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Combining nitric oxide release with anti-
inflammatory activity preserves nigrostriatal
dopaminergic innervation and prevents motor
impairment in a 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine model of Parkinson’s disease
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Abstract

Background: Current evidence suggests a role of neuroinflammation in the pathogenesis of Parkinson’s disease
(PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of basal ganglia injury. Reportedly,
nonsteroidal anti-inflammatory drugs (NSAIDs) mitigate DAergic neurotoxicity in rodent models of PD. Consistent
with these findings, epidemiological analysis indicated that certain NSAIDs may prevent or delay the progression of
PD. However, a serious impediment of chronic NSAID therapy, particularly in the elderly, is gastric, renal and
cardiac toxicity. Nitric oxide (NO)-donating NSAIDs, have a safer profile while maintaining anti-inflammatory activity
of parent compounds. We have investigated the oral activity of the NO-donating derivative of flurbiprofen, [2-
fluoro-a-methyl (1,1’-biphenyl)-4-acetic-4-(nitrooxy)butyl ester], HCT1026 (30 mg kg-1 daily in rodent chow) in mice
exposed to the parkinsonian neurotoxin MPTP.

Methods: Ageing mice were fed with a control, flurbiprofen, or HCT1026 diet starting ten days before MPTP
administration and continuing for all the experimental period. Striatal high affinity synaptosomial dopamine up-
take, motor coordination assessed with the rotarod, tyrosine hydroxylase (TH)- and dopamine transporter (DAT)
fiber staining, stereological cell counts, immunoblotting and gene expression analyses were used to assess MPTP-
induced nigrostriatal DAergic toxicity and glial activation 1-40 days post-MPTP.

Results: HCT1026 was well tolerated and did not cause any measurable toxic effect, whereas flurbiprofen fed mice
showed severe gastrointestinal side-effects. HCT1026 efficiently counteracted motor impairment and reversed
MPTP-induced decreased synaptosomal [3H]dopamine uptake, TH- and DAT-stained fibers in striatum and TH+

neuron loss in subtantia nigra pars compacta (SNpc), as opposed to age-matched mice fed with a control diet.
These effects were associated to a significant decrease in reactive macrophage antigen-1 (Mac-1)-positive microglial
cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX),
and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons.

Conclusions: Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-
induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice.
HCT1026 provides a novel promising approach towards the development of effective pharmacological
neuroprotective strategies against PD.

* Correspondence: biancamarchetti@libero.it
1OASI Institute for Research and Care on Mental Retardation and Brain Aging
(IRCCS), Neuropharmacology Section, 94018 Troina, Italy
Full list of author information is available at the end of the article

L’Episcopo et al. Journal of Neuroinflammation 2010, 7:83
http://www.jneuroinflammation.com/content/7/1/83

JOURNAL OF 
NEUROINFLAMMATION

© 2010 L’Episcopo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:biancamarchetti@libero.it
http://creativecommons.org/licenses/by/2.0


Background
Selective degeneration of dopaminergic (DAergic)
neurons in the subtantia nigra pars compacta (SN) is
a pathological hallmark of both Parkinson’s disease
(PD) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) animal model of PD. The decline of dopamine
in the striatum is associated clinically with progressive
bradykinesia, tremor, rigidity and postural instability [1].
Current DAergic treatments improve the motor symp-
toms and quality of life for patients during the early
stages of PD but do not prevent the progression of the
disease associated with disabling side-effects [2]. With
the exception of inherited cases linked to specific gene
defects that account for <10% of cases, PD is a sporadic
condition of unknown causes. Besides host genetics,
environment, age, gender and inflammatory processes
are factors affecting disease onset and/or progression
[3-18].
Activation of microglia, a hallmark of neuroinflamma-

