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Simple Summary: Sharks, rays, and skates are increasingly being recognized as endangered due
to their life-history characteristics, fishing pressure, and habitat degradation. The thornback ray
Raja clavata is one of the most commercially important skates in the seas of Northwest Europe.
However, due to a lack of biological knowledge about this species in Azorean waters, the types of
stock evaluations that can be performed are restricted. This study expands current knowledge on
vertical distribution, size-frequency distributions, growth patterns, sex ratios, mortality rates, and
reproduction of this species, and provides a baseline for further fishing monitoring.

Abstract: Elasmobranchs are globally recognized as vulnerable due to their life-history characteristics,
fishing pressure, and habitat degradation. Among the skates and rays caught by commercial fisheries,
the thornback ray Raja clavata is one of the most economically important in Northwest European seas.
However, the scarcity of biological knowledge about this species in Azorean waters has limited the
stock assessment types that can be conducted. To improve information on its habitat preferences,
spatial distribution and movement pattern, growth, sex ratio, mortality, and reproduction, as well
as to investigate long-term changes in abundance and size, this study analyzed approximately
25 years of fishery-dependent and independent data from the Azores. Raja clavata was mainly
caught at depths up to 250 m. Most of the tagged fish were recaptured near the release point. A
larger–deeper trend was found, and females were larger and more abundant than males. Life-history
parameters showed that R. clavata has a long lifespan, large size, slow growth, and low natural
mortality. The sustainability of its population is of concern to fisheries management and, while our
findings suggested a relatively healthy stock in the Azores, a thorough increase in data quality is
required to better understand the stock condition and prevent overexploitation.

Keywords: elasmobranchs; skates; demersal; commercial fish; life history; stock structure; assess-
ment; fisheries management

1. Introduction

Elasmobranchs (sharks, skates, and rays) are widely recognized as a fragile resource,
more susceptible to decline and extinction than most teleost fishes, due to their life-history
characteristics (low fecundity, late maturity, and slow growth rates), fishing pressure,
and habitat degradation [1,2]. Sharks, skates, and rays are often caught as bycatch by
commercial fisheries but are often retained on board because of the high, and in some cases
rising, value of their meat, fins, and livers [2–4]. Since most captures are uncontrolled
and often misidentified, unrecorded, aggregated, or discarded at sea, there is a scarcity
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of species-specific landing data [2,4,5]. At the same time, there is a lack of biological
knowledge, such as life history, habitat use, movement patterns, and population structure,
for most species. Such characteristics may have serious implications for the sustainability
of elasmobranch fisheries, as science-based measures are important to avert population
collapse [6].

Among the skates and rays frequently captured by the commercial fishery, the thorn-
back ray Raja clavata Linnaeus, 1758 (Chondrichthyes: Rajidae) is one of the most important
species in the seas of Northwest Europe [7–9]. Global total catches in 2019 were 6874 t,
with the highest catches recorded in France (1876 t), the United Kingdom (1372 t), Portugal
(868 t), and Italy (838 t) [10]. Raja clavata is a widely distributed skate in the Eastern Atlantic
and Southwest Indian Ocean, including the North Sea, the Macaronesian archipelagos (the
Azores, Madeira, Canaries), the Mediterranean Sea, and the Western Black Sea [11]. It inhab-
its shelf and slope waters on mud-to-sand substrates at depths between 5 and 1020 m, but
is usually found in shallow waters up to 250 m [12]. Spawning appears to happen mostly
during the summer (regardless of latitude or water temperature), although the length of
the whole spawning season seems to be prolonged in warmer sea temperatures [13].

In the Azores, genetic studies support the existence of a self-contained R. clavata popu-
lation, i.e., a stock unit for which it is assumed that abundance dynamics are determined by
internal processes of recruitment and mortality, and insignificantly affected by immigration
and emigration [14,15]. Raja clavata in the Azorean region represents more than 90% of the
landed skates [16], and it is mainly caught by the demersal fishery using hook and lines [17].
Catch trends of this species have declined steeply from 171 t (5.6 kg 10−3 hooks) in 2015 to
70 t (3.1 kg 10−3 hooks) in 2017 [9]. No information on the discard rates of skates is avail-
able for recent years. Nevertheless, discarding is known to take place, and is the result of
management measures, particularly the total allowable catches—TACs/quotas, minimum
size, and fishing area restrictions rather than the complete lack of a market [9,16,18]. On
the other hand, previous studies have reported that the discard survival of skate species is
high [19–22], particularly for R. clavata caught by longline fishing [9,23].

Currently, the International Council for the Exploration of the Sea (ICES) assesses
the R. clavata from the Azores based on a precautionary approach because of the data
quality (ICES stock category 3; [16]). There is poor knowledge of the biology of the species
for this ecoregion and available information is uncertain. The abundance index derived
from the Azorean bottom longline survey [24] is used as an index of stock development;
however, stock status relative to reference points is unknown [25]. Considering this, the
ICES working group on elasmobranch fishes (WGEF) recommends that further studies
should be conducted to define the appropriate set of life-history parameters and describe
the population dynamics in order to provide more accurate data for exploratory assess-
ments [16].

