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This paper presents a framework for automatically learning shape and appearance models for medical 

(and certain other) images. The algorithm was developed with the aim of eventually enabling distributed 

privacy-preserving analysis of brain image data, such that shared information (shape and appearance ba- 

sis functions) may be passed across sites, whereas latent variables that encode individual images remain 

secure within each site. These latent variables are proposed as features for privacy-preserving data mining 

applications. 

The approach is demonstrated qualitatively on the KDEF dataset of 2D face images, showing that it can 

align images that traditionally require shape and appearance models trained using manually annotated 

data (manually defined landmarks etc.). It is applied to the MNIST dataset of handwritten digits to show 

its potential for machine learning applications, particularly when training data is limited. The model is 

able to handle “missing data”, which allows it to be cross-validated according to how well it can predict 

left-out voxels. The suitability of the derived features for classifying individuals into patient groups was 

assessed by applying it to a dataset of over 1900 segmented T1-weighted MR images, which included 

images from the COBRE and ABIDE datasets. 

© 2019 Wellcome Centre for Human Neuroimaging. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

This paper introduces an algorithm for learning a model of

hape and appearance variability from a collection of images, with-

ut relying on manual annotations. The shape part of the model

oncerns modelling variability with diffeomorphic deformations,

hich is essentially image registration. In contrast, the appearance

art is about accounting for signal variability that is not well de-

cribed by deformations, and is essentially about adapting a “tem-

late” to enable more precise registration. 

The problem of image registration is sometimes viewed from a

ayesian perspective, whereby the aim is to determine the most

robable deformation ( ψ) given the fixed ( f ) and moving ( μ) im-

ges 

ˆ 
 = arg max 

ψ 

log p(ψ | f , μ) 

= arg max 
ψ 

( log p(f | ψ, μ) + log p(ψ) ) . (1) 
∗ Corresponding author. 
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n practice, the regularisation term (log p ( ψ)) is not usually de-

ned empirically, and simply involves a penalty based on some

imple measure of deformation smoothness. One of the aims of

his work is to try to improve on this simple model. By providing

mpirically derived priors for the allowable deformations, trained

hape models have been shown to exhibit more robust image reg-

stration. An early example is Cootes and Taylor (1992) , in which

ontrol point positions are constrained by their first few modes

f variability. Training this model involved annotating images by

anually placing a number of corresponding landmarks, comput-

ng the mean and covariance of the collection of landmarks, and

hen computing the eigenvectors of the covariance ( Cootes et al.,

995 ). In neuroimaging, shape models have previously been used

o increase the robustness of brain image segmentation ( Babalola

t al., 2009; Patenaude et al., 2011 ). The current work involves

ensely parameterised shape models within the diffeomorphic set-

ing, and relates to previous work on diffeomorphic shape models

 Cootes et al., 2008 ), as well as those using more densely param-

terised deformations ( Rueckert et al., 2003 ). Recently, Zhang and

letcher (2015) developed their Principal Geodesic Analysis (PGA)

ramework for directly computing the main modes of shape varia-

ion within a diffeomorphic setting. 
This is an open access article under the CC BY license. 
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In addition to increasing the robustness of image registration

tasks, shape models can also provide features that may be used

for statistical shape analysis. This is related to approaches used in

geometric morphometrics ( Adams et al., 2004 ), where the aim is to

understand shape differences among anatomies. Shape descriptors

from the PGA framework have previously been found to be useful

features for data mining ( Zhang et al., 2017 ). 

A number of works have investigated combining both shape

and appearance variability into the same model ( Cootes et al.,

1995; 2001; Cootes and Taylor, 2001; Cootes et al., 2008; Belongie

et al., 2002; Patenaude et al., 2011 ). These combined shape and

appearance models have generally shown good performance in a

number of medical imaging challenges ( Litjens et al., 2014 ). While

there is quite a lot written about learning appearance variability

alone, the literature on automatically learning both shape and ap-

pearance together is fairly limited. Earlier approaches required an-

notated data for training, but there are now some works appear-

ing that have looked into the possibility of using unsupervised

or semi-supervised approaches for learning shape and appearance

variability. Examples include Cootes et al. (2010) , Alabort-i Medina

and Zafeiriou (2014) , Lindner et al. (2015) and Štern et al. (2016) .

The current work is about an unsupervised approach, but there is

no reason why it could not be made semi-supervised by also in-

corporating some manually defined landmarks or other features. 

This work was undertaken as a task in the Medical Informatics

Platform of the EU Human Brain Project (HBP). The original aim

of the Medical Informatics Platform was to develop a distributed

knowledge discovery framework that enables data mining without

violating patient confidentiality. The strategy was to involve a hor-

izontally partitioned dataset, where data about different patients is

stored in different hospital sites. Although this has not been done,

the algorithm presented in this paper can be implemented (see

Section 2.2 ) in a way that does not require patient-specific infor-

mation to leave a site, and instead only shares aggregates, which

reveal less about the individual subjects. Some leakage of infor-

mation (potentially exploitable by those with malicious intent) is

inevitable, particularly for sites holding data on only small num-

bers of individuals, but we leave this as a topic to be addressed

elsewhere. Aggregated data may be weighted moments (e.g. �n r n ,

�n r n z n or 
∑ 

n r n z n z 
T 
n , where z n is a vector of values for patient n ,

and r n is a patient-specific weight generated by some rule), which

could then be used for clustering or other forms of statistical anal-

ysis. Enabling this type of approach to be applied to images re-

quires some form of dimensionality reduction, particularly if co-

variances need to be represented (such as for clustering into pa-

tient subgroups using Gaussian mixture models). 

Our work takes a generative modelling approach. There is in-

creasing interest in the use of generative approaches for machine

learning, partly because they can be extended to work in a semi-

supervised way. This enables unlabelled training data to contribute

towards the model, potentially allowing more complex models to

be learned from fewer labelled examples. Another motivation for

generative modelling approaches is to enable missing data to be

dealt with. Brain images – particularly hospital brain images – of-

ten have different fields of view from each other, with parts of

the brain missing from some of the scans. Many machine learning

approaches do not work well in the presence of missing data, so

imputing missing information is an implicit part of the presented

framework. 

This work proposes a solution based on learning a form of

shape and appearance model. The overall aim is to capture as

much anatomical variability as possible using a relatively small

number of latent variables. In addition to 3D brain image data, a

number of other types of images will be used to illustrate other

aspects of the very general framework that we present. 
 

. Methods 

The proposed framework builds on many of the ideas pre-

ented in the principal geodesic analysis work of Zhang and

letcher (2015) . Modifications involve extending the framework to

se a Gauss-Newton optimisation strategy, incorporating a variety

f appearance noise models and also using a different overall form

f regularisation. This section is divided into two main sections.

he first of these describes the overall generative model, whereas

he second describes the algorithm for fitting the model. Some of

he notation used in this section is explained in Appendix A . 

.1. Generative model 

The basic idea is that both shape and appearance may be mod-

lled by linear combinations of spatial basis functions, and the ob-

ective is to automatically learn the best set of basis functions and

atent variables from some collection of images. This is essentially

 form of factorisation of the data. Each of the N images will be

enoted by f n ∈ R 

M , where M is the number of pixels/voxels in

n image, 1 ≤ n ≤ N , and the entire collection of images by F . An

ppearance model for the n th image is constructed from a linear

ombination of basis functions, such that 

 n = μ + W 

a z n . (2)

ere, W 

a is a matrix containing K columns of appearance basis

unctions, and z n is a vector of K latent variables for the n th im-

ge. The vector μ is a mean image, with the same dimensions as

 column of W 

a . 

The shape model (used by Zhang and Fletcher (2015) ) is encoded

imilarly, where initial velocity fields are computed by 

 n = W 

v z n . (3)

he Large-Deformation Diffeomorphic Metric Mapping (LDDMM)

ramework ( Beg et al., 2005 ) is used, which allows images to

e warped by smooth, invertible one-to-one mappings. Diffeo-

orphic deformations ( ψ n ) are computed from each v n by a

rocedure known as “geodesic shooting”, which is presented in

lgorithm 4 of Section 2.2.3 . 

From a probabilistic perspective, the likelihood can be sum-

arised by 

p(f n | z n , μ, W 

a , W 

v ) = p(f n | a n (ψ n )) , (4)

here a ( ψ) denotes warping the entire a by the deformation ψ .

ifferent forms of noise model are presented in Section 2.1.2 , but

or convenience, we use the generic definition 

(f n , z n , μ, W 

a , W 

v ) = − ln p(f n | z n , μ, W 

a , W 

v ) . (5)

In practice, a small amount of regularisation is imposed on the

ean ( μ) by assuming it is drawn from a multivariate Gaussian

istribution of precision L μ (see Section 2.1.3 ) 

p( μ) = N ( μ| 0 , (L μ) 
−1 

) . (6)

A weighted sum of two strategies for regularising estimates of

he basis functions ( W 

a and W 

v ) and latent variables ( z n ) is used,

hich are: 

1. The first strategy involves separate priors on the basis func-

tions, and on the latent variables. Each of the basis functions

is assumed to be drawn from zero-mean highly multivariate

Gaussian, parameterised by very large and sparse precision ma-

trices. Possible forms of the matrices for regularising shape ( L v )

are described in Section 2.1.1 , whereas those for appearance

( L a ) are described in Section 2.1.3 . Priors for the basis functions

(see Discussion section regarding scaling by N ) are 

p(W 

v ) = 

K ∏ 

k =1 

N (w 

v 
k | 0 , (NL v ) 

−1 
) , (7)
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Fig. 1. A graphical representation of the model (showing only the 1st strategy). 