tion, has been demonstrated in the SN of PD patients
[19], in human patients exposed to MPTP [20], and in
experimental models of PD [21-35]. Accumulation of
reactive oxygen species (ROS), inflammatory-associated
factors including cycloxygenase-2 (COX-2) and induci-
ble-nitric oxide synthase (iNOS)-derived NO, and pro-
inflammatory cytokines (including TNF-a, IL-1b and
IFN-g) in the SN of PD patients further support that a
state of chronic inflammation characterizes PD brain
[5,22-26]. In addition, elevated expression of macro-
phage-antigen complex 1 (Mac-1), a b2-integrin family
member expressed exclusively in microglia, and NADPH
oxidase (PHOX), one of the major sources for produc-
tion of ROS or related reactive nitric species (RNS) in
activated microglia, have been reported in PD animal
models [8,11,13-16,22-35]. In keeping with these find-
ings, genetic or pharmacological inhibition of most
inflammatory factors, including iNOS, PHOX, Mac-1
and COX-2-derived mediators, significantly attenuated
DAergic degeneration in experimental models of PD
[27-44]. Conversely, blocking the action of endogenous
anti-inflammatory molecules, such as glucocorticoid
hormones in transgenic mice expressing a glucocorticoid
receptor (GR) antisense RNA, sharply increases micro-
glial activation in response to MPTP, resulting in
increased DAergic neuron vulnerability [8,10,11].
Consistent with the inflammation hypothesis, epide-

miological analysis has indicated that nonsteroidal anti-
inflammatory drugs (NSAIDs) may prevent or delay the
progression of PD [6,7,45-52]. NSAIDs are among the
most widely used therapeutic agents for the treatment
of pain, fever and inflammation. Their effects are largely
attributed to the inhibition of the enzymatic activity of
COXs, of which there are two isoforms, COX-1 and

COX-2. Both enzymes are responsible for arachidonic
acid conversion in different prostaglandins (PGs)
[53,54]. While COX-1 is constitutively expressed in
most tissues, COX-2 is induced during pathophyiologi-
cal responses to inflammatory stimuli [55]. Both mixed
and selective COX-2 inhibitors have been reported to
mitigate DAergic neurotoxicity in experimental models
of PD; or to reduce LPS-induced neuronal damage
[recently reviewed in [45,46]]. Besides targeting COXs,
NSAIDs can act in a COX-independent way, which
includes activation of the nuclear factor peroxisome pro-
liferator-activated receptor-g (PPAR-g), the protection
against glutamate and 1-methyl-4-phenylpyrdinium ion
(MPP+) toxicity, scavenging hydroxyl and NO radicals
and dopamine-quinone formation [18,45-48].
Nevertheless, the long-term therapy with non-selective

NSAIDs is characterized by significant adverse effects
on gastrointestinal tract and kidneys, whereas increased
risk of cardiovascular events has been reported with
COX-2-selective inhibitors [56], which may limit their
clinical use in chronic conditions. The nitric oxide
(NO)-NSAID HCT1026 [2-fluoro-a-methyl(1,1’-biphe-
nyl)-4-acetic-4-(nitrooxy)butyl ester], NO-donating flur-
biprofen, belongs to a novel class of anti-inflammatory
agents obtained by derivatization of conventional
NSAIDs with a NO-donating moiety which strongly
reduce their untoward side effects without altering the
anti-inflammatory effectiveness [57-66].
We herein report that HCT1026 has a safer profile

and a greater efficacy than its parent compound in res-
cuing nigrostriatal DAergic neurons from MPTP neuro-
toxicity and that a shift in microglial pro-inflammatory
phenotype is involved in this phenomenon. HCT1026 is
safe at the gastrointestinal level, and it has been tested
in humans; it is effective on oral administration, and it
is thus suited for long-term treatment, thereby repre-
senting a promising approach towards the development
of effective pharmacological neuroprotective strategies
against PD.

Methods
Animals
Young adult (2-5 months of age) and ageing (9-11
month-old) male C57BL/6 (Charles River, Calco, Italy)
housed (5 mice/cage) in a temperature (21-23°C),
humidity (60%), and light (50/50 light:dark cycle, lights
on at 06.00 a.m) controlled room, with controlled access
to food and water, were allowed to acclimate one week
before the start of the experimental protocol. Studies
were conducted in strict accord with the Guide for the
Care and Use of Laboratory Animals (NIH), and
approved by the Review Boards of the OASI Institute
(Troina, Italy). The authors further attest that all efforts
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were made to minimize the number of animal used and
their suffering.

Drug administration
The drugs were compounded in the chow (Teklad 2018
diet, Harlan), the schedule of administration defined
according to a pilot experiment conducted to monitor
daily food intake, and the dose selected as that producing
a full anti-inflammatory effect [66]. The following doses
were used: HCT1026 190 ppm in the diet or 30 mg kg-1

day-1 per animal; flurbiprofen 120 ppm or 20 mg kg-1

day-1 per animal Flurbiprofen dose was equimolar to
HCT1026 (MW HCT1026:361.4; flubiprofen:244.3, ratio
HCT1026/flurbiprofen = 1.48). Plain teklas 2018 chow
was used as control diet. The treatment started 7-10 d
days prior MPTP administration and thoroughout the
entire experiment. Food consumption was monitored
daily, diets were weighed and and food intake calculated
daily, body weights recorded.