In this context, this study aimed to analyze information on distribution and movement
patterns, life-history aspects (sex ratio, reproductive season, size at maturity, growth
parameters, mortality rates), size composition, and abundance of the thornback ray R.
clavata derived from scientific surveys and commercial fisheries in the Azores region.
Fishing-induced changes in abundance and size structure and preliminary exploitation
status were also investigated. Findings from this study are expected to facilitate stock
assessment and support reliable fishery management strategies.

2. Material and Methods
2.1. Data Collection

Data analyzed in this study were derived from scientific surveys, commercial catches,
and official commercial landings in the Azores region (ICES Subdivision 27.10.a.2).

2.1.1. Scientific Surveys

Spring bottom longline surveys were performed from 1996 to 2019 around the islands
and major seamounts of the Azores archipelago. The survey followed a stratified random
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sampling design in which each sampling area was divided into depth strata with 50 m
intervals down to 1200 m depth. Each bottom longline set was deployed perpendicular
to the isobaths. Catches per unit of effort were weighted by the corresponding area size
to estimate the relative abundance indices (relative population number—RPN; ind. 10−3

hooks).
Total length (LT) and sex was recorded for each captured skate. Of these, 2351 indi-

viduals were marked with a numbered plastic tag (Hallprint Fish Tags, Hindmarsh Valley,
Australia) and released at the sea surface. After being released, the fish condition (active,
less active, or inactive) was documented, and the geographic position was registered with
a GPS.

The macroscopic maturity stage was determined for a sample of 381 individuals
captured between 1996 and 2013.

Further details on survey design and abundance estimates can be found in Pinho et al. [24].

2.1.2. Commercial Catches

Commercial catch data were collected within the European Commission’s data collec-
tion framework (DCF) [26] during the period 1990–2017. Structured inquiries (n = 31,616)
were conducted with the vessels’ captains of the local fleet during their landings at Azorean
ports. Each inquiry included the vessel ID and size, departure and arrival dates, fishing
gear type, average depth zone of the fishing operation, and catch in weight by species.

Biological information (LT, sex, maturity stage, gonadosomatic and hepatosomatic in-
dices) was taken for 390 individuals caught throughout the year by the Azorean commercial
fleet between 2005 and 2017.

DCF sampling design and protocols were aligned with the recommendations of the
ICES working groups on commercial catches (WGCATCH) and biological parameters
(WGBIOP) [27].

2.1.3. Official Commercial Landings

Official landings (in tons) were obtained from the Azores Auction Services (Lotaçor
S.A.) for the period 1990–2020.

Information on LT for combined sexes was available for a sample (n = 18,181) of
thornback rays landed until 2017.

2.2. Data Analyses
2.2.1. Distribution

To describe the relationships between presence–absence and survey-derived abun-
dance indices of the thornback ray R. clavata and habitat characteristics, generalized ad-
ditive models (GAMs) [28,29] were implemented with the mgcv package [30–34] in R,
version 4.0.3 [35]. Due to the large proportion of zero values in the RPN data (92%), the
presence–absence data were fitted separately, using a binomial error distribution and logit
link function, from the positive abundances, which were fitted using a Gaussian error
distribution with identity link function [36,37]. This approach has been shown to work well
with zero-inflated data [37,38]. Explanatory variables included in the analyses were latitude
and longitude (as an interaction term), depth, and substrate type. Species distributional
data based on range maps (extent-of-occurrence) or survey data frequently exhibit spatial
autocorrelation, which means that sites adjacent to each other have more comparable
values than those further away [39]. Some efforts are made to address these problems, such
as explicitly adding latitude and longitude as a smoothed interaction factor in GAMs [33].
While these issues are ignored when modeling fish distribution, they leads to a number of
difficulties, including poor model fit and performance, skewed predictions, and high model
sensitivity to parameter changes [39–41]. Geographical coordinates and nominal depth
were obtained during the fishing gear deployment in the surveys. The bottom type was
extracted from EMODnet seabed habitat compilations (www.emodnet-seabedhabitats.eu
accessed on 9 March 2021) and categorized as mud (Mud), muddy sand (Mud.S), sandy
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mud (Sand.M), sand (Sand), mixed sediment (Mix.Sed), coarse sediment (C.Sed), or rock
(Rock). Analysis of deviance results was used to indicate the explanatory variables that
explained most of the variability in the RPN data.

2.2.2. Movement Patterns

Tagged skates were made available to be recaptured by the commercial fishery. A
reward was offered to each fisherman providing tag–recapture information on LT, date,
and geographical coordinates at which the fish was caught. Movement patterns were then
assessed using the marmap R package. For this, a straight line was used to measure the
traveled distance between capture and recapture geographical positions.

2.2.3. Size Structure

Size–frequency distributions observed in different regions (seamount and island) of
the survey and those obtained from the official landings were examined for statistical
similarity by applying a two-sample Kolmogorov–Smirnov (K–S) test.

Differences in mean LT over the years and among depth strata (for survey data) were
determined by Welch’s heteroscedastic F test and Bonferroni post hoc correction, using the
onewaytests R package [42].