Gray circles indicate observed data, whereas white circles indicate variables that 

are either estimated ( W 

v , W 

a , μ and z ) or marginalised out ( A ). The plate indicates 

replication over all images. 
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p(W 

a ) = 

K ∏ 

k =1 

N (w 

a 
k | 0 , (NL a ) 

−1 
) . (8) 

The latent variables ( Z ) are assumed to be drawn from zero-

mean multivariate Gaussian distributions, parameterised by a

precision matrix ( A ) that is derived from the data. 1 

p(z n | A ) = N (z n | 0 , A 

−1 ) . (9) 

The model assumes that matrix A is drawn from a Wishart dis-

tribution. 

p(A ) = W K (A | �0 , ν0 ) 

= 

| A | (ν0 −K−1) / 2 exp (− 1 
2 

T r( �−1 
0 A )) 

2 

(ν0 K) / 2 | �0 | ν0 / 2 �K 

(
ν0 

2 

) , (10) 

where �K is the multivariate gamma function. This prior can be

made as uninformative as possible by using ν0 = K and �0 =
I /ν0 , where I is an identity matrix. In general, �0 should be

a positive definite symmetric matrix, with ν0 ≥ K so that the

distribution can be normalised. 

2. The second strategy (used by Zhang and Fletcher (2015) ) is a

pragmatic solution to ensuring that enough regularisation is

used. 

ln p(Z , W 

a , W 

v ) = − 1 
2 

T r(ZZ 

T ((W 

a ) T L a W 

a 

+ (W 

v ) T L v W 

v )) + const (11) 

This strategy imposes smoothness on the reconstructions

by assuming penalties based on ln N (W 

a z n | 0 , L a ) and

ln N (W 

v z n | 0 , L v ) , in a similar way to more conventional

regularisation approaches. 

The weighting of the two strategies is controlled by user-

pecified weights λ1 and λ2 . When everything is combined (see

ig. 1 ), the following joint log-probability is obtained 

n p(F , μ, W 

a , W 

v , A , Z ) 

= −
N ∑ 

n =1 

J(f n , z n , μ, W 

a , W 

v ) − 1 
2 
μT L μμ

− λ1 N 
2 

(
T r((W 

a ) T L a W 

a ) + T r((W 

v ) T L v W 

v ) 
)

+ 

λ1 

2 

(
(N + ν0 − K − 1) ln | A | − T r((ZZ 

T + �−1 
0 ) A ) 

)
− λ2 

2 
T r(ZZ 

T ((W 

a ) T L a W 

a + (W 

v ) T L v W 

v )) + const . (12) 

The model fitting procedure is described in Section 2.2 . Ideally,

he procedure would compute distributions for all variables, such

hat uncertainty was dealt with optimally. Unfortunately, this is

omputationally impractical for the size of the datasets involved.

nstead, only point estimates are made for the latent variables ( ̂ z n )

nd various parameters ( ̂  μ, W 

a , W 

v ), apart from A , which is in-

erred within a variational Bayesian framework. 

The approach also allows an alternative formulation, whereby

hapes and appearances are modelled separately by having some of

he latent variables control appearance, and others control shape.

his may be denoted by 

 n = μ + 

K a ∑ 

k =1 

w 

a 
k z kn , (13) 
1 Note that the latent precision matrix A should not be confused with the appear- 

nce variables a n , which were introduced earlier. Hopefully, the context in which 

hey are used should be enough to prevent any confusion.  

b  
 n = 

K v ∑ 

k =1 

w 

v 
k z mn , where m = K 

a + k. (14) 

or simplicity, only the form where each latent variable controls

oth shape and appearance is described in detail. This is the form

sed in active appearance models ( Cootes et al., 2001 ). Note how-

ver, that in the form where shape and appearance are controlled

y separate latent variables, the precision matrix A still encodes

ovariance between the two types of variables. This means that la-

ent variables controlling either shape or appearance are not esti-

ated completely independently. 

.1.1. Differential operator for shape model 

The precision matrix used in ( Eq. (7) ) has the form 

 

T L v v = 

∫ 
x ∈ �

(
ω 

v 
0 ‖ v (x ) ‖ 

2 + ω 

v 
1 ‖∇v (x ) ‖ 

2 + ω 

v 
2 ‖∇ 

2 v (x ) ‖ 

2 
)
dx 

+ 

∫ 
x ∈ �

(
ω 

v 
3 

4 

‖ D v (x ) + (D v (x )) T ‖ 

2 
F + ω 

v 
4 T r(D v (x )) 2 

)
dx 

(15) 

here ‖ · ‖ F denotes the Frobenius norm (the square root of the

um of squares of the matrix elements) and D denotes the oper-

tor computing Jacobian tensors. The above integral is defined in

obolev space, which is a weighted Hilbert space where spatial

erivatives, up to a certain degree, are accounted for. Five user-

pecified hyper-parameters are involved: 

• ω 

v 
0 

controls absolute displacements, and is typically set to be a

very small value. 
• ω 

v 
1 controls stretching, shearing and rotation. 

• ω 

v 
2 

controls bending energy. This ensures that the resulting ve-

locity fields have smooth spatial derivatives. 
• ω 

v 
3 controls stretching and shearing (but not rotation). 

• ω 

v 
4 

controls the divergence, which in turn determines the 

amount of volumetric expansion and contraction. 

Most of the regularisation in this work was based on a com-

ination of the linear-elasticity (using Lamé’s constants ω 

v and ω 

v )

3 4 
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and bending energy ( ω 

v 
2 ) penalties. The effects of different forms of

regularisation used for registration are illustrated in Ashburner and

Ridgway (2012) . 

2.1.2. Noise models 

A number of different choices for the noise model are available

for ( Eq. (4) ), each suitable for modelling different types of image

data. These models are based on p(f n | a ′ n ) , which leads to an “en-

ergy” term ( J ) that drives the model fitting and is assumed to be

independent across voxels 

a ′ n = �n ( μ + W 

a z n ) (16)

J(a ′ n ) = − ln p(f n | a ′ n ) = −
M ∑ 

m =1 

ln p( f mn | a ′ mn ) . (17)

Because the approach is generative, missing data are handled by

simply ignoring those voxels where there is no information. By do-

ing this, they do not contribute towards the objective function and

play no role in driving the model fitting. A number of different

energy functions have been implemented for modelling different

types of data. These are listed next. 

2.1.2.1. Gaussian noise model. Mean-squares difference is a widely

used objective functions for image matching, which is based on the

assumption of stationary Gaussian noise. For an image consisting

of M pixels or voxels, the function would be 

−J L 2 (a ′ ) = ln p(f | a ′ , σ 2 ) = − M 

2 
ln (2 π) − M 

2 
ln σ 2 − 1 

2 σ 2 || f − a ′ || 2 2 , 

(18)

where || · || 2 denotes the Euclidean norm. The simplest approach to

compute σ 2 is to make a maximum likelihood estimate from the

variance by 

ˆ σ 2 = 

1 
MN 

N ∑ 

n =1 

|| f n − a ′ n || 2 2 . (19)

2.1.2.2. Logistic function with Bernoulli noise model. When working

with binary images, such as single tissue type maps having voxels

of zeros and ones (or values very close to zero or one), it may be

better to work under the assumption that voxels are drawn from a

Bernoulli distribution, which is a special case of the binomial dis-

tribution. For a single voxel, 

P ( f | s ) = s f (1 − s ) 1 − f . (20)

The range 0 < s < 1 must be satisfied, which is achieved using a

logistic sigmoid function 

s (a ′ ) = 

1 

1 + exp (−a ′ ) . (21)

Putting these together leads to the matching function 

−J Bern (a ′ ) = ln P (f | a ′ ) = 

M ∑ 

m =1 

(
f m 

a ′ m 

+ ln s (−a ′ m 

) 
)
. (22)

2.1.2.3. Softmax function with categorical noise model. If there are

several binary maps to align simultaneously, for example maps of

grey matter, white matter and background, then a categorical noise

model is appropriate. A categorical distribution is a generalisation

of the Bernoulli distribution, and also a special case of the multi-

nomial distribution. The probability of a vector f of length C , such

that f c ∈ {0, 1} and 

∑ C 
c=1 f c = 1 , is given by 

P (f | s ) = 

C ∏ 

c=1 

s f c c , (23)
here s c > 0 and 

∑ C 
c=1 s c = 1 . The constraint on s is enforced by

sing a softmax function. 

 c (a ′ ) = 

exp a ′ c ∑ C 
c=1 exp a ′ c 

(24)

sing the “log-sum-exp trick”, numerical overflow or underflow

an be prevented by first subtracting the maximum of a , so 

 c (a ′ ) = 

exp (a ′ c − a ∗) ∑ C 
c=1 exp (a ′ c − a ∗) 

, where a ∗ = max { a ′ 1 , . . . , a ′ C } (25)

Noting that each image is now a matrix of M voxels and C

lasses, the objective function can then be computed as 

J cat (A 

′ ) = ln P (F | A 

′ ) 

= 

M ∑ 

m =1 

( 

C ∑ 

c=1 

a ′ mc f mc − a ∗ − log 

( 

C ∑ 

c=1 

exp (a ′ mc − a ∗m 

) 

) ) 

(26)

.1.3. Differential operator for appearance model 

Regularisation is required for the appearance variability, as it

elps to prevent the appearance model from absorbing too much

f the variance, at the expense of the shape model. This differential

perator (again based on a Sobolev space) is used in Eqs. (6) and

8) , and controlled by three hyper-parameters. 

 

T L a a = 

∫ 
x ∈ �

(
ω 

a 
0 ‖ a (x ) ‖ 

2 + ω 

a 
1 ‖∇a (x ) ‖ 

2 + ω 

a 
2 ‖∇ 

2 a (x ) ‖ 

2 
)
dx 

(27)

.2. Algorithm for model fitting 

A highly simplified version of what was implemented is shown

n Algorithm 1 . The model fitting approach involves alternating be-

ween computing the shape and appearance basis functions (plus a

ew other variables - Step-1 ), and re-estimating the latent variables

 Step-2 ). For better convergence of the basis function updates, an

rthogonalisation step is included in each iteration. 