MPTP administration
Both the acute [67] and the subchronic [68] MPTP injec-
tion paradigms, and three different dose-levels (5, 15, or
30 mg kg-1 MPTP-HCl measured as a free base), were
selected in order to verify the ability of a preventive
administration of HCT1026 to exert neuroprotective
effects against MPTP-induced DAergic toxicity (Table 1).
The same lot of MPTP-HCl (Sigma, Italy) was used for
one experimental series. In a first series of experiments,
in the acute protocol, MPTP was systemically injected
(i.p.) at a dose of 15 mg/kg-1, 4 times a day, at 2 hr inter-
vals [28,36]. In the subchronic regimen, increasing doses
of MPTP were administrated i.p. at 24-h interval, for 5
consecutive days and mice sacrificed 7 d post-treatment.
The dose of 15 mg/kg-1 day-1 and the subchronic

regimen were then selected to assess longterm effects
of HCT1026 in all subsequent experiments in ageing
mice [32,42]. Groups of mice fed with the different diets
and injected with vehicle (0.9% saline, 2 ml kg-1 intraperi-
toneally), served as controls (see Table 1). MPTP
handling and safety measures were in accordance with
published guidelines according to Jackson-Lewis and
Przedborski [69].

Sacrifice and tissue processing
Controls and MPTP-treated mice were killed at selected
times ranging from 0-40 days post- MPTP treatment
(dpt). To study early drug effects on microglia activation
during the active degeneration phase, groups of mice
were studied 1-7 dpt (Table 1). To monitor the severity
of nigrostriatal damage and the survival/neurorescue of
nigrostrial neurons, group of mice were studied 7, 21,
30 and 40 dpt. MPTP-induced motor deficit was assed
with the Rotarod, at -7, + 1, + 3 and + 7 dpt. For neuro-
chemical determinations, heads were cooled by rapid
immersion in liquid nitrogen. Thereafter, striata of both
sides and ventral mesencephalon, were rapidly removed
and frozen at -80°C for subsequent determinations [8].
For histopathological determinations, mice were deeply
anesthetized and perfused transcardially, as reported in
full details [8].

Determination of drug plasma level
Blood samples were taken at the indicated times and
plasma samples were frozen and stored at -80° until the
analysis was performed. Plasma 0.1 ml was mixed with
10 μl ketoprofen (internal standard, 1 mg ml-1 stock
solution in methanol) and 400 μl of cold methanol/acet-
onitrile (1:1) mixture, vortexed and centrifuged at
13,000 × g for 10 min at 25°C. HPLC analysis was

Table 1 Experimental design, animal number and analyses performed per time-point (tp) within each experimental
group