2.2.4. Growth Parameters

Growth parameters were estimated through the von Bertalanffy growth function
(VBGF) [43] using monthly LT–frequency data (1-cm class interval) derived from the official
landings for the period 2010–2016. As the LT data were not available for males and
females separately, growth parameters were estimated for combined sexes. The asymptotic
length (L∞), growth coefficient (k), and growth performance index (Φ) were calculated
by electronical length–frequency analysis using a bootstrapped method with a genetic
algorithm (ELEFAN_GA_boot; [44]) within the TropFishR [45,46] and fishboot [44,47] R
packages. This analysis attempted to follow the best practices for using ELEFAN approach,
such as, for example, a relatively high count that is representative of the LT–frequency
distribution of the population or catches [45,47]. Bootstrapping involved 1000 resamples.

Growth parameters were also estimated by analyzing tag–recapture data. To do this,
TropFishR R package was used to build forced Gulland–Holt plots [48] and estimate L∞ and
k for combined and separated sexes.

2.2.5. Sex Ratio

Proportions of males to females (M:F) by LT–class and depth stratum were compared
with the expected 1:1 ratio using a chi-square test.

2.2.6. Reproduction

Information on the gonad maturity stage from the DCF database was insufficient
or imprecise to estimate size at 50% maturity (L50). Thus, L50 was estimated from the
survey-derived LT data through logistic regression (Bayes) using the sizeMat R package [49].
Maturity stages for both sexes were classified into five phases (I—immature, II—developing,
III—spawning capable, IV—actively spawning) adapted from Stehmann [50] and based on
the macroscopic observation of the gonads. The regressing and regenerating stages were
not adopted during sampling. Maturity stages III and IV were considered sexually mature.

Although the monthly gonadosomatic index (GSI = gonad weight/total weight × 100)
and hepatosomatic index (HSI = liver weight/total weight × 100) obtained from the
commercial catches were available for both sexes, the constraints of the maturity stage clas-
sification did not allow us to exclude immature individuals for the reproductive seasonality
analysis. The GSI and HSI data were, therefore, not analyzed in this study.

No information about fecundity was available.
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2.2.7. Mortality, Exploitation Rate, and Size at Capture

Mortality rates were calculated using the LT data taken from the official landings for
the period 2010–2016. The total mortality rate (Z; year−1) was estimated based on the
mean length data in the non-equilibrium situations method [51], and on the linearized
length–converted catch curve [52]. The natural mortality (M; year−1) was computed as
the average value of natural mortality estimated from different methods [53–66]. Fishing
mortality (F; year−1) was obtained from the relationship between Z and M: F = Z − M.
The exploitation rate (E) was determined by E = F/(F + M) [67]. The size at which 100%
of individuals are vulnerable to capture (Lc) was determined by using the peak of the
LT–frequency distribution [51].

2.2.8. Catch Rates and Landings

Interannual differences in RPN were examined by Welch’s test and Bonferroni post
hoc correction. An unbiased yearly trend of catch per unit effort (CPUE; kg days at sea−1

vessel−1) derived from the commercial catches was provided and used for a trend compari-
son. It was estimated using a hurdle–lognormal generalized linear model (GLM) [36,68,69].
Year, quarter, vessel size, fishing gear, average depth zone of the fishing operation, and
percentage of the capture of the thornback ray in relation to the total (target effect) were con-
sidered as potential drivers of CPUE. The GLM was run using the lsmeans R package [70].
Statistical details on this estimate are given by ICES WGEF [16].

Significance levels of all statistical analyses were set at a p-value of < 0.05.

3. Results
3.1. Distribution

A total of 2846 individual thornback rays were sampled from the scientific surveys.
The GAM results indicated that the presence–absence (binomial) model explained 37.9% of
the variance, while the positive catches (Gaussian) model explained 16.3% (Table 1). The
modeled data suggested a significantly greater presence of the thornback ray R. clavata
on sandy mud habitats (p < 0.001; Table 1; Figure 1). Positive abundance was higher in
coarse sediment bottoms (p < 0.001; Table 1; Figure 2). Latitude and longitude, as well as
depth, were found to have a smoothing term significantly different from zero (p < 0.001) in
fish presence and abundance; thus, they were relevant variables to the model’s fit (Table 1).
The curve fitted to the modeled distribution revealed that the highest occurrence and
abundance occurred in the depth range of 0–150 m, and at locations situated closer to the
islands (Figure 1).

Table 1. Results of the generalized additive models for the thornback ray Raja clavata abundances derived from the scientific
surveys (1996–2019) in the Azores. Bottom type: coarse sediment (C. Sed, termed as Intercept), mixed sediment (Mix.Sed),
mud (Mud), muddy sand (Mud.S), rock (Rock), sand (Sand), and sandy mud (Sand.M).

Family Link Function Formula Adjusted R2 Deviance
Explained

Binomial logit RPN.Bi ~ s(Longitude, Latitude) +
s(Depth, k = 4) + Substrate 0.283 37.86%

Gaussian identity RPN ~ s(Longitude, Latitude) +
s(Depth, k = 4) + Substrate 0.137 16.30%

Binomial Gaussian

Parametric coefficients

Estimate Std.
Error z value Pr(>|z|) Estimate Std.

Error z value Pr(>|z|)

(Intercept) −5.086 0.264 −19.233 <0.001 (Intercept) 0.721 0.198 3.648 <0.001
SubstrateMix.Sed −0.014 0.194 −0.071 0.944 SubstrateMix.Sed 0.173 0.216 0.798 0.425
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Table 1. Cont.