Step-1 relies on Gauss-Newton updates of three elements: the

ean template ( μ), shape subspace ( W 

a ) and appearance sub-

pace ( W 

v ). These updates have the general form of w ← w − (H +
 ) −1 (g + Lw ) , where L is a very sparse Toeplitz or circulant matrix

ncoding spatial regularisation, and H encodes a field of small ma-

rices that are easy to invert. The full-multigrid method, described

n Ashburner (2007) , is particularly well suited to solving this type

f problem. 

Step-2 involves updating the latent variables ( Z ) and Gaus-

ian prior ( A ). To break the initial symmetry, the latent variables

re all initialised randomly, while ensuring that ˆ Z ̂

 Z 

T = NI . Corre-

pondingly, matrix C 

z is initialised to N I and 

ˆ A is initialised to

(N + ν0 )(NI + �−1 
0 ) −1 . An initial estimate for μ is computed from

he unaligned data in a fairly straightforward way, whereas ˆ W 

a and
ˆ 
 

v are both initialised to zero. 

Comments in Algorithm 1 saying “Dist” indicate which steps

hould be modified for running within a distributed privacy-

reserving framework. The idea here is that the main procedure

ould be run on the “master” computer, whereas various functions

ould be run on the “worker” machines on which the data reside.

hese workers would only pass aggregate data back to the master,

hereas the latent variables, which explicitly encode information

bout individuals, would remain on the workers. As the algorithm

s described here, the images ( F ) and estimated latent variables ˆ Z

re passed back and forth between the master and workers, but

his need not be the case. If these data and variables were all to

eside on the worker machines, the master machine would still be

ble to run using only the aggregate data. 
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Algorithm 1 Shape and appearance model. 

Initialize variables ( ̂ Z , ˆ μ, ˆ W 

a , ˆ W 

v , C 

z and 

ˆ A ). � Dist (some) 

repeat 

g μ, H 

μ ← MeanDerivatives (F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v ) � Dist 

ˆ μ ← 

ˆ μ − (H 

μ + L μ) −1 (g μ + L μ ˆ μ) 

G 

v , H 

v ← ShapeDerivatives (F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v ) � Dist 

for k = 1 . . . K do 

ˆ w 

v 
k 

← 

ˆ w 

v 
k 

− (H 

v 
kk 

+ (λ1 N + λ2 c 
z 
kk 

) L v ) −1 (g v 
k 

+ (λ1 N + 

λ2 c 
z 
kk 

) L v ˆ w 

v 
k 
) 

end for 

G 

a , H 

a ← AppearanceDerivatives (F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v ) � Dist 

for k = 1 . . . K do 

ˆ w 

a 
k 

← 

ˆ w 

a 
k 

− (H 

a 
kk 

+ (λ1 N + λ2 c 
z 
kk 

) L a ) −1 (g a 
k 

+ (λ1 N + 

λ2 c 
z 
kk 

) L a ˆ w 

a 
k 
) 

end for 

C ← ( ̂  W 

v ) T L v ˆ W 

v + ( ̂  W 

a ) T L a ˆ W 

a 

ˆ Z , S , C 

z ← UpdateLatentVariables (F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v , λ1 ̂
 A + λ2 C ) 

� Dist 

T ← OrthogonalisationMatrix (C , C 

z , S , N) 
ˆ W 

a ← 

ˆ W 

a T −1 

ˆ W 

v ← 

ˆ W 

v T −1 

C 

z ← TC 

z T T 

S ← TST T 

ˆ Z ← T ̂ Z � Dist 

ˆ A ← (N + ν0 )(C 

z + S + �−1 
0 ) −1 

until convergence 
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e  

I  

a  
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G  
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o  

r  
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t

2

 

m  

N

Algorithm 2 Computing gradients and Hessians for mean. 

function MeanDerivatives ( F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v ) 

g μ = 0 , H 

μ = 0 

for n = 1 . . . N do 

a ← 

ˆ μ + 

ˆ W 

a ˆ z n 
� ← Shoot ( ̂  W 

v ˆ z n ) 

g ′ , H 

′ ← LikelihoodDerivatives (f n , a , �) 

g μ ← g μ + g ′ 
H 

μ ← H 

μ + H 

′ 
end for 

return g μ, H 

μ

end function 

2  

A

 

 

G  

o

F  

b  

i

J

T

g

H

I  

t

H

w  

m  

r  

t  

t  

v  

z  

t  

(

2  

m  

t  

t

da da 

2 See https://en.wikipedia.org/wiki/Loewner _ order . 
For simplicity, Algorithm 1 does not include functions for com-

uting variances ( σ 2 used by the Gaussian noise model), etc., and

hese variables are not shown to be passed to the various func-

ions that use them. However, it should be easy to see how these

hanges would be incorporated in practice. Also, the illustration

oes not show any steps requiring the objective function, which

nclude various backtracking line-searches to ensure that param-

ter updates cause the objective function to improve each time.

n practice, the algorithm is run for a fixed number of iterations,

lthough the log-likelihood could be used to determine when to

top. 

.2.1. Updating the mean ( ̂  μ) 

From ( Eq. (12) ), we see that a point estimate of the mean ( μ)

ay be computed by 

ˆ = arg min 

μ

( 

1 
2 
μT L μμ + 

N ∑ 

n =1 

J(f n , ̂  z n , μ, ˆ W 

a , ˆ W 

v ) 

) 

. (28) 

In practice, this log probability is not fully maximised with re-

pect to μ at each iteration. Instead, ˆ μ is updated by a single

auss-Newton iteration. This requires gradients and Hessians com-

uted as shown in Algorithm 2 , which simply involves summing

ver those computed for the individual images. A small amount of

egularisation is used for the estimate of the mean, which is im-

ortant in situations where it can help to smooth over some of

he effects of missing data. 

.2.2. Likelihood derivatives 

The algorithm can be run using a number of different noise

odels, and the gradients and Hessians involved in the Gauss-

ewton updates depend upon the one used. 
.2.2.1. Gaussian model. Algorithm 3 shows derivatives for the

lgorithm 3 Likelihood derivatives for Gaussian noise model. 

function LikelihoodDerivatives ( f , a , �) 

J ′ ← 

1 
2 σ 2 || �a − f || 2 + 

M 

2 ( ln (σ 2 ) + ln (2 π)) � If needed

g ′ ← �T 
(

1 
σ 2 ( �a − f ) 

)
H 

′ ← diag 
(
�T 

(
1 
σ 2 1 

))
� where 1 is an array of ones

return J ′ , g ′ , H 

′ 
end function 

aussian noise model ( Eq. (18) ). For a single voxel, this is based

n 

dJ L 2 
da ′ = 

1 
σ 2 (a ′ − f ) and 

d 2 J L 2 
da ′ 2 = 

1 
σ 2 (29) 

or voxels where data is missing, both J L 2 and 

dJ L 2 
da ′ are assumed to

e zero. Using matrix notation, the objective function for an image

s therefore 

 

′ = 

1 
2 σ 2 ( �a − f ) T ( �a − f ) + 

M 

2 
( ln (σ 2 ) + ln (2 π)) . (30) 

he gradients and Hessians, with respect to variations in a , are 

 

′ = �T 
(

1 
σ 2 ( �a − f ) 

)
(31) 

 

′ = 

1 
σ 2 �

T � (32) 

n practice, the Hessian ( H 

′ ) is approximated by a diagonal ma-

rix 

 

′ 
 diag 
(
�T 

1 

1 
σ 2 

)
, (33) 

here 1 is a vector of ones. This approximation works in the opti-

isation because all rows of � sum to 1, so for any vector d of the

ight dimension, the rows of �T diag( d ) � sum to �T d . Because (for

rilinear interpolation) all elements of � are greater than or equal

o zero, so if all elements of d are non-negative, then all eigen-

alues of diag 
(
�T d 

)
− �T diag (d ) � are greater than or equal to

ero. 2 These non-negative eigenvalues ensure that our approxima-

ion to the Hessian ( Eq. (33) ) is more positive semi-definite than

 Eq. (32) ). 

.2.2.2. Binary model. For the Bernoulli noise model with the sig-

oidal squashing function ( Eq. (22) ), some modifications are made

o the gradient and Hessian of Algorithm 3 , based on the deriva-

ives 

dJ Bern 

′ = s (a ′ ) − f and 

d 2 J Bern 

′ 2 = s (a ′ )(1 − s (a ′ )) . (34) 

https://en.wikipedia.org/wiki/Loewner_order
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Algorithm 5 Computing gradients and Hessians for appearance. 

function AppearanceDerivatives ( F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v ) 

for k = 1 . . . K do 

g a 
k 

← 0 , H 

a 
kk 

← 0 

end for 

for n = 1 . . . N do 

a ← 

ˆ μ + 

ˆ W 

a ˆ z n 
� ← Shoot ( ̂  W 

v ˆ z n ) 

g ′ , H 

′ ← LikelihoodDerivatives (f n , a , �) 

for k = 1 . . . K do 

g a 
k 

← g a 
k 

+ ̂  z kn g 
′ 

H 

a 
kk 

← H 

a 
kk 

+ ̂  z 2 
kn 

H 

′ 
end for 

end for 

return G 

a , H 

a � Where G 

a = { g a 
1 
, g a 

2 
, . . . , g a 

K 
} 

� H 

a = { H 

a 
1 , 1 

, H 

a 
2 , 2 

, . . . , H 

a 
K,K 

} 
end function 

f  

a  

Z  

i  

f  

n

2

W
 

 

f  

t  

t  

m  

s  

d  

o  

i

A

 

Using matrix notation (where s ≡ s ( a )), the gradients and Hessians

are 

g 

′ = �T 
( �s − f ) (35)

H 

′ = �T 
diag (s ) diag (1 − s ) � 
 diag 

(
�T 

diag (s )(1 − s ) 
)

(36)

2.2.2.3. Categorical model. The categorical model with a softmax

squashing function ( Eq. (26) ) would use the gradients and Hes-

sians 

dJ cat 

da ′ 
k 

= s k (a ′ ) − f k , where s (a ′ ) = 

exp a ′ ∑ K 
k =1 exp a ′ 

k 

(37)

d 2 J cat 

da ′ 
k 
a ′ 

l 

= s k (a ′ )(δ jk − s j (a ′ )) , (38)

where δjk is the Kronecker delta function. Computation of the gra-

dients and the approximation of the Hessian follow similar lines to

those for the binary and Gaussian models. 

