obesity,
and insulin resistance on high-fat diet (HFD) (Kim et al.
2017b).
Outside of the canonical clock genes, a host of other

transcription factors have been shown to exhibit circadian
variations in expression and activity. Of the 49 nuclear re-
ceptors expressed in mice, 20 exhibit rhythmic circadian
oscillations, including the PPAR family, retinoic acid re-
ceptor RARα, retinoid X receptor RXRα, the estrogen re-
ceptors, and thyroid receptor α. Many of these receptors

peak shortly after the light–dark transition whenmice be-
gin to feed (Yang et al. 2006).

Time-restricted feeding and intermittent fasting

As circadian proteins exert control over metabolism, food
intake conversely regulates circadian cycles. Mice fed a
high-fat diet have altered diurnal feeding behavior, con-
suming more food in the day and less in the night, as
well as altered locomotor activity (Kohsaka et al. 2007).
Restricting the food availability of nocturnal mice to day-
time hours inverts the circadian rhythm of peripheral tis-
sues, such as the liver, while having no effect on the SCN
(Damiola et al. 2000). Furthermore, subjecting wild-type
mice to a 24-h fast results in loss of rhythmicity of
>80% of liver transcripts that normally display circadian
variation (Vollmers et al. 2009). Further evidence of the in-
fluence of food timing onmetabolism comes from studies
of time-restricted feeding (TRF), in which food is limited
to a certain interval each day. TRF protects against the de-
velopment of metabolic disease in a number of mouse
models. This effect is believed to stem from the alignment
of food intake with circadian timing in the body’s periph-
eral tissues, particularly the liver, which allows for more
efficient clearing and processing of ingested nutrients
(Tahara and Shibata 2016).
Mice subject to a daily regimen of 8 h feeding/16 h

fasting on a HFD take in the same number of total calo-
ries as their ad libitum-fed counterparts but do not
develop metabolic syndrome (Hatori et al. 2012). A key
mediator of this effect is the liver, where TRF rescues
the blunted rhythmicity of circadian genes and the func-
tion of nutrient-responsive pathways like mTOR, CREB,
and AMPK that are altered by HFD (Sherman et al. 2012).
This protective effect has been shown to extend to mice
subjected to high-fructose and high-fructose/high-fat dys-
metabolic diets as well, as long as food availability was
limited to <12 h a day. Feeding in TRF HFD mice is ac-
companied by a concomitant increase in GCK expres-
sion; however, in ad libitum HFD mice, GCK levels
remain persistently elevated throughout the day. Thus,

Figure 3. Interplay of circadian rhythm and hepat-
ic gene regulation in mice. (Left) PER/CRY is the
major effector of the circadian clock in the liver dur-
ing the day, while mice are asleep. Effects of PER/
CRY include inhibition of gluconeogenesis and sup-
pression of BMAL1/CLOCK. BMAL/CLOCK activi-
ty is also repressed by REV-ERB transcription
factors and glucagon via CREB/CRTC2. (Right) At
night, when mice are active and feeding, the
BMAL1/CLOCK complex is the main circadian reg-
ulator of the liver transcriptome. Its effects include
increasing LDL uptake and glycogenesis while also
increasing levels of the PER/CRY complex. Among
the factors that increase BMAL1/CLOCK expres-
sion is the daytime accumulation of ROR. As feed-
ing occurs throughout the night, rising insulin
levels cause AKT to suppress BMAL1/CLOCK
activity.
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modulation of the fasting–refeeding interval restores glu-
cose homeostasis in HFD-fed mice. In the livers of TRF
HFD-fed mice, PPARγ displays mild oscillations in am-
plitude throughout the circadian cycle with a peak in
during the active phase. In ad libitum HFD-fed mice,
however, these oscillations dramatically increase in am-
plitude and instead peak in the day/inactive phase (Chaix
et al. 2014).