Family Link Function Formula Adjusted R2 Deviance
Explained

SubstrateMud 0.423 0.879 0.481 0.631 SubstrateMud −0.346 1.063 −0.325 0.745
SubstrateMud.S −0.546 0.621 −0.879 0.380 SubstrateMud.S −0.468 0.769 −0.609 0.543
SubstrateRock −0.087 0.209 −0.415 0.678 SubstrateRock −0.196 0.235 −0.834 0.405
SubstrateSand 0.214 0.215 0.999 0.318 SubstrateSand 0.330 0.238 1.386 0.166

SubstrateSand.M 4.657 1.220 3.817 <0.001 SubstrateSand.M −0.917 1.502 −0.611 0.542

Binomial Gaussian

Approximate significance of smooth terms

edf Ref. df Chi. sq p-
value edf Ref. df Chi. sq p-value

s (longitude,
latitude) 27.712 28.830 340.200 <0.001 s (Longitude,

Latitude) 14.490 18.563 3.104 <0.001

S (depth) 1.344 1.580 278.200 <0.001 s (Depth) 2.670 2.917 8.677 <0.001
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x–axis indicate observed data points. White color indicates more individuals and red color fewer in the 2D smoother 
colored plot. 

Figure 1. Residual plots for explanatory variables obtained by the presence–absence binomial and positive abundance
Gaussian generalized additive models for the thornback ray Raja clavata caught during scientific surveys in the Azores. The
smoother fit and ±0.95 confidence intervals are represented as solid and dashed lines, respectively. Tick marks on the x–axis
indicate observed data points. White color indicates more individuals and red color fewer in the 2D smoother colored plot.
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Figure 2. Tag release locations of female (red points), male (blue), and unsexed (black) thornback ray Raja clavata during
scientific surveys (1996–2019) in the Azores. The green and yellow points indicate the release and recapture locations,
respectively, of the 13 recaptured fish. Displacements between release and recapture points are represented by straight lines.

3.2. Movement Patterns

After being released, 75% of the tagged skates were active, 14% were less active, and
1% were inactive. The fish condition was not reported for 10% of individuals. Only 35 (21 fe-
males, 7 males, and 7 unsexed; Table S1) of 2351 (1135 females, 940 males, and 276 unsexed)
tagged skates were recaptured (recapture rate equals 1.5%). The mean time (±standard de-
viation [s.d.]) at liberty between tagging and recapture was 573.3 ± 506.0 days (min = 11 days,
max = 1913 days). LT at capture ranged from 37.0 to 85.0 cm (mean = 61.7 cm, s.d. = 11.7),
and ranged from 50.0 to 88.0 cm (mean = 69.6 cm, s.d. = 11.3) for skates that were later
recaptured (Table S1). Twenty-two recaptured individuals were removed from the spa-
tial analysis, as the geographic location at which they were recaptured was not properly
recorded. Of the remaining 13 recaptured individuals, 23% were recaptured within 15 km
of the release point, and 92% within 40 km (Figure 2). The distance traveled ranged from
9.1 to 40.5 km (mean = 30.7 km, s.d. = 11.6; Table S1).

3.3. Size Structure

The LT ranged from 26 to 178 cm (Figure 3). No statistical differences were found
between seamounts and islands (K-S test, D = 0.165, p = 0.143; Figure 3). The LT composition
from the official commercial landings was similar to that observed from the scientific
surveys (K-S test, D = 0.103, p = 0.681; Figure 3). However, the frequency of larger
individuals (i.e., larger than 65 cm LT) was visually higher in commercial landing samples
(Figure 3). A similar pattern could also be inferred for seamount; however, its sample size
was very low and highly variable (Figure 3). Statistically significant differences (Welch’s
ANOVA test, F = 97.3, p < 0.001) were observed in the mean sizes by depth, with larger
individuals found between 500 and 600 m depths (Bonferroni correction post hoc test,
p < 0.050; Figure 4). The LT information from the DCF dataset was not available or reported
by area or depth. The survey-derived mean LT showed significant variability among years
(Welch’s test, F = 2.7, p = 0.004), with individuals captured in 2002–2003 showing smaller
sizes than those captured in 1997 and 2013 (Bonferroni, p ≤ 0.047; Figure 5). From the
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official landings, the mean LT showed a significant (Welch’s test, F = 626.3, p < 0.001)
decreasing pattern over the years (Bonferroni, p ≤ 0.041; Figure 5).
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Figure 3. Total length (LT)–frequency distribution of the thornback ray Raja clavata derived from scientific surveys
(1996–2019) and official commercial landings (1990–2017) in the Azores. For the surveys, data are shown separately
for seamounts and islands, and the number of individuals (n) refers to the total RPN (ind. 10−3 hooks).
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Figure 4. Depth distribution of mean (±0.95 confidence interval) total length (LT) of the thornback ray Raja clavata caught
during scientific surveys (1996–2019) in the Azores.
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Figure 5. Annual mean (±0.95 confidence interval) of total length (LT) of the thornback ray Raja clavata caught during
scientific surveys (1996–2019) and official commercial landings (1990–2017) in the Azores.