2.2.3. Geodesic shooting 

Algorithm 4 shows how diffeomorphic deformations are com-

Algorithm 4 Geodesic shooting via Euler integration. 

function Shoot ( v 0 ) 
u 0 ← L v 0 � L v v ≡ L v
ψ ← id 

for t = 1 . . . T do 

u ← | Dψ | (Dψ) T u 0 (ψ) 

v ← L g u � Convolution using FFT

ψ ← ψ(id − 1 
T v ) 

end for 

return ψ 

end function 

puted from the initial velocities via a Geodesic shooting proce-

dure. In the presented algorithm, D ψ denotes the Jacobian ten-

sor field of ψ , and ( D ψ) T u indicates a pointwise multiplication

with the transpose of the Jacobian. | D ψ | denotes the field of Ja-

cobian determinants. Lv in the continuous framework is equiva-

lent to the matrix multiplication L v v in the discrete framework.

The operation L g u denotes applying the inverse of L to u , such that

LL g u = u . In practice, this is a deconvolution, which is computed

using fast Fourier transform (FFT) methods to obtain the Green’s

function ( Bro-Nielsen and Gramkow, 1996 ). Because of this, the

boundary conditions for the velocity fields (and other spatial ba-

sis functions) are assumed to be periodic. Much has already been

written about the geodesic shooting procedure, so the reader is re-

ferred to Miller et al. (2006) and Ashburner and Friston (2011) for

further information. 

2.2.4. Updating appearance basis functions ( ̂  W 

a ) 

Appearance basis functions are optimised by 

ˆ W 

a = arg min 

W 

a 

(
1 
2 

T r 
(
(λ1 NI + λ2 ̂

 Z ̂

 Z 

T )(W 

a ) T L a W 

a 
)

+ 

N ∑ 

n =1 

J(f n , ̂  z n , ˆ μ, W 

a , ˆ W 

v ) 

)
. (39)

The first step involves computing the gradients and Hessians,

which is shown in Algorithm 5 . Note that this only shows the com-

putation of gradients and Hessians for the Gaussian noise model,

and that slight modifications are required when using other forms

of noise model. Gradients and Hessians for updating these basis

functions ( W 

a ) are similar to those for the mean updates, except
or weighting based on the current estimates of the latent vari-

bles. Note that for this approach to work effectively, the rows of
ˆ 
 should be orthogonal to each other, which is explained further

n Section 2.2.8 . Note that only a single Gauss-Newton step is per-

ormed in each iteration, so the objective function in ( Eq. (39) ) is

ot fully optimised, but merely improved over its previous value. 

.2.5. Updating shape basis functions ( ̂  W 

v ) 

Shape basis functions are optimised by 

ˆ 
 

v = arg min 

W 

v 

(
1 
2 

T r 
(
(λ1 NI + λ2 ̂

 Z ̂

 Z 

T )(W 

v ) T L v W 

v 
)

+ 

∑ N 
n =1 J(f n , ̂  z n , ˆ μ, ˆ W 

a , W 

v ) 
)
. 

(40)

A single Gauss-Newton iteration is used to update the basis

unctions of the shape model ( W 

v ), which is done in such a way

hat changes to W 

v improve the objective function with respect

o its previous value, rather than fully optimise . ( Eq. (40) ). While

ost Gauss-Newton iterations improve the fit, a backtracking line

earch is included to ensure that they do not overshoot. As for up-

ating W 

a , this requires the rows of ˆ Z to be orthogonal to each

ther. The strategy for computing gradients and Hessians is shown

n Algorithm 6 . 

lgorithm 6 Computing gradients and Hessians for shape. 

function ShapeDerivatives ( F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v ) 

� Various settings (eg L v ) are not passed as arguments

for k = 1 . . . K do 

g v 
k 

← 0 , H 

v 
kk 

← 0 

end for 

for n = 1 . . . N do 

a ← 

ˆ μ + 

ˆ W 

a ˆ z n 
� ← Shoot ( ̂  W 

v ˆ z n ) 

g ′ , H 

′ ← LikelihoodDerivatives (f n , a , �) 

D ← 

[
diag (∇ 1 a ) diag (∇ 2 a ) diag (∇ 3 a ) 

]
g ′ ← D 

T g ′ 
H 

′ ← D 

T H 

′ D 

for k = 1 . . . K do 

g v 
k 

← g v 
k 

+ ̂  z kn g 
′ 
n 

H 

v 
kk 

← H 

v 
kk 

+ ̂  z 2 
kn 

H 

′ 
n 

end for 

end for 

return G 

v , H 

v 

end function 
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3 https://github.com/WTCN- computational- anatomy-group/ 

Shape- Appearance- Model . 
.2.6. Updating latent variables ( ̂ z n ) 

The modes of the latent variables are updated via a Gauss-

ewton scheme (shown in Algorithm 7 ), similar to that used

lgorithm 7 Updating latent variables. 

function UpdateLatentVariables ( F , ̂  Z , ˆ μ, ˆ W 

a , ˆ W 

v , A ) 

S ← 0 

for n = 1 . . . N do 

a ← 

ˆ μ + 

ˆ W 

a ˆ z n 
� ← Shoot ( ̂  W 

v ˆ z n ) 

g ′ , H 

′ ← LikelihoodDerivatives (f n , a , �) 

D ← 

(
diag (∇ 1 a ) diag (∇ 2 a ) diag (∇ 3 a ) 

)
B ← D 

T W 

v + W 

a 

g ← B 

T g ′ 
H ← B 

T H 

′ B 

ˆ z n ← ̂

 z n − ( H + A ) 
−1 

(
g + A ̂

 z n 
)

S ← S + ( H + A ) 
−1 

end for 

C 

z ← 

ˆ Z ̂

 Z 

T 

return 

ˆ Z , S , C 

z 

end function 

y Friston et al. (1995) , Cootes et al. (2001) and Cootes and Tay-

or (2001) . 

ˆ 
 n = arg min 

z n 

(
J(f n , z n , μ, ˆ W 

a , ˆ W 

v ) 

+ 

1 
2 

z T n 
(
λ1 ̂

 A + λ2 ( ˆ W 

a ) T L a ˆ W 

a + λ2 ( ˆ W 

v ) T L v ˆ W 

v 
)
z n 

)
(41) 

The inverse of the (approximate) Hessians allows a Gaussian ap-

roximation of the uncertainty with which the latent variables are

pdated to be computed (“Laplace approximation”). This is the S

atrix, which is combined with 

ˆ Z ̂

 Z 

T (returned as C 

z ) and used to

e-compute ˆ A . 

.2.7. Expectation of the precision matrix ( ̂  A ) 

This work uses a variational Bayesian approach for approximat-

ng the distribution of A , which is a method described in more de-

ail by textbooks, such as Bishop et al. (2006) or Murphy (2012) .

riefly, it invol ves taking the joint probability of ( Eq. (12) ), dis-

arding terms that do not involve A , and substituting the expec-

ations of the other parameters into the expression. This leads to

he following approximating distribution, which can be recognised

s Wishart. 

n q (A ) = 

1 
2 
(N + ν0 − K − 1) ln det | A | 

− 1 
2 

T r 
(
(E [ ZZ 

T ] + �−1 
0 ) A 

)
+ const 

= ln W K (A | �, ν) , (42) 

here � = (E [ ZZ 

T ] + �−1 
0 ) −1 and ν = ν0 + N. In practice, E [ ZZ 

T ]

s approximated by C 

z + S , described previously. Other steps in

he algorithm use the expectation of A , which (see Appendix B of

ishop et al. (2006) ) is 

ˆ 
 = E [ A ] = ν�. (43) 

.2.8. Orthogonalisation 

The strategy for updating ˆ W 

a and 

ˆ W 

v involves some approxi-

ations, which are needed in order to save memory and compu-

ation. This approximation is related to the Jacobi iterative method

or determining the solutions to linear equations, which is only

uaranteed to converge for diagonally dominant matrices. Rather

han work with the Hessian for the entire W matrix together, only

he Hessians for each column of W are computed by Algorithms

 and 6 . This corresponds with a block diagonal Hessian matrix for
he entire W , which has the form 

 = 

⎛ 

⎜ ⎜ ⎝ 

H 11 0 . . . 0 

0 H 22 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . H KK 

⎞ 

⎟ ⎟ ⎠ 

. (44) 

More stable convergence can be achieved by transforming the

asis functions and latent variables in order to minimise the

mount of signal that would be in the off-diagonal blocks, thus

ncreasing the diagonal dominance of the system of equations. In

ituations where diagonal dominance is violated, convergence can

till be achieved by decreasing the update step size. This is anal-

gous to using a weighted Jacobi iteration, where in practice the

eights are found using a backtracking line-search. 

Signal in the off-diagonal blocks is reduced by orthogonalis-

ng the rows of ˆ Z . This is achieved by finding a transformation, T ,

uch that T ̂ Z (T ̂ Z ) T and ( ̂  W 

v T −1 ) T L v ˆ W 

v T −1 + ( ̂  W 

a T −1 ) T L a ˆ W 

a T −1 are

oth diagonal matrices. Transformation T is derived from an eigen-

ecomposition of the sufficient statistics, whereby the symmetric

ositive definite matrices are decomposed into diagonal ( D 

z and

 

w ) and orthonormal ( V 

z and V 

w ) matrices, such that 

 

z D 

z (V 

z ) T = C 

z , (45) 

 

w D 

w (V 

w ) T = C , (46) 

here C 

z = 

ˆ Z ̂

 Z 

T and C = ( ̂  W 

v ) T L v ˆ W 

v + ( ̂  W 

a ) T L a ˆ W 

a . 