Subacute MPTP Subchronic MPTP

Days after MPTP discontinuation

Analyses mice/tp -7 0 +1 +3 +7 0 +1 +3 +7 +21 +30 +40

Rotarod 10 + + + + +

Neurochem. 5 + + + + + + +

Immunohistochem. 5 + + + + + + +

Microglia markers 5 + + + +

Gene expression 4 + + + + + +

Western blot 4 + + + + + +

Young (3-5 month-old) and ageing (9-11 month-old) C57Bl/6 mice fed with a control, flurbiprofen or HCT1026 diets (30 mg kg-1) starting at -10 d, underwent an
MPTP treatment according to the subacute (n = 4 intraperitoneal, i.p., injections of MPTP-HCl, 15 mg kg-1 free base, 2 hours apart in one day) or subchronic (n =
5 intraperitoneal, i.p., injections of MPTP-HCl, at 5, 15 or 30 mg kg-1 free base, every 24 h), injection paradigms. Age-matched mice fed with the different diets
received physiologic saline (NaCl, 10 ml kg-1) and served as controls. Mice number and timepoints (tp) for each experimental protocol for each set of analyses/tp,
are indicated. Striatum and ventral midbrains tissues were processed for RT-PCR or western blotting, as reported according to the different determinations. For
immunohistochemical analyses, on the day of sacrifice mice were anesthetized and transcardially perfused, the brains processed as indicated. See Methods
section for details.
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performed on fixed volume of organic extraction mix-
ture. Chromatographic analysis was performed on an
Agilent 1100 series system equipped with a Diode array
detector operating at 246-nm single wavelenghth.
Separations were achieved with a gradient elution on a
Synergi MAX-RP 80A column (150 × 2 mm i.d.; 4 μm)
equipped with MAX-RP precolumn (4 × 2 mm i.d.).
The mobile phase was acetonitrile and phosphoric acid
0.1%. The flow rate was 1 ml min-1 and the column
temperature was 25°C. Under these conditions, the
retention time of HCT1026, flurbiprofen and internal
standard were 5.7, 1.3, 0,8 min, respectively. Only flurbi-
profen was detectable in plasma of HCT1026 treated
mice. HCT1026 and its des-nitro metabolite (i.e.
HCT1027) were undetectable in all plasma samples, as
previously reported [70].

Motor behavior analysis with the rotarod
An accelerating rotarod (five-lane accelerating rotarod;
Ugo Basile, Comerio, Italy) was used to measure motor
balance and coordination in mice. Mice have to keep
their balance on a horizontal rotating rod (diameter, 3
cm) and rotation speed was increased every 30 sec by 4
rpm. Five mice were tested at the same time, separated
by large disks. A trial starts when the mouse is placed
on rotating rod, and it stops when the mouse falls down
or when 5 min are completed. Falling down activates a
switch that automatically stops a timer. The testing day,
each mouse is submitted to 5 trials with an intertrial
interval of 30 min. Mice housed five per cage were accli-
mated to a 12 h shift in light/dark cycle so that the
exercise occurred during the animals normal wake per-
iod. Saline- and MPTP-treated mice fed with a control
or HCT1026 diet (10/experimental group) were assessed
for their Rotarod performance on day -7, +1, + 3 and
+7 dpt.

High-affinity [3H]dopamine uptake assay
Left and right striata were homogenized in ice-cold pre-
lysis buffer (10 mM Tris, pH 7.5, and 0.32 M sucrose)
using a Teflon pestle-glass mortar and homogenized tis-
sue centrifuged for 10 min at 1000 × g at 4°C to remove
nuclei. The supernatant containing the synaptosomes
was collected and aliquots removed for the determina-
tion of protein content [71] and dopamine uptake (total
high affinity and mazindol non-inhibitable). Fifty micro-
liters of supernatant were diluted in Krebs-Ringer phop-
shate buffer (16 mM NaH2PO4,16 mM Na2HPO4, 119
mM NaCl, 4.7 mM KCl, 1.8 mM CaCl2, 1.2 mM
MgSO4, 1.3 mM EDTA, and 5.6 mM glucose; pH 7.4),
and incubated at 37°C in the presence or absence of
mazindol (10 μM), a high affinity dopamine up-take
inhibitor [8]. [3H]Dopamine (25 nM, specific activity,
20-40 Ci/mmol; Amersham, Arlington Heights, IL) was

added in Krebs-Ringer buffer and incubation carried on
for 6 min at 37°C. Synaptosomes were collected on pre-
soaked nitrocellulose filters by filtration and non-specific
radioactivity was washed with Krebs-Ringer phosphate
buffer followed by filtration. The filters were then trans-
ferred into scintillation vials and measured by liquid
scintillation (Cytoshint; ICN, Costa Mesa, CA) counter
(Packard). Specific high-affinity neuronal dopamine
uptake is expressed as fentomoles of dopamine uptake
per microgram of protein minus the fentomoles of
mazindol uptake. Values are represented as % changes
in dopamine uptake vs. control.

Measurement of MPP+ levels in the striatum
Mice fed with the different diets were killed 90 min after
MPTP injection. Both left and right striata were dis-
sected on ice, placed into a vial containing 250 ul of 0.4
N perchloric acid and sonicated. After centrifugation,
MPP+ determinations were carried out by HPLC using
5SCX column (Phenomenex). The mobile phase was
composed of H2S04 0.1 M, triethylamine 0.075 M, and
acetonitrile 10% at pH 2.3; the flow was 1.5 ml mn-1 [8].