3.4. Growth Parameters

The size classes used in ELEFAN_GA ranged from 37.0 to 102.0 cm LT (Table S2).
The estimated growth parameters are shown in Table 2 and Figure S1. The best fitted
parameters obtained from LT–frequency data for the period 2010–2016 were L∞ = 92.16 cm
LT, k = 0.10 year−1, and Φ = 2.97 (Rn score = 0.69). Only 23 tagged skates (13 females,
5 males, and 5 unsexed) were considered for the growth analysis, as their time at liberty and
their LT increment were properly recorded. Of these, individuals with LT increment equal
to zero and time at liberty of less than 60 days were excluded from the dataset (Table S1).
Thus, 20 skates (11 females, 5 males, and 4 unsexed) used in the final analysis produced
estimates of L∞ = 125.2 cm LT and k = 0.08 year−1 for combined sexes, L∞ = 133.8 cm LT and
k = 0.06 year−1 for females, and L∞ = 21.8 cm LT and k = −0.15 year−1 for males (Table 2).
However, estimates of L∞ and k values using tag–recapture data showed poor adjustments
(combined sexes: R2 = 0.08; females: R2 = 0.07; males: R2 = 0.01) and, therefore, results
were not considered reliable.

Table 2. Growth and fishery parameters for the thornback ray Raja clavata in the Azores estimated from LT–frequency data
for the period 2010–2016. DCF: data from the EU Data Collection Framework. F + M: combined sexes. F: females. M: males.
Lower and upper denote (a) 95% confidence interval, (b) standard deviation, or (c) standard error limits of the estimates.

Parameters Input Data Method Sex Estimates Lower Upper

Asymptotic length (L∞; cm LT) DCF ELEFAN_GA_Boot [44] F + M 92.16 90.22 a 94.76 a

Tag–recapture [48] F + M 125.21 – –
Tag–recapture [48] F 133.83 – –
Tag–recapture [48] M 21.76 – –

Growth coefficient (k; year−1) DCF ELEFAN_GA_Boot [44] F + M 0.104 0.099 a 0.128 a

Tag–recapture [48] F + M 0.08 −0.05 a 0.21 a

Tag–recapture [48] F 0.06 −0.11 a 0.24 a

Tag–recapture [48] M −0.15 −3.13 a 2.83 a
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Table 2. Cont.

Parameters Input Data Method Sex Estimates Lower Upper

Growth performance index (Φ) DCF ELEFAN_GA_Boot [44] F + M 2.97 2.92 a 3.04 a

Natural mortality (M; year−1) – [53] F + M 0.18 – –
– [54] F + M 0.17 – –
– [59] F + M 0.10 – –
– [60] F + M 0.10 – –
– [61] F + M 0.26 – –
– [62] F + M 0.24 – –
– [63] F + M 0.10 – –
– [64] F + M 0.15 – –
– [65] F + M 0.20 – –
– [58] F + M 0.15 – –
– [66] F + M 0.17 – –
– [66] F + M 0.16 – –
– [55] F + M 0.15 – –
– [56] F + M 0.14 – –
– [57] F + M 0.14 – –
– Average M value F + M 0.16 0.11 b 0.21 b

Total mortality (Z; year−1) DCF [51] F + M 0.30 0.29 c 0.31 c

DCF [52] F + M 0.30 0.27 a 0.32 a

Fishing mortality (F; year−1) – F = Z − M F + M 0.14 – –
Exploitation rate (E) – [67] F + M 0.47 – –

Length of full selectivity (Lc; cm LT) DCF [51] F + M 67.0 – –

3.5. Sex Ratio

The sex ratio (M:F) observed in the whole surveyed area was 0.62:1, which departed
from the expected 1:1 rate (χ2 = 26.24, p < 0.001). The overall sex ratio observed in the com-
mercial catch samples (1.14:1) was not statistically different from 1:1 (χ2 = 1.54, p = 0.214).
Females were significantly more abundant than males in island regions (χ2 = 25.08, p < 0.001)
and in depths between 50 and 150 m (χ2 > 6.94, p < 0.008) and 250 and 300 m (χ2 > 5.00,
p = 0.025; Figure 6). Sex-related information from the DCF dataset was not available or
reported by area or depth. Males significantly dominated the LT–classes between 65 cm
and 74 cm (surveys: χ2 > 7.20, p < 0. 007; commercial catches: χ2 > 4.000, p < 0.045); from
this size, the sex ratio was inversed (surveys: χ2 > 4.000, p < 0.045; commercial catches:
χ2 > 4.000, p < 0.045; Figure 7). The sex proportion equal to 0 or 1 in some depth strata and
LT–classes was clearly driven by the low number of sampled individuals; therefore, this
was not considered ecologically meaningful.
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Figure 6. Sex proportion of the thornback ray Raja clavata by depth stratum. Data from the scientific surveys in the Azores.
The number of individuals (n) refers to the total number of sampled thornback rays. The dashed line shows an equal
sex ratio.