A further singular value decomposition is then used, giving 

DV 

T = (D 

w ) 
1 
2 (V 

w ) T V 

z (D 

z ) 
1 
2 . (47) 

The combination of various matrices is used to give an initial

stimate of the transform 

 = DV 

T (D 

z ) −
1 
2 (V 

z ) T . (48) 

The above T matrix could be used to render the matrices or-

hogonal, but their relative scalings would not be optimal. The re-

ainder of the orthogonalisation procedure involves an iterative

trategy similar to expectation maximisation, where the aim is to

stimate some diagonal scaling matrix Q with which to multiply T .

his matrix is parameterised by a set of parameters q , such that 

 = diag ( exp q ) . (49) 

The first step of the iterative scheme involves re-computing ˆ A ,

s described in Section 2.2.7 , but incorporating the current esti-

ates of QT . 

ˆ 
 = ν� = (N + ν0 )(QT (C 

z + S )(QT ) T + �−1 
0 ) −1 . (50) 

The next step in the iterative scheme is to re-estimate q , such

hat 

ˆ 
 = arg min 

q 
(T r 

(
diag ( exp (−q ))(T 

−1 ) T CT 

−1 diag ( exp (−q )) 
)

+ T r 
(
diag ( exp q ) TC 

z T 

T diag ( exp q ) ̂  A 

)
) . (51) 

his is achieved via a Gauss-Newton update, which uses first and

econd derivatives with respect to q . The overall strategy is illus-

rated in Algorithm 8 , which empirically is found to converge well.

. Results 

To show the general applicability of the approach, evaluations

ere performed with a number of datasets of varying character-

stics. Our implementation 

3 is written in a mixture of MATLAB

nd C code (MATLAB “mex” files for the computationally expensive

arts). 

https://github.com/WTCN-computational-anatomy-group/Shape-Appearance-Model
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Algorithm 8 Orthogonalising the variables. 

function OrthogonalisationMatrix ( C , C 

z , S , N) 

V 

z , D 

z ← eig (C 

z ) 

V 

w , D 

w ← eig (C ) 

U , D , V ← svd ((D 

w ) 
1 
2 (V 

w ) T V 

z (D 

z ) 
1 
2 ) 

T ← DV 

T (D 

z ) −
1 
2 (V 

z ) T 

q ← 0 

Q ← diag ( exp q ) 

repeat 
ˆ A ← (N + ν0 )(QT (C 

z + S )(QT ) T + �−1 
0 ) −1 � See Eq. (43). 

R ← 2 ̂  A � (TC 

z T T ) T � “�” denotes a Hadamard product 

g ← QR diag (Q ) − 2 Q 

−2 diag ((T −1 ) T CT −1 ) � Gradient 

H ← QRQ + diag (QR diag (Q )) + 4 Q 

−2 (T −1 ) T CT −1 � Hessian 

q ← q − H 

−1 g 

Q ← diag ( exp q ) 

until Convergence 

T ← QT 

return T 

end function 
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4 http://yann.lecun.com/exdb/mnist/ . 
5 This was said by the late David MacKay ( MacKay, 2003 ) in relation to the suc- 

cess of kernel methods, such as support-vector machines or Gaussian processes, 

which, at the time, were replacing neural networks in practical applications. 
3.1. Qualitative 2D experiments with faces 

After years of exposure to faces, most people can identify

whether an image of a face is plausible or not, so images of human

faces provide a good qualitative test of how well the algorithm can

model biological variability. 

The straight on views from the Karolinska Directed Emotional

Faces (KDEF) data-set ( Lundqvist et al., 1998 ) were used to make a

visual assessment of how well the algorithm performs. This data-

set consisted of photographs of 70 participants, holding seven dif-

ferent facial expressions, which was repeated twice. Some of the

images were excluded because they were systematically brighter

(47 images) or had different dimensions (one image), leaving a fi-

nal dataset consisting of 932 colour images, which were downsam-

pled to a size of 282 × 382. The original intensities were in the

range of 0 to 255, but these values were re-scaled by 1/255. 

A 64 eigenmode model was used ( K = 64 ), which assumed

Gaussian noise. Model fitting (i.e., learning the shape and appear-

ance basis functions, etc.) was run for 20 iterations, with ν0 =
10 0 0 , λ = [15 . 2 0 . 8] , ω 

a = [4 512 64] , ω 

μ = N[10 −4 0 . 1 0 . 1] and

ω 

v = [10 −3 0 16 1 1] . It was fit to the entire field of view of the

images, rather than focusing only on the faces, and some of the re-

sulting fits are shown in Fig. 2 . The first set of images are a random

selection of the original data, with the full shape and appearance

model fits shown immediately below. As can be seen, the fit is rea-

sonably good - especially given that only 64 modes of variability

were used, and that these have to account for a lot of variability of

hair etc. Below these are the shape model fits, generated by warp-

ing the mean according to the estimated deformations ( μ( ψ n )).

The appearance fits are shown at the bottom ( a n from ( Eq. (4) )).

Ideally, these reconstructions of appearance should be in perfect

alignment with each other, which is not quite achieved in certain

parts of the images. In particular, the thickness of the neck varies

according to whether or not the people in the images have short

or long hair. When looked at separately, the shape and appearance

parts of the model do not behave quite so well, but when com-

bined, they give quite a good fit. Fig. 3 shows a simple 64-mode

principal component analysis (PCA) fit to the same data, which

clearly does not capture variability quite as well as the shape and

appearance model. 

For these examples, there should really have been a distinction

between inter-subject variability and intra-subject variability, using

some form of hierarchical model for the latent variables. This type

of hierarchical mixed-effects model is widely used for analysing
ulti-subject data within the neuroimaging field ( Friston et al.,

002 ), and a number of works have applied mixed effects mod-

ling to image registration ( Datar et al., 2012; Allassonnière et al.,

015 ). 

.1.1. Simulating faces 

Once the model is learned, it becomes possible to generate ran-

om faces from the estimated distribution. This involves drawing a

andom vector of latent variables z ∼ N (0 , ̂  A 

−1 ) , and using these

o reconstruct a face. Fig. 4 shows two sets of randomly generated

aces, where the lower set used the same latent variables as the

pper set, except that they were multiplied by −1. Although some

f the random faces are not entirely plausible, they are much more

ealistic than faces generated from a simple 64-mode PCA model

shown in Fig. 3 ). 

.1.2. Vector arithmetic 

In many machine learning applications, it is useful to be able

o model certain non-linearities in the data in an approximately

inear way, allowing more interpretable linear methods to be used

hile still achieving a good fit. Following Radford et al. (2015) , this

ection shows that simple arithmetic on the latent variables can

ive intuitive results. The first three columns of Fig. 5 show the full

hape and appearance model fits to various faces. Images in the

ight hand column of Fig. 5 were generated by making linear com-

inations of the latent variables that encode the images in the first

hree columns, and then reconstructing from these. Unlike arith-

etic computed in pixel space (not shown), performing arithmetic

n the vectors encoding the images gives reasonably plausible

esults. 

.2. 2D experiments with MNIST 

In this section, the behaviour of the approach using “big data” is

ssessed, which gives more of an idea of how this type of method

ay behave with some of the very large image datasets currently

eing collected. Instead of testing on a large collection of medical

mages, the approach was applied to a large set of tiny images of

and-written digits. MNIST 4 ( LeCun et al., 1998 ) is a modified ver-

ion of the handwritten digits from the National Institute of Stan-

ards and Technology (NIST) Special Database 19. The dataset con-

ists of a training set of 60,0 0 0 28 × 28 pixel images of the dig-

ts 0 to 9, along with a testing set of 10,0 0 0 digits. MNIST has

een widely used for assessing the accuracy of machine learning

pproaches, and is used here as it allows behaviour of the cur-

ent approach to be compared against the state-of-the-art pattern

ecognition methods. 

In recent years, the medical imaging community has seen many

f the established “old-school” approaches replaced by deep learn-

ng, but in doing so, “have we thrown the baby out with the bath

ater?”. 5 There may still be widely used concepts from orthodox

edical imaging (i.e., not deep learning) that are still useful. In

articular, geometric transformations of images are now finding

heir way into various machine learning approaches (e.g. Hinton

t al., 2011; Taigman et al., 2014; Jaderberg et al., 2015 ). Much of

he early work on deep learning was performed using MNIST. Al-

hough good accuracies were achieved, the computer vision com-

unity did not take such work seriously because the images were

o small. This, however, was the early days of deep learning (i.e.,

http://yann.lecun.com/exdb/mnist/
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Fig. 2. Shape and appearance fit shown for a randomly selected sample of the KDEF face images. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 3. Fits using a simple 64-mode principal component analysis model are shown above (cf. Fig. 2 ), and random faces generated from the same PCA model are shown 

below (cf. Fig. 4 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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efore 2012), and was a sign of things to come. This section de-

cribes an attempt to begin to reclaim some of the territory lost to

eep learning. 