Immunohistochemistry
On the day of sacrifice, mice were anesthetized by intra-
peritoneal injection of Nembutal (50 mg/kg). Mice were
rapidly perfused transcardially with 0.9% saline, followed
by 4% paraformaldehyde in phosphate buffer (pH 7.2 at
4°C). Brains were carefully removed and post-fixed for
2-4 hrs, in 4% paraformaldehyde in phosphate buffer
saline, pH 7.2 (PBS) and later placed in 15% sucrose in
PBS overnight at 4°C. Tissues were frozen at -80° C.
Serial cryostat sections (10 μm, from the olfactory bulb
to the end of the medulla), were collected, mounted on
poly-L-lysine-coated slides and processed for immuno-
histochemistry. Identification of the level was made by
comparison with the sections of the mouse brain [72].
All immunostaining procedures were carried out on sec-
tions incubated in blocking buffer (0.3 - 0.5% Triton X-
100, 5% BSA and 5% normal serum in PBS) for 30 min
at room temp followed by an overnight incubation with
the following primary antibodies in blocking buffer at 4°
C: (i) tyrosine hydroxilase (TH) (goat anti-TH, Santa
Cruz Biotechnology, Inc. USA 1:1000; rabbit anti-TH
Pelfreez, Roger, AR, 1: 2000); (ii) rat anti dopamine
transporter DAT, Millipore Corp. USA, 1:1000), as mar-
kers of dopaminergic neurons; (iii) membranolytic attack
complex of complement (rat anti Mac-1/CD11b, Phar-
mingen International, Becton Dickinson, USA or anti
Mac-1, Serotec, Oxford, UK, 1: 1000), as microglial
marker; (iv) inducible nitric oxide synthase (rabbit
anti-iNOS, Santa Cruz Biotechnology, Inc, 1: 200),
3-nitrotyrosine (rabbit anti-3-NT, Upstate, Lake Placid,
NY, US, 1: 200), as NO/peroxynitrite finger-print. The
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sections were counterstained with nuclear counterstain
(Dapi or PI, by Vector Laboratories Inc. Burlingame,
CA, USA).
All antibodies, whether used for single or dual labeling

procedures, were visualized by immunofluorescence,
except for TH-Ab that was also visualized using immu-
noperoxidase. Adjacent tissue was also stained with cre-
syl violet to validate TH neuron survival [8,73,74].
Sections were incubated with the indicated dilutions of
the antibodies, either alone or in combination as
described. After 3 (× 5 min) washes in PBS, primary
antibodies were revealed with specific FITC and CY3
conjugated secondary antibodies 1:100-1:200 dilution.
(60 min at room temp). After 3 (× 5 min) washes in
PBS, sections were mounted with Gel mounting solution
(Biomeda corp. Foster City, CA, USA). In all of these
protocols, blanks were processed as for experimental
samples except that the primary antibodies were
replaced with PBS.

Loss of TH-positive neurons and striatal DAergic
innervation
Loss of TH-positive (TH+) SNpc neurons was deter-
mined by serial section analysis of the total number of
TH+ cells counted throught the entire rostro-caudal
(RC) axis of the murine SNpc (Bregma coordinates:
-2.92, -3.08, -3.16, -3.20, -3.40 and -3.52) according to
Franklin and Paxinos [72] at 7, 21, 30 and 40 days post-
MPTP (dpt) or saline injection [8]. Cell counting was
done in both side of the brain for each animal, and then
right and left values were added to generate a total DA
SNpc neuron count, in a total of five animals per experi-
mental group. TH-labeled neurons were scored as posi-
tive only if their cell-body image included well defined
nuclear counterstaining. Estimates of total TH+-stained
and cresyl-violet-stained neurons in the SNpc were cal-
culated using the Abercrombie’s correction [74]. The
total number of TH+ cell bodies was estimated and
examined by two independent researchers, in a blind
fashion. Loss of striatal DAergic innervation was
assessed by quantification of TH- and DAT-immuno-
fluorescent (IF) signal intensity in 10 μm-thick coronal
sections located at 0.5, 0.8 and 1.1 mm from bregma,
and analyses carried out by confocal laser miscroscopy
as described [8].