3.6. Reproduction

A total of 155 individuals (115 females and 40 males) were considered as immature,
76 (60 females and 16 males) as developing, 52 (24 females and 28 males) as spawning
capable, and 88 (30 females and 58 males) as actively spawning. The smallest mature
female was observed at 59.0 cm LT, and the smallest mature male at 58.0 cm LT. Female’s
maturity ogive presented high variability, particularly for individuals larger than 70 cm
LT. The estimated L50 was 85.9 cm LT for females (R2 value = 0.16), 64.7 cm LT for males
(R2 value = 0.44), and 77.9 cm LT for combined sexes (R2 value = 0.11; Figure 8). For females
and combined sexes, the diagnostic plots for the fitted models showed a relatively poor
adjustment (low R2 value).
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Figure 8. Maturity ogives for (A) combined sexes, (B) males, and (C) females of the thornback
ray Raja clavata in the Azores. The solid curve represents the estimated logistic curve (±0.95 con-
fidence intervals), and the dots represent the observed proportion of mature fish. Data from the
scientific surveys.

3.7. Mortality, Exploitation Rate, and Size at Capture

Total mortality (Z), fishing mortality (F), and natural mortality (M) for the period
2010–2016 were estimated at 0.30 year−1, 0.14 year−1, and 0.16 year−1, respectively. The
exploitation rate (E) was determined at 0.47. The LT at which 100% of individuals were
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vulnerable to capture (Lc) was set at 67.0 cm. Details on the estimated values are shown in
Table 2.

3.8. Catch Rates and Landings

Despite the great interannual variability in the observed survey-derived abundance
index (RPN), statistically non-significant interannual differences (Welch’s test, F = 1.3,
p = 0.211; Figure 9) were detected. Standardized CPUE from the commercial fleet and
official landings showed an oscillation over time, with a decreasing trend since 2014
(Figure 9).
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Figure 9. Official commercial landings (tons), mean (±0.95 confidence interval), standardized CPUE (kg days at sea−1

vessel−1), and mean (±0.95 confidence interval) survey-derived RPN (ind. 10−3 hooks) for the thornback ray Raja clavata in
the Azores.

4. Discussion

Depth and temperature are often responsible for much of the spatial variation in
the thornback ray Raja clavata (e.g., [9,71,72]), as well as in other demersal fish species
(e.g., [73,74]). Temperature is a depth-related environmental factor important for fishes
because it influences the rates of physiological processes, including metabolism and de-
velopment [75]. This variable could boost habitat predictions, but it was not available at
a fine-scale resolution in this study; when obtained from global datasets, it can have a
poor predictive capacity [76]. In the absence of such data, depth is assumed to be the most
important predictor variable of population density in studies of the spatial distribution of
fish [76–78]. Around the Azores archipelago, R. clavata was more abundant in depths above
150 m, reflecting a spatial distribution restricted to coastal areas (98% of the total catch
from the survey was around the islands; Figure 3), in which shallower depths are mostly
available. The importance of depth is less clear than temperature, but it can be linked to
other critical ecosystem variables such as prey concentration and bottom type [79].

Rajidae species are known to live on a variety of substrates, with sand or mud being
the most common [72,80]. Although R. clavata has been registered throughout the Azores,
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mainly on coarse sediment and sandy mud bottoms, the EMODnet substrate layer was
not available at a fine-scale resolution, and the results could be underestimated (i.e.,
the analyses could be influenced by a low number of observations for some factors).
However, those soft bottoms were also the preferred substrate type of both captive and
wild thornback rays inhabiting other regions [71,81–83]. This preference is partly attributed
to the distribution of their preferred prey, as sand shrimps (e.g., Solenocera membranacea,
Crangon vulgaris) are the most frequent food items in their stomachs [84,85]. Prey abundance
is a significant and important limiting factor affecting predators’ abundance, and therefore
defines habitat quality for some demersal fish species [86]. The thornback ray R. clavata, on
the other hand, is a well-known opportunistic, mobile, and active predator, with a wide
variety of prey [84–87]. Due to their large food ranges and mobility, these skates are likely
to have a large foraging area, resulting in a mismatch between their abundance and that of
their prey [86]. Prey abundance can thus have fewer limiting effects on the abundances of
R. clavata; however, the influence of this parameter was beyond the reach of the current
study and deserves further analysis.

Conventional tagging experiments on thornback rays in the Azores and Southern
North Sea [87,88] have shown small-scale movements, with the majority of fish recaptured
near the release point. Thornback rays are not, therefore, thought to have long-distance
migrations similar to the winter skate Leucoraja ocellata [89]. However, it is widely acknowl-
edged that evidence regarding fish movements and distribution obtained from release and
recapture sites, time at liberty, and fishing effort estimates much more accurately describe
the distribution of fishing fleets than the true level of fish dispersion [90,91]. Furthermore,
since direct mortality caused by external tagging appears to be uncommon (most of the
fish were in good condition at the time of release, and less active and inactive individu-
als were even recaptured; Table S1), the low recovery rate of R. clavata was most likely
due to fishermen’s lack of cooperation in reporting the tags [92]. Therefore, the low tag
reporting rate, along with inconsistent recapture location reporting from fishers, can make
determining the species habitat range challenging [93]. This emphasizes the importance of
collecting fishery-independent data while encouraging tag reporting to accurately describe
true demographics.