Unlike most conventional pattern recognition approaches, the

trategy adopted here is generative. Training involves learning in-

ependent models of the ten different digits in the training set,
hile testing involves fitting each model in turn to each image in

he test set, and performing model comparison to assess which of

he ten models better explains the data. The training stage involved

earning ˆ μ, ˆ W 

a , ˆ W 

v and 

ˆ A for each digit class. A similar strategy

as previously adopted by Revow et al. (1996) . From a probabilis-

ic perspective, the probability of the k th label given an image ( f )
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Fig. 4. Random faces generated from the shape and appearance model. The lower set of faces were generated with the same latent variables as those shown in the upper 

set, except the values were multiplied by −1 and thus show a sort of “opposite” face. For example, if a face in the top set has a wide open mouth, then the mouth should 

be tightly closed in the corresponding image of the bottom set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. An example of simple linear additions and subtractions applied to the la- 

tent variables. The first three columns show the full shape and appearance model 

fits to various faces. Images in the right hand column were generated by making 

linear combinations of the latent variables that encode the images in the first three 

columns, and then reconstructing from these linear combinations. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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is 

P (M k | f ) = 

P (f , M k ) 

P (f ) 
= 

∫ 
z P (f | z , M k ) p(z |M k ) dz P (M k ) ∑ 9 

l=0 

∫ 
z P (f | z , M l ) p(z |M l ) dz P (M l ) 

(52)

The above integrals are intractable, so are approximated. This

was done by a “Laplace approximation”6 whereby the approximate

distribution of z is given by 

q (z ) = N (z | ̂ z , S −1 ) (53)

From this approximation, we can compute ∫ 
z 

P (f , z |M ) dz 
 P (f , ̂  z |M ) 

∫ 
z 

exp 

(
− 1 

2 
(z − ˆ z ) T S (z − ˆ z ) 

)
dz 

= P (f , ̂  z |M ) | S / (2 π) | 1 / 2 (54)

For each image ( f ), the mode ( ̂ z ) of p(f , z |M k ) was computed

(see Section 2.2.6 ) by 
6 For a textbook explanation of Bayesian approaches, including the Laplace ap- 

proximation, see MacKay (2003) , Bishop et al. (2006) or Murphy (2012) . 

i  

t

 

t  
ˆ 
 = arg min 

z 

(
J(f , z , μ, ˆ W 

a , ˆ W 

v ) 

+ 

1 
2 

z T 
(
λ1 ̂

 A + λ2 ( ˆ W 

a ) T L a ˆ W 

a + λ2 ( ˆ W 

v ) T L v ˆ W 

v 
)
z 
)
. (55)

he Hessian of the objective function around this mode (2.2.6) was

sed to approximate the uncertainty ( S −1 ). 

Training was done with different sized subsets (30 0, 50 0, 10 0 0,

0 0 0, 50 0 0, 10,0 0 0, and all 60,0 0 0) of the MNIST training data,

hereas testing was always done using the 10,0 0 0 test images. In

ach of the training subsets, the first of the images were always

sed, which generally leads to slightly different sized training sets

or each of the digits. Example images, along with the fit from the

odels trained using the first 10,0 0 0 images, are shown in Fig. 6 .

odel fitting was run for 20 iterations, using a Bernoulli likeli-

ood with K = 16 , ν0 = 16 , λ = [0 . 95 0 . 05] , ω 

a = [0 . 002 0 . 2 0] ,

 

μ = N[10 −7 10 −5 0] and ω 

v = [0 . 002 0 . 02 2 0 . 2 0 . 2] . 

When applied to medical images, machine learning can suffer

rom the curse of dimensionality. The number of pixels or voxels in

ach image ( M ) is often much greater than the number of labelled

mages ( N ) available for training. For MNIST, there are 60,0 0 0 train-

ng images, each containing 784 pixels, giving N / M � 75. In con-

rast, even after down-sampling to a lower resolution, a 3D MRI

can contains in the order of 20,0 0 0,0 0 0 voxels. Achieving a simi-

ar N / M as for MNIST would require about 1.5 billion labelled im-

ges, which clearly is not feasible. For this reason, this section fo-

uses on classification methods trained using smaller subsets of

he MNIST training data. Accuracies are compared against those

eported by Lee et al. (2015) for their Deeply Supervised Nets,

hich is a deep learning approach that performs close to state-

f-the-art (for 2015), particularly for smaller training sets. Invari-

nt scattering convolutional networks are also known to work well

or smaller training sets, so some accuracies taken from Bruna and

allat (2013) are also included in the comparison. We are not

ware of more recent papers that assess the accuracy of deep

earning using smaller training sets. 

Plots of error rate against training set size are shown in Fig. 7 ,

long with the approximate error rates from Lee et al. (2015) and

runa and Mallat (2013) . The plot shows the proposed method to

e more accurate than deep learning for smaller training sets, but

t is less accurate when using the full training set, as the error rate

lateaus to a value of about 0.85% for training set sizes of around

0 0 0 onward. Visual assessment of the fits to the misclassified dig-

ts ( Fig. 7 ) suggests that relatively few of the failures can be at-

ributed to registration errors. 

These experiments with MNIST suggest that one avenue of fur-

her work could be to elaborate on the simple multivariate Gaus-
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Fig. 6. A random selection of digits from the first 10,0 0 0 MNIST training images, along with the model fit. In general, good alignment is achieved. 

Fig. 7. Left: Test errors from training the method using different sized subsets of the MNIST data (the error rate from random guessing would be 90%). Right: All the MNIST 

digits the method failed to correctly identify (after training with the full 60,0 0 0) are shown above. These are followed by the model fits for the true digit, and then the 

model fits for the incorrect guess (i.e., the one with the most model evidence). (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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ian model for the distribution of latent variables. Although accu-

acies were relatively good for smaller training sets, the Gaussian

ssumptions meant that increasing the amount of training data

eyond about 50 0 0 examples did not bring any additional accu-

acy. One example of where the Gaussian distribution fails is when

ttempting to deal with sevens written either with or without a

ar through them, which clearly requires some form of bimodal

istribution to describe (see Fig. 8 ). One approach to achieving

 more flexible model of the latent variable probability density

ould to use a Gaussian Mixture Model (GMM) ( Cootes and Tay-

or, 1999 ). One of the aims of the Medical Informatics Platform of

he HBP was to cluster patients into different sub-groups. In addi-

ion to possibly achieving greater accuracy, incorporating a GMM

ver the latent variables could also lead to this clustering goal be-

ng achieved. 

.3. Experiments with segmented MRI 

Experiments were performed using 1913 T1-weighted MR im-

ges from the following datasets. 

• The IXI dataset, which is available under the Creative Com-

mons CC BY-SA 3.0 license from http://brain-development.org/

ixi-dataset/ . Information about scanner parameters and subject
demographics are also available from the web site. Scans were

collected on three different scanners using a variety of MR se-

quences. This work used only the 581 T1-weighted scans. 
• The OASIS Longitudinal dataset is described in

Marcus et al. (2010) . The dataset contains longitudinal T1-

weighted MRI scans of elderly subjects, some of whom had

dementia. Only data from the first 82 subjects of this dataset

were downloaded from http://www.oasis-brains.org/ , and

averages of the scans acquired at the first time point were

used. 
• The COBRE (Centre for Biomedical Research Excellence) dataset

are available for download from http://fcon _ 10 0 0.projects.nitrc.

org/indi/retro/cobre.html under the Creative Commons CC BY- 

NC license. The dataset includes fMRI and T1-weighted scans of

72 patients with Schizophrenia and 74 healthy controls. Only

the T1-weighted scans were used. Information about scanner

parameters and subject demographics is available from the web

site. 
• The ABIDE I (Autism Brain Imaging Date Exchange) dataset was

downloaded via http://fcon _ 10 0 0.projects.nitrc.org/indi/abide/

abide _ I.html and is available under the Creative Commons CC

BY-NC-SA license. There were scans from 1102 subjects, where

531 were individuals on the Autism Spectrum. Subjects were

http://brain-development.org/ixi-dataset/
http://www.oasis-brains.org/
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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Fig. 8. Illustration of the non-Gaussian distributions of the latent variables for some of the MNIST digits. Plots of selected latent variables are shown above, with the 

corresponding modes of variation shown below. Gaussian mixture models are likely to provide better models of variability than the current assumption of a single Gaussian 

distribution. 
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drawn from a wide age range and were scanned at 17 different

sites around the world. All the T1-weighted scans were used,

and these had a very wide range of image properties, resolu-

tions and fields of view. For example, many of the scans did

not cover the cerebellum. 

The images were segmented using the algorithm in SPM12,

which uses the approach described in Ashburner and Fris-

ton (2005) , but with some additional modifications that are

described in the appendices of Weiskopf et al. (2011) and

Malone et al. (2015) . Binary maps of grey and white matter

were approximately aligned into ICBM152 space using a rigid-

body transform obtained from a weighted Procrustes analysis

( Gower, 1975 ) of the deformations estimated by the segmentation

algorithm. These approximately aligned images have an isotropic

resolution of 2 mm. 

3.3.1. 2D experiments with segmented MRI 

It is generally easier to visualise how an algorithm is working

when it is run in 2D, rather than 3D. The examples here will be

used to illustrate the behaviour of the algorithm under topological

changes, when variability can not be modelled only via diffeomor-

phic deformations. 

A single slice was extracted from the grey and white matter im-

ages of each of the 1913 subjects, and the joint shape and appear-

ance model was fit to the data using the settings for categorical

image data. This assumed that each voxel was a categorical vari-

able indicating one of three tissue classes (grey and white matter,

as well as background). Each 2D image was encoded by 100 latent

variables (i.e. K = 100 ). Eight iterations of the algorithm were used,

with λ = [0 . 9 0 . 1] , ω 

a = [0 . 1 16 128] , ω 

μ = N[0 . 0 0 01 0 . 01 0 . 1] ,

ω 

v = [0 . 001 0 32 0 . 25 0 . 5] and ν0 = 100 . 

Some model fits are shown in Fig. 9 , and the principal modes

of variability are shown in Fig. 10 , which shows that these images

are reasonably well modelled. Note that the topology of the im-

ages may differ, which (by definition 

7 ) is not something that can

be modelled by diffeomorphisms alone. The inclusion of the ap-

pearance model allows these topology differences to be better cap-

tured. 

3.3.2. Imputing missing data 

The ability to elegantly handle missing data is a useful require-

ment for mining hospital scans. These often have limited fields of
7 Topology is concerned with properties that are preserved following diffeomor- 

phic deformations (see https://en.wikipedia.org/wiki/Topology ). 