TRF has also been shown to prevent the development
of metabolic abnormalities in mice with clock gene mu-
tations. Whole-body Cry1−/−Cry2−/− KO mice have a
near complete loss of rhythmic gene expression in the
liver, an effect partially rescued by TRF (Vollmers et al.
2009). In addition, genetically modified mice that lack
a regular feeding rhythm consume the same number of
calories as their ad libitum counterparts but resist weight
gain and hyperleptinemia (Chaix et al. 2019). Recently,
these findings have been extended to humans. In a study
of 19 patients with metabolic syndrome on statins or an-
tihypertensives, limiting food intake to a 10-h window
each day over 12 wk led to reductions in body weight,
visceral fat, blood pressure, total cholesterol, LDL, and
HbA1c (Wilkinson et al. 2020).

Fasting and refeeding protocols

Although it is unsurprising that the hepatic transcrip-
tome differs dramatically between ad libitum feeding
and 24-h fasting conditions, substantial differences exist
even between ad libitum-fed and 24-h refed livers, with
expression differences in key pathways controlling lipid
metabolism and small molecule biochemistry (Zhang
et al. 2011). A study of both BALB/cJ and C57BL/6j mice
fasted for 24 h and refed found that differential gene ex-
pression peaks at 6 h after refeeding with up-regulation
of lipogenic pathways in comparison with amino acid
and carbohydrate metabolism (Chi et al. 2020). Moreover,
fasting–refeeding regimens are themselves highly hetero-
geneous. As stated in the “Pathway Analysis” section, a
time course comparing the hepatic transcriptome after
0, 12, 24, and 72 h of fasting found that strong induction
of the urea cycle was apparent at every time point. In con-
trast, pathways controlling amino acid, carbohydrate, and
lipid metabolism peak at 24 h and return to baseline by 72
h, at which point, β oxidation and ketogenesis pathway
expression increases (Sokolovic 2008). Another time
course study in 48-h fasted mice revealed up-regulation
of hepatic gluconeogenesis and ketogenesis at 3 h; addi-
tionally, these mice showed marked up-regulation of
PPARα targets, including Pck1, G6pc, and Fgf21 (Schupp
et al. 2013). Another recent study comparing 24-h fasted
mice refed for either 12 or 21 h found that even after 12
h of refeeding, mice had continued dysregulation of liver
lipid metabolism and autophagy; however, this effect
was largely abrogated in the 21-h refed group (Rennert
et al. 2018). A better understanding of the dynamics of
fasting and refeeding in mice will allow experiments
to be standardized across different laboratories and fo-
cused on desired pathways of study (i.e., ketogenesis,
gluconeogenesis).

Effect of diet, exercise, and sex on fasting and feeding
response

Diet

The contents of the diet play amodifying role in transcrip-
tional responses to both fasting and feeding. Studies have
compared diets rich in fat versus carbohydrates, glucose
versus fructose, high versus low protein, and effects of cal-
orie restriction. HFD has been found to increase hepatic
de novo lipogenesis (e.g., expression of Fas and Scd1) to
a lesser degree than carbohydrate feeding (Sánchez et al.
2009). Furthermore, cholesterol biosynthesis genes con-
trolled by SREBP-2 are down-regulated by increased die-
tary cholesterol (Renaud et al. 2014). In contrast to fatty
acid biosynthesis genes, mitochondrial and peroxisomal
β oxidation genes (such as Cpt1a andAcox1, respectively)
are induced in HFD-fed mice (Renaud et al. 2014). PPARα,
the master regulator of fatty acid oxidation, is induced by
fat feeding, drawing a similarity to the extended fasted
state, as both contexts use fat as a primary energy source
(Sánchez et al. 2009). Consistent with this idea, AMPK ac-
tivity is increased in livers fed with PUFAs or a high-fat
diet (Suchankova et al. 2005; Castro et al. 2015). In con-
trast to fasting, a HFD also increases some aspects of the
immune response, such as Nfkb1 and its target genes tu-
mor necrosis factor Tnfa, Il1b, prostaglandin-endoperox-
ide synthase 2 (Ptgs2), and nitric oxide synthase 2 Nos2
(Lee at al 2013).