Size-specific spatial segregation was not observed for R. clavata inhabiting islands and
seamount areas of the Azores. On the other hand, segregation of sizes by depth in which
larger individuals were found in deeper waters was observed; even the hook and line
were not as effective for sampling small individuals (few skates under 40 cm were caught
in this study; for example, Figure 3). The presence of smaller individuals in shallower
waters forming aggregations has been related to the use of coastal areas for growth before
moving offshore [88,94]. Contrary to the survey that primarily samples the areas around
the islands [24], fishing efforts have been directed to more offshore habitats [9,74,95], which
could justify a slightly greater frequency in large individuals in commercial landings. This
latter point, on the other hand, is also highly influenced by market prices and restriction
measures such as minimum landing size (MLS). For R. clavata, an MLS of 52 cm LT has
been adopted in the Azores since 2015 [18]. This value appears to be close to the size at
first maturity (e.g., [13,71,96]), but it is much smaller than the size at 50% estimated in this
study and from the literature (see references below). Despite its susceptibility to fishing
pressure, the impact of size-selective fishing or recent management measures on R. clavata
size distribution may be hidden by its slow growth rate [9]. Therefore, the annual mean
size patterns shown here for the Azorean region should be examined with caution.

Growth parameters observed in this study were consistent with those in the literature
(Table S2) confirming that R. clavata is a long-living and slow-growing skate. However,
these estimated parameters seem unreliable when they are compared with larger specimens
(178 cm LT). This inconsistency could be related a sampling problem, as the occurrence
of individuals larger than 95 cm LT seems rare (see Figure 3). The confirmation and
elimination of suspected outliers, on the other hand, was not performed, since there was no
scientific basis for this, as these specific results originated from sampling conducted more
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than 15 years ago. At the same time, it is highly recommended that growth parameters
estimated from length–frequency analysis be further confirmed through readings of rigid
structures because of the difficulty of detecting differences in age after determined sizes.
The results from this study should, therefore, be used carefully.

The overall sex ratio was close to 1:1, which was consistent with previous results
from other regions (e.g., [83,97]). However, a certain imbalance in this proportion can be
understood as a result of different migration patterns between males and females [98]. This
imbalance in the sex ratio favored males among the adults and females among the juveniles
in the Bay of Douarnenez, Iroise Sea [98]. In the Azores, the population structure of R.
clavata showed a favoring of females around the islands, which was reflected in the whole
sample, since the scientific surveys essentially occur in these areas. As stated before, in this
area, there was a slightly greater abundance of small individuals. However, the imbalance
in sex ratio was not too evident in the smaller size classes (Figure 7), probably due to the
aforementioned selectivity issue. Generally, male and female thornback rays develop at
the same rate when they are young (1–4 years), but males’ growth rates tend to decline
after four years [99]. In fact, the largest thornback rays are always female [71,100–102].
Differences in growth between the sexes may be due to maturation timing [103]. According
to Walmsley-Hart et al. [104], female skates attain a larger size and grow slower as a result
of their reproductive strategy; males mature faster to achieve sexual maturity, while females
grow larger to hold the egg cases within the body cavity.

In this study, 50% of female and male thornback rays were mature at 85.9 and 64.7 cm
LT, respectively. According to Serra-Pereira et al. [13], females and males of R. clavata on the
Portuguese continental shelf mature at 78.4 and 67.6 cm LT, respectively. Studies in other
areas indicated that the L50 ranged between 61.2 and 105.0 cm LT in females and between
58.8 and 82.3 cm LT in males [105]. Although the values estimated in this study were within
these intervals, they must be interpreted with caution, particularly for females, given the
high variability observed on the maturity ogive resulting in a poor adjustment (low R2).
Considering that R. clavata matures late, at about 80% of its maximum size [13,99,106], and
that the L∞ was estimated in this study at 92.2 cm LT, a L50 of 85.69 cm LT for females might
in fact be overestimated. Therefore, it is increasingly suggested to review the onboard
biological survey sampling methods implementing a maturity scale more adapted to the
resource (for example, including the post-spawning stages), and running this sampling
more systematically (for example, on an annual basis) to overcome these issues.

Estimates of thornback ray spawning season often vary across geographical areas,
as well as within the same region [13]. Spawning in UK coastal waters, for example, was
estimated to take place between February and September, with a peak in June [107,108];
other authors indicated a later start to spawning (March or May) [96,109]. In Southern
areas, spawning seasons are longer, extending from May to December (Black Sea), or even
occurring all year (Northwest Mediterranean) [103,110,111]. In Portuguese continental
waters, spawning was also found throughout the year, but the proportion of females in
spawning condition was higher between May and January, with a peak in August [13].
A similar reproductive strategy may occur in the Azores; however, available data were
not sufficient to confirm it. Some specific technical considerations have not always been
considered in current Azorean data collection programs, and collected data cannot meet
the necessary precision levels for some species. In some cases, for example, the species’
spawning season does not coincide with the sampling time, as is the case of the Azorean
spring bottom longline survey; in others, the sampling does not cover all habitats of the
species, as is the case of the fishery-dependent data that come mainly from offshore areas
due to fishing area restrictions. Furthermore, the gonad maturity scales in use, as well as
the understanding of specific stages (e.g., immature versus post-spawning), contribute
to misclassifications, resulting in an inaccurate estimate of spawning stock biomass [112].
This highlights the need for species-specific long-term research and the validation of
macroscopic staging by histology [113].
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Overfishing of R. clavata has been detected in other parts of the Atlantic [96,99,114,115]
and Mediterranean [83,116]. In the Azores, historical trends of commercial catch rates
and landings are frequently marked by temporal changes in the market demand and
management measures, particularly catch limits (TAC/quotas) [9]. Thus, the reduction
in landings and commercial catches of R. clavata observed in recent years may be more
associated with an increase in discards than a decline in the abundance of the stock [9].
Survey-derived abundance indices represent an unbiased accounting of healthy stock, since
they are not influenced by these factors. On the other hand, environmental characteristics,
such as the substrate type, can greatly affect the abundance indices [9,24] and generate the
oscillatory pattern observed in the present study. Since abundance indices are often used
as a key input parameter in fish stock assessment models [117], using statistical approaches
to minimize the impact of complex variables is critical.