 

c  

r  
iew, and may miss out parts of the brain that are present in other

mages. The objective here is to demonstrate that a reasonable im-

ge factorisation can be learned, even when some images in the

ataset may not have full organ coverage. 

This experiment used the same slice through the data as above,

nd a rectangle covering 25% of the area of the images was placed

andomly in each and every image of the training set (wrap-

ing around at the edge of the field of view), and the intensities

ithin these rectangles set to NaN (“not a number” in the IEEE

54 floating-point standard). The algorithm was trained, using the

ame settings as described previously, on the these modified im-

ges. Although imputed missing values may not be explicitly re-

uired, they do provide a useful illustration of how well the model

orks in less than ideal situations. Fig. 12 shows a selection of the

mages with regions set to NaN, and the same images with the

issing values predicted by the algorithm. 

The ability to handle missing data allows cross-validation to be

sed to determine the accuracy of a model, and how well it gen-

ralises. In addition to the joint shape and appearance model, this

ork also allows simplified versions to be fitted that involve only

hape (i.e., not using W 

a , as in Zhang and Fletcher (2015) ) or in a

orm that varies only the appearance (i.e. not using W 

v ). This work

lso includes a version where different sets of latent variables con-

rol the shape and appearance. Here, there were 30 variables to

ontrol appearance K 

a = 30 in ( Eq. (13) ), and 70 to control shape

 K 

v = 70 in ( Eq. (14) )). The aim was to compare the four models

y assessing how well they are able to predict data that was un-

vailable to the model during fitting. This gives us ground truth

ith which to compare the models’ predictions, and is essentially

 form of cross-validation procedure. Accuracy was measured by

he log-likelihood of the ground truth data, which was computed

nly for pixels that the models did not have access to during train-

ng. 

The results of the cross-validation are shown in Fig. 13 , and

how that the two models that combine both shape and appear-

nce have greater predictive validity than either the shape or ap-

earance models alone. To clarify the general pattern, the log-

ikelihoods of each patch were also plotted after subtracting their

ean log-likelihood over all model configurations. Although the

ifference was small, the best results were from the model where

ach latent variable controls both shape and appearance, rather

han when they are controlled separately ( p < 10 −5 from a paired

 -test). 

Changes to hyper-parameter settings, etc. may improve accura-

ies further. The effects of changing ω 

a and ω 

v were assessed by

unning a similar comparison using the model where the same

https://en.wikipedia.org/wiki/Topology
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Fig. 9. A random selection of the 2D brain image data, showing grey matter (red), white matter (green) and other (blue). Black regions indicate missing data. Below these is 

the model fit to the images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. First eight (out of a total of 100) modes of variability found from the 2D brain image dataset, shown at −5, −3, −1, + 1, + 3 & + 5 standard deviations. Note that 

these modes encode some topological changes, in addition to changes in shape. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

l  

p  

s  

t  

s  

[  

ω  

(  

s  

p  

o

3

 

o  

f  

w  

o  

t  

t

 

t  

E  

N  

r  

o  

i  

f  

m  

f  

o

 

b  

a  

c  

t  

t  

p  

t  

t  

B  

t  

d  

t  

e  

w  

t  

F

 

5  

c  

t  

K  

b  

d  

r  

T  

t

atent variables control both shape and appearance. The hyper-

arameter settings were varied over two orders of magnitude by

caling the previously used settings by 0.1, 1 and 10. In addi-

ion, the settings for ω 

μ were decreased by a factor of 100. Re-

ults are shown in Fig. 14 , and gave the best accuracies with ω 

a =
0 . 01 1 . 6 12 . 8] and ω 

v = [0 . 001 0 32 0 . 25 0 . 5] . Using the smaller

 

μ made an insignificant difference to the average log likelihoods

result not shown). Paired t tests between all pairs of comparisons

howed that the choice of hyperparameter settings plays an im-

ortant role. A similar comparison could also be made by varying

ther hyper-parameter settings. 

.3.3. 3D experiments with segmented MRI 

The aim of this section was to apply the method to a large set

f 3D images, and use the resulting latent variables as features

or pattern recognition. For this, a version of the model was used

hereby some latent variables controlled appearance, whereas

thers controlled shape. The motivation for this was that it allows

he different types of features to be differentially weighted when

hey are used to make predictions. 

The algorithm was run on the full 3D dataset, using 70 variables

o control shape ( K 

v = 70 ) and 30 to control appearance ( K 

a = 30 ).

ight iterations were used, with λ = [1 1] , ω 

a = [0 . 01 1 50] , ω 

μ =
[0 . 0 0 0 01 0 . 01 0 . 1] and ω 

v = [0 . 001 0 10 0 . 1 0 . 2] . Slice 40 of the

esulting mean image is shown in Fig. 15 , alongside the mean from

ne of the 2D experiments. Note that the mean from the 2D model

s slightly crisper than that from the one in 3D. The main reason

or this is simply that it is a 3D fit, so that there is a great deal

ore variability to explain. Achieving a similar quality of fit for the
ull 3D data, as was achieved for the 2D data, would require in the

rder of 10 0 0 (10 0 3/2 ) variables. 

The main objective of this work is to extract a small num-

er of features from sets of anatomical medical images, which

re effective for machine learning applications. Here, a five-fold

ross-validation is used to assess the effectiveness of these fea-

ures. Machine learning used a linear Gaussian process classifica-

ion procedure, which is essentially equivalent to a Bayesian ap-

roach to logistic regression. The implementation was based on

he method for binary classification using expectation propaga-

ion described in Rasmussen and Williams (2006) . For the CO-

RE dataset, classification involved separating controls from pa-

ients with schizophrenia. Similarly, the analysis of the ABIDE

ataset involved identifying those subjects on the autism spec-

rum, with features orthogonalised with respect to the differ-

nt sites. Classification involved three hyper-parameters, which

eighted the contributions from shape features, appearance fea-

ures and a constant offset. Resulting ROC curves are shown in

ig. 16 . 

For ABIDE, the accuracy and 95% confidence interval was

7.6 ± 2.9%. While this is not especially high, it is close to the ac-

uracy reported by others who have applied machine learning to

he T1-weighted scans. Most previous works ( Haar et al., 2014;

atuwal et al., 2015; Ghiassian et al., 2016 ) have reported their

est classification accuracies of around 60% when using the same

ataset. Results are roughly comparable with some of the accu-

acies obtained by Monté-Rubio et al. (2018) or Demirhan (2018) .

hose papers reported multiple accuracies, so it would be difficult

o choose a single accuracy with which to compare. 
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Fig. 11. Randomly generated slice through brain images. These images were constructed by using randomly assigned latent variables. Note that the top set of images uses 

the same random variables as the bottom set, except they are multiplied by −1 . This means that one set is a sort of “opposite” of the other. For example, if a brain in the 

upper set has large ventricles, then the corresponding brain in the lower set will have small ventricles. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 12. A random selection of the 2D brain image data showing the location of missing data. The attempt to fill in the missing information is shown below. These may be 

compared against the original images shown in Fig. 9 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 13. Cross-validation accuracy measures based on predicting the left-out patches of the images using different model configurations. The blue dots show the mean value 

for each of the 1913 images, whereas the horizontal bars show the mean values overall. The plot on the left shows mean log-likelihoods over the pixels in each patch, 

wheres the plot on the right shows the log-likelihoods after subtracting the mean – over model configurations – for each patch. 
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The accuracy achieved for the COBRE dataset was

74.7 ± 7.1%, which is similar to the 69.7% accuracy reported

by Cabral et al. (2016) using COBRE, and was roughly com-

parable with many of the accuracies obtained by Monté-

Rubio et al. (2018) or Demirhan (2018) . Others have used

other datasets of T1-weighted scans for identifying patients

with schizophrenia. Nieuwenhuis et al. (2012) achieved 71.4% and
a et al. (2018) achieved 75.8% accuracy for separating controls

rom subjects with schizophrenia, but using larger datasets. 

Anatomical T1-weighted MRI is unlikely to be the most useful

ype of data for assessing psychiatric disorders, and better clas-

ification accuracies have been achieved using other modalities,

uch as fMRI ( Silva et al., 2014 ). We note that some other papers

ave reported much higher accuracies using the COBRE dataset,
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Fig. 14. Cross-validation accuracy measures based on predicting the left-out patches of the images using different hyper-parameter settings. The blue dots show the mean 

value for each of the 1913 images, whereas the horizontal bars show the mean values overall. Accuracy measures are mean log-likelihoods (over voxels), after adjustment. 

Fig. 15. An illustration of the mean images from the 2D and 3D experiments (after 

Softmax). Left: The mean image from the 2D experiments (c.f. Figs. 9 and 10 ). Right: 

Slice 40 of the mean image from the 3D experiment. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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2 
ut many of these works made use of manual annotations or may

ot have kept a strict separation between testing and training data.

.4. Experiments with head and neck 

Most conventional image registration algorithms involve some

orm of local optimisation, and are therefore susceptible to get-

ing caught in local optima. Good initialisation can help avoid such

ptima. This is often achieved by registering via a rigid or affine

ransform, which captures some of the main modes of shape vari-

bility. However, this does not capture the main ways that biolog-

cal structures may vary in shape, and it may be possible to do

etter. In this section, we examine how suited the proposed model

s to this task by comparing “groupwise” registrations initialised

ith affine transforms versus those initialised using the proposed

ethod. The Ants software 8 ( Avants et al., 2014 ) was used for this,

s it is widely accepted to be an effective image registration pack-

ge. 
8 https://github.com/ANTsX/ANTs . 
The data were the 581 T1-weighted scans from the IXI dataset,

hich were approximately rigidly aligned and downsampled to

n isotropic resolution of 1.75 mm. The resulting images all had

imensions of 103 × 150 × 155 with a field of view that covered

oth head and neck, and were scaled to have maximum value of

.0. Approximately binary masks of the brains within the original

1-weighted scans were extracted using the segmentation module

 Ashburner and Friston, 2005 ) of the SPM12 software 9 , and these

ere also transformed in the same way. 