Fatty acid synthesis genes are more robustly up-regulat-
ed by high-fructose diets compared with complex carbo-
hydrate diets (Fiebig et al. 1998). Also, the dynamics of
the fructose and glucose transcriptional responses are dif-
ferent. Glucose refeeding causes a more acute SREBP-1c
induction (Matsuzaka et al. 2004). Furthermore, in the ab-
sence of insulin signaling, lipogenic genes such as Fasn are
more induced by fructose than glucose feeding. Recent
studies suggest that ChREBPmay be playing an important
role in this process. Fan et al. (2017) documented in-
creased expression of the ChREBP target Pklr in fruc-
tose-fed mice compared with glucose-fed mice. They
also reported that while LXRα facilitates the increase in
ChREBP activity in glucose-fed mice, the ChREBP re-
sponse to fructose feeding was independent of LXRα. Ad-
ditionally, while excess dietary fructose can increase
stress signaling via c-Jun N-terminal kinase (JNK) signal-
ing, glucose feeding has been reported to promote hepatic
inflammatory responsesmore than fructose feeding, as ev-
idence by increased expression of TLR2 and inflammatory
genes such as C-X-C motif chemokine ligand 2 (Cxcl2),
Cxcl10,Cxcl1,Nfkb1, andNfkb2 (Wei et al. 2007; Oarada
et al. 2015).

Dietary protein content is also a modifier of hepatic
transcription. Unlike food restriction, where proportion-
ality of nutrients is preserved, modified protein diets af-
fect many aspects of whole-body homeostasis. Refeeding
with high-protein diet after a prolonged fast can cause
acute liver damage (Oarada et al. 2012). Conversely, feed-
ing with low-protein diet affects growth through down-
regulation of insulin-like growth factor I (Igf1) and induces
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inflammatory genes such as Il6 (Oarada et al. 2012). Die-
tary protein induces PPARγ-dependent hepatic IGF-1
secretion and promotes mTOR phosphorylation and the
interaction between PPARγ and mTOR (Wan et al.
2017). Leucine deficiency was shown to up-regulate tran-
scription of tribbles homolog 3 (Trib3), a factor known to
inhibit insulin signaling by binding to AKT (Carraro et al.
2010). TRB3, encoded by Trib3, also interacts with ATF4,
inhibiting it from inducing FGF21 (Örd et al. 2018).

Calorie restriction

Calorie restriction (CR) has been associated with health
benefits and longevity. CR is a less extreme version of
fasting that can be continued for extended periods, at
least in laboratory settings. CR decreases the expression
of lipogenic genes such as Fasn and Elovl3 and genes in-
volved in formation of lipid droplets such as perilipin-2
(Plin2) and fat storage-inducing transmembrane protein
1 (Fitm1) (Renaud et al. 2014). On the other hand, genes
involved in lipid droplet breakdown and fatty acid oxida-
tion are increased by CR. Drawing parallels to a fasting-
like state, CR animals also respond to fasting with in-
creased expression of PPARα (Soltis et al. 2017). De-
creased lipid formation and increased lipid breakdown
lead to a decrease in fat mass (van Harten et al. 2013;
Renaud et al. 2014; Xu et al. 2019). However, refeeding
chow or a HFD up-regulates lipogenesis more robustly
in CR compared with ad libitum-fed mice (Stelmanska
et al. 2004). This is reminiscent of the observation that
humans often gain more weight back than they have
lost after stopping restrictive dieting. CR feeding also
leads to increased expression of genes involved in oxida-
tive stress response such glutathione synthesis genes and
glutathione-S transferases (Renaud et al. 2014). Some
benefits of CR have been proposed to be mediated by
SIRT1. Although SIRT1 activity is increased by CR in
many tissues, SIRT1 activity is actually decreased in liv-
er by CR (Chen et al. 2008).

Exercise

Exercise can change the energy demands of the body and
reprogram metabolism in many tissues. Exercise has
been reported to blunt the up-regulation of lipogenesis
in liver in response to carbohydrate feeding. However, ex-
ercisewas less effective in reducing the lipogenic response
in fructose feeding (Fiebig et al. 1998). Exercise is also
known to increase insulin sensitivity in adipose and mus-
cle but not in the liver (Cuthbertson et al. 2016). On the
other hand, exercise can increase expression of genes in-
volved in fatty acid oxidation and transport into mito-
chondria (Cho et al. 2014). Additionally, exercise has
been suggested to decrease hepatic oxidative stress (Hu
et al. 2013) and to decreaseHFD-inducedNF-κB activation
and proinflammatory cytokine production (Gehrke et al.
2019). These beneficial effects of exercise on lipid metab-
olism appear to be independent of themTOR pathway (Tu
et al. 2020) and potentially mediated by increased PPARα-
stimulated fat oxidation (Alex et al. 2015).