Given that the exploitation rate (E) estimated for the most recent 2010–2016 period
(E = 0.47) was below the optimal level of 0.50 and fishing mortality (F) was lower than
natural mortality (M) [67], there is no clear evidence that this species is overexploited
in the Azorean region. However, considering that growth parameters, despite being
adjusted to the data, did not fit to biology (Lmax = 178 cm LT versus L∞ = 92.2 cm LT), the
scenario could be much worse than E = 0.47. Lower k and higher L∞ would lead to a lower
natural mortality and, consequently, higher F that implies higher E. Therefore, as R. clavata
is a commercially important elasmobranch species, improving data quality and input
information for analytical stock assessment should be a priority. In this regard, estimations
of additional biological and fishery parameters, such as length at first maturity (Lm), length
at maximum possible yield (Lopt), life span (tmax), and theoretical age at length zero (t0), were
performed by using the estimated growth parameters (L∞ and k) as input of some empirical
equations (Table S3) [118,119]. As well as other deep-water species [18,92,95,120–123],
R. clavata was characterized by the k-selected life history strategy with large size, slow
growth, low natural mortality (Table 2), long life span, and late maturity (Table S1). The
empirical equations also suggested a healthy fished population in the Azores, with the
Lc (Table S3) above the Lm and Lopt (Table S1), and the mean LT in the catch (Figure 5)
above the Lc, Lm, and Lopt. It should be emphasized that the approximate numerical
estimates are preliminary and should be interpreted with caution, since the consequences
of an underestimated L∞ would result in a more concerning situation. The findings must
therefore be checked first (e.g., [124,125]), and only then used for management before
specific evidence becomes accessible.

5. Conclusions

Raja clavata is a near threatened elasmobranch species and, while our findings sug-
gested a relatively healthy stock in the Azores, a substantial improvement in data quality is
necessary to better understand the stock condition and prevent overexploitation. Reliable
management strategies require actual knowledge about habitat preferences, vertical dis-
tribution, movement pattern, size–frequency distributions, growth parameters, sex ratios,
mortality rates, and reproduction of this species. This study expands current knowledge
on the thornback ray R. clavata population inhabiting the Azorean region and provides a
baseline for further monitoring and comparative studies. However, further studies (e.g.,
reliability of the abundance indices from the survey, growth parameters estimate from
direct readings, reproductive aspects, and habitat prediction using in situ substrate data)
are recommended to make additional advances in stock characterization. Finally, using
data-limited approaches, the stock size and biological reference points should be assessed
in order to achieve the highest sustainable yield.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10070676/s1, Figure S1. Growth curves (dashed lines) for Raja clavata in the Azores
plotted through the LT–frequency data obtained using bootstrapped ELEFAN_GA model. Black
bars indicate positive values (peaks), whereas white bars indicate negative peaks. Shading refers to
the difference between moving averages. Data from the EU Data Collection Framework (DCF) for
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the period 2010–2016. Figure S2. Monthly mean (±0.95 confidence intervals) gonadosomatic index
(GSI) and hepatosomatic index (HSI) for the thornback ray Raja clavata in the Azores. Data from the
commercial catches. Table S1. Summary of the number of tagged and recaptured thornback rays Raja
clavata in the Azores. Distance traveled was measured by tracing a straight line between capture and
recapture geographical positions. LT1: total length (LT, cm) at capture. LT2: LT at recapture ∆LT: the
difference between LT1 and LT2. ∆T: time at liberty expressed in days. ∆LT year−1: the annual LT
increment. Bold highlights the 20 selected recaptures used in the growth analysis (∆LT larger than
zero and ∆T larger than 60 days). Table S2. Growth parameters estimated by other authors for Raja
clavata in European waters. F: female; M: male; n: number of individuals; L∞: the asymptotic length;
k: the growth coefficient; t0: the theoretical age at length zero. Table S3. Estimates of biological and
fishery parameters for Raja clavata calculated from the empirical relationships between the length at
first maturity (Lm), length at maximum possible yield (Lopt), life span (tmax), and theoretical age at
length zero (t0), and the asymptotic length (L∞) and growth coefficient (k). The values of L∞ and k
were derived from the LT–frequency data collected for the period 2010–2016 as part of the EU Data
Collection Framework (DCF).
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