1. For the case where Ants was initialised via affine transforms,

registration was run serially in 3D using one of the scripts re-

leased with the software ( Avants et al., 2010; 2011 ). The script

first corrected the images for smooth variations in intensity

nonuniformity using N4 ( Tustison et al., 2010 ), and the actual

registration minimised the local correlation coefficients via a

greedy gradient descent. 

antsMultivariateTemplateConstruction.sh -d3 - 
c0 -o ants ∗.nii 
The warps generated by Ants were applied to all the brain

masks to bring them into a common space. 

2. The proposed method was also run on the data, using 20 it-

erations with the Gaussian noise model, K 

a = 4 , K 

v = 60 , ω 

v =
[0 . 01 0 10 1 2] , ω 

a = [100 10 0 0 0] , ω 

μ = [0 . 01 10 0] , ν0 = 140

and λ = [9 . 5 0 . 5] . The resulting parameter estimates were then

used to warp all the images to approximately match the mean,

before the alignment was refined further by applying Ants to

these warped images. Warps generated by the proposed model

were composed with those generated by Ants, and the result

was used to warp all the brain masks into a common space. 

The mean ( μ) of all the binarised aligned mask images was

omputed and the following Jaccard and binomial log-likelihood

verlap measure derived for each ( b ) of them. 

J( μ, b ) = 

∑ M 

m =1 ((μm 

> 

1 
2 
) ∧ b m 

) ∑ M 

m =1 ((μm 

> 

1 ) ∨ b m 

) 
9 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ . 

https://github.com/ANTsX/ANTs
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Fig. 16. ROC curves from five-fold cross-validation accuracies from the ABIDE and COBRE data. Red dots show the point on the curve where the classification gives proba- 

bilities of 0.5. 

Fig. 17. Overlap measures from the two registration approaches. Diagonal lines are spaced two standard deviations apart. Circled points indicate outliers of more than two 

standard deviations. 
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1 
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m =1 

(b m 

log 2 μm 

+ (1 − b m 

) log 2 (1 − μm 

)) (56)

We note that these measures reflect overlap of “spatially nor-

malised” images, which is what typically interests many users of

registration software. 10 The resulting overlap measures are shown

in Fig. 17 , and are mostly similar between the two approaches.

However, the pattern of outliers (more outliers in the top left than

in the bottom right) suggests that using the proposed approach to

initialise registration leads to slightly more robust alignment. An

analysis based on the Jacard overlap, counting outliers beyond 2

standard deviations, would show a clear benefit of the proposed
10 From a modelling perspective, the overlaps would have been better computed 

by warping the mean to match each individual image. 

l  

n  

c  

l  
ethod, but the pattern is less certain when the log-likelihood

easures are also considered. Because the numbers of outliers are

elatively small, it is difficult to draw firm statistical conclusions. 

Fig. 18 shows the mid-sagittal slice through a selection of the

asis functions estimated by the proposed model. The four appear-

nce basis functions were intended to capture variability across

canners, plus a few other sources of signal intensity variability

uch as that of bone marrow in the skull. Rather than the individ-

al components of the shape basis functions, their divergence is

hown instead in Fig. 18 . These divergence maps encode expansion

r contraction within the diffeomorphic deformations. The first of

hese is mostly concerned with overall head size (and suggest that

arger heads are associated with greater bulk at the back of the

eck), whereas the second and third components appear to mostly

apture variability related to the amount of body fat – particu-

arly in the neck. Other shape components encode neck angulation



J. Ashburner, M. Brudfors and K. Bronik et al. / Medical Image Analysis 55 (2019) 197–215 213 

Fig. 18. Mid-sagittal slice through the basis functions. The mean ( μ) and four appearance basis functions ( W 

a ) are shown above, while the divergences of the first 10 shape 

basis functions ( W 

v ) are shown below. 
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m  
nd various other aspects of head shape variability. The proposed

odel was run with only 60 shape components because the in-

ention was to assess its utility for capturing the main modes of

ariability, as a precursor to the finer alignment. 

. Discussion 

This work presents a very general generative framework that

ay have widespread use within the medical imaging community,

articularly for those situations where conventional image regis-

ration approaches are more likely to fail. Because of its generality,

he model we presented should provide a good starting point for a

umber of avenues of further development. 

Most image analysis applications have a number of settings to

e tuned, and the current approach is no exception. Although this

uning is rarely discussed in papers, the settings can have quite

 large impact on any results. We propose that a cross-validation

trategy, as shown in Section 3.3.2 , could be used for this. The ap-

roach taken in this work is simply to treat the construct as a

odel of the data, and to assess it according to how well it de-

cribes and predicts the observations. This work does not consider

dentifiability issues relating to how well it can separately estimate

hape information versus appearance information. 

Additional attention is the setting of λ1 and λ2 may be needed.

rom the perspective of the underlying generative model used,

hese settings should ideally sum to 1. In practice however, greater

egularisation ( λ1 + λ2 > 1 ) is required in order to achieve good re-

ults. A plausible explanation for this would be that assumptions of

.i.d. noise are not generally met, so a “virtual decimation factor”,

hich accounts for correlations among residuals, may need to be

ccounted for Groves et al. (2011) . The fact that the approach is not

ully Bayesian (i.e., it only makes point estimates of many parame-

ers and latent variables, rather than properly accounting for their

ncertainty) may be another reason why additional regularisation

s needed. 

One aspect of the presented approach that is slightly uncon-

entional is the scaling by N of L v and L a in ( Eqs. (7) ) and (8) . Nor-

ally when constructing probabilistic generative models, the pri-
rs should not be adjusted according to how much data is avail-

ble. An exception was made here because it has the effect of

ushing the solution towards the basis functions encoding unit

ariance, rather than a variance that scales with N , with a corre-

ponding decrease in the variance of the latent variables. In terms

f the overall model fit, this only influences the behaviour of the

rior p(A ) = W K (A | I /ν0 , ν0 ) , which in turn influences the variance

f the latent variables. Without this Wishart prior, the scaling by N

ould have been omitted without affecting the overall model fits.

n alternative strategy could have involved constraining the basis

unctions such that (W 

v ) T L v W 

v = I . 

Another limitation of our proposed shape and appearance

odel is that it assumes that appearance and shape evolve sep-

rately, such that the appearance changes are added to the mean,

nd then the results are deformed to match the individual images.

t may be possible to achieve slightly improved results by incor-

orating a metamorphosis approach ( Trouvé and Younes, 2005 ),

hich considers that shape and appearance evolve simultaneously.

t is currently unclear whether the benefits from this type of el-

gant approach could bring enough practical benefit to make it

orthwhile. Appearance changes and deformations are both typ-

cally relatively small, so an improvement in how the interaction

etween the two types of variability are handled seems unlikely to

ake an easily discernible difference. 

There are a number of directions in which the current work

ould be extended. One avenue would be to allow some shape

ariability beyond what can be encoded by the first few eigen-

odes. For example, Balbastre et al. (2018) combined the eigen-

ode representation with a model of additional shape variabil-

ty, giving a framework that is conceptually related to that of

llassonnière et al. (2007) , as this allows a covariance matrix over

elocity fields to be defined and optimised. 

The framework would also generalise further for handling

aired or multi-view data, which could add a degree of supervi-

ion to the method. There have been a number of publications on

enerating age- or gender-specific templates, or on geodesic re-

ression approaches ( Niethammer et al., 2011; Fletcher, 2013 ) for

odelling trajectories of ageing. Concepts from joint matrix fac-
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torisation approaches, such as canonical correlation analysis ( Bach

and Jordan, 2005; Klami et al., 2013 ), could be integrated into the

current work, and these could be used to allow the model fitting

to be informed by age, gender, disease status etc. 
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Appendix A. Notation 

In most of this paper, matrices are written in bold upper-case

(e.g., W 

a , Z , etc). In the computations, images are treated as vec-

tors. These are written as lower-case bold, which includes the no-

tation for individual columns of various matrices (e.g., w 

a 
k 

denotes

the k th column of W 

a , z n denotes the n th column of Z , etc). Scalars

are written in italic, with dimensions in upper-case. Estimates or

expectations of parameters are written with a circumflex (e.g., ˆ Z ).

Collections of vectors may be conceptualised as matrices, so are

written in bold-upper-case (e.g., G 

a , where individual vectors are

g a 
k 
). Collections of matrices are written in “mathcal” font (e.g., H 

a ,

where individual matrices are H 

a 
kk 

). The matrix transpose opera-

tion is denoted by the “T ” superscript (as in �T ). Creating a diag-

onal matrix from a vector (as in diag(exp q )), as well as treating

the diagonal elements of a matrix as a vector (as in diag( Q )) are

both denoted by “diag”. The trace of a matrix (sum of diagonal el-

ements) is denoted by “Tr ”. 

This paper mixes both discrete and continuous representations

of the same objects. For the discrete case, where a velocity field

is treated as a vector, it is denoted by v n . Alternatively, the same

object may be treated as a continuous 3D vector field, where it is

denoted by v n . 

In addition, deformations may be treated as discrete or con-

tinuous. Within the continuous setting, warping an entire image

by a diffeomorphism ψ may be denoted by a ′ = a (ψ) . In the

discrete setting, this resampling may be conceptualised as a ma-

trix multiplication, where a very large sparse matrix � encodes

the same deformation (and associated trilinear interpolation), such

that a ′ = �a . The transpose of this matrix can be used to perform

a push-forward operation, which is frequently used in this work

and which we denote by f ′ = �T f . 

Sometimes, gradients of an image are required. In 3D, the three

components of the spatial gradient of a are denoted by ∇ 1 a , ∇ 2 a

and ∇ a . 
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