Sex differences

Premenopausal women aremore resistant to diet-induced
insulin resistance than men. Sex differences are also seen
in responses to fasting and feeding. Bazhan et al. (2019)
showed that changes in expression of genes involved in
the fasting response, such as Fgf21, Ppara, and Cpt1a,
were more pronounced in female mice than in males. In
contrast, they reported that hepatic expression of Fasn
was higher in male mice than in females, possibly due
to male-specific hyperinsulinemia. Male mice also have
higher insulin to glucagon ratios, leading to increased glu-
cose metabolism (Gustavsson et al. 2010). According to
this study, male mice exhibit increased hepatic glucose
output and expression of gluconeogenic genes such as
G6Pase and Pck1 compared with females. Males also
have higher glycogen synthesis, which is commonly ob-
served with high gluconeogenic capacity.
Growth hormone secretion and signaling is also sexu-

ally dimorphic. While adult males secrete growth hor-
mone in episodic bursts, females display a continuous
pattern of growth hormone section (Jansson et al. 1985).
Growth hormone may exert its impact on sex-specific he-
patic metabolic gene expression through STAT5 and its
male-biased transcriptional repressor BCL6. BCL6 binds
preferentially to STAT5 target genes involved in lipid me-
tabolism that have a female-biased expression (Zhang
et al. 2012).

Limitations

Rodent models provide many benefits to metabolic re-
searchers; however, it is important to be aware of their lim-
itations. One cannot always extrapolate findings to a
human clinical setting. Humans have both physiological
and psychological differences from mice with respect to
feeding and fasting behavior.Whilemice eat small portions
frequently during the dark, humans eat few larger meals
during the day (Ellacott et al. 2010). Humans may choose
to eat or not eat for social reasons, which are not captured
bymost experimental designs in rodentmodels.Many clin-
ical tests are run on overnight-fasted patients. Overnight
fasting in mice is not an equivalent challenge because of
their nocturnal feeding and higher rate of metabolism.
While mice glucose levels are lower after an overnight
fast, humans are able to maintain their basal glucose levels
for >18 h (Ayala et al. 2010;Geisler et al. 2016). It is suggest-
ed that fasting mice 5–6 h during the day better resembles
human overnight fasting when comparing glucose and in-
sulin levels. Finally, whereas mice respond to prolonged
fasting with enhanced insulin-stimulated glucose utiliza-
tion, humans display an impairment of insulin-stimulated
glucose utilization (Ayala et al. 2006). These and other dif-
ferences need to be taken into account when making pre-
dictions of human physiology based on murine studies.

Conclusions

Changes in nutrients, hormones, and post-translational
modifications regulate a broad hepatocyte transcriptional
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network. During fasting, the liver switches to using lipids
and amino acids as its primary energy source to make ke-
tones and glucose, respectively. PPARα, FOXO1, PGC-1α,
andCREB are among the key players enacting this shift. In
the fed state, the liver takes up glucose and increases gly-
colysis and lipogenesis in response to carbohydrates via
ChREBP and Srebp1c. The fasting/feeding response is
also shaped by a network of additional transcriptional reg-
ulators. High-throughput -omics methods have just start-
ed investigating these complex relationships and their
effects in a systematic way.Many other pathways, includ-
ing those involving bile acids, iron metabolism, immune
responses, circadian rhythms, and stress responses, are af-
fected by nutritional status. Proper control of hepatic tran-
scription by diet is crucial for physiology, and
perturbation of these pathways are a hallmark of metabol-
ic diseases. With the continued development of new
methods and new geneticmodels, future research is likely
to reveal additional connections and expand our under-
standing of this central physiologic response.
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