Confocal laser microscopy and image analysis
Sections labeled by immunofluorescence were visualized
and analyzed with a confocal laser scanning microscope
LEICA TCS NT (Version 1.0, Leica Lasertechnik
GmBH, Heidelberg, Germany), equipped with an argon/
krypton laser using 10 ×, 20 ×, and 40 × and 100 × oil-
immersion objectives. Pinhole was set at 1-1.3 for opti-
cal sections of 0.48-0.5 μm. For TH+ and DAT+ fibers

in striatum, fluorescence intensity per unit of surface
area was determined in 10 randomly selected fields
(250.000 μm2) using computer-assisted image analysis
software (LEICA). Single lower power scans were fol-
lowed by 16 to 30 serial optical sectionings. Laser
attenuation, pinhole diameter, photomultiplier sensitiv-
ity, and off-set were kept constants. The average fluores-
cence intensity (pixel, mean ± SEM per unit surface
area) was measured throught the stack. Within the same
stacks, the background pixel intensity in areas devoid of
fibers/cells was determined and substracted. For assess-
ment of reactive microglial cell number, ameboid-
shaped Mac-1+ cells [75] were counted in striatal and
SNpc coronal sections, cell counts averaged for each
animal and the mean number of cells per mm2 per ani-
mal was estimated. A comparable countable area ran-
ging from 1.90 mm2 to 2.00 mm3 was analyzed in the
different MPTP groups. Double-labelled cells with iNOS
and Mac-1, were counted and expressed as above. Dual
stained TH+ 3-NT+ cells were counted and values
expressed as a percent double-stained TH+ NT+ /TH+

neurons. Each label was analyzed on a total of 12 sec-
tions per mice and in at least 4 mice per group. Ana-
lyses were performed by two independent researchers
blind to the experiment.

Semi-quantitative RT-PCR
To analyze transcript levels, total RNA was isolated from
striatum and ventral mid brain using the RNeasy isolation
Midi kit (Qiagen, #75144). Tissue samples were homoge-
nized in 1 ml of QIAzol Lysis Reagent (Qiagen, #79306)
using a rotor-stator homogenizer. Total RNA was isolated
from homogenized tissue samples using RNeasy Lipid Tis-
sue Kit (Qiagen, #74804) including DNase digestion. At
the end, RNA samples were redissolved in 30 μl of RNase-
free water and their concentrations were determinated
spectrophotometrically by A260 (Nanodrop-ND 1000). The
cDNA was synthesized from 2 μg of total RNA using the
Retroscript Kit (Ambion, #AM2224) following the manu-
facturer’s directions. 250 ng of cDNA were used for PCR
(96°C for 1 min for 2 cycles; 96°C for 1 min, 58°C for 4
min; 94°C for 1 min, 58°C for 2,5 min for 35 cycles, with a
final extension at 70°C for 10 min) by using Super Taq
DNA polymerase (Ambion, #AM1710) with specific pri-
mer pairs for TH (F: cgtggaatacacaaaggagg; R:ggtaggttt-
gatcttggtag; amplicon: 620 bp); DAT (F:cagagaggtg
gagctcatc; R:ggcagatcttccagacacc; amplicon: 328 bp), iNOS
(F: tgctcccttccgaagtttctggcagcagcg; R: tcagagcctcgtggc
tttgggctcctc, amplicon: 500 bp) and Classic S18 Standard
(amplicon: 495 bp; #Ambion AM1720), to normalize the
expression. Samples from PCR reactions were separated
electrophoretically on 2% agarose gel containing 0,2 μg
ml-1 of ethidium bromide. Fluorescent bands of amplified
gene products were captured by using Gel Logic 200
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Imaging System (Kodak), values normalized against S18,
and ratios expressed as percent of control (saline-injected),
within each experimental group.

Western blot analysis
Protein extracts were prepared for striatum and ventral
midbrain (which included the SNpc) (left and right sides)
at the indicated time-intervals after saline or MPTP injec-
tions (n = 3 per group). The tissue samples were homoge-
nized in lysis buffer (0.33 M sucrose, 8 mM Hepes, pH 7.4
and protease inhibitors) and quantified using the BCA
protein determination method (Bio-Rad, Hercules, CA).
Protein samples were diluted to equivalent volumes con-
taining 20 μg of protein and boiled in an equal volume of
Laemli SDS boiling buffer (Sigma) for 10 min. Samples
were loaded into a 9-12% SDS-polyacrilamide gel and
separated by electrophoresis for 3 h at 100 V. Proteins
were transferred to polyvinylidene difluoride membrane
(Amersham Biosciences, Piscataway, NJ) for 1.5 h at 300
mA. After blocking of nonspecific binding with 5% nonfat
dry milk in TBST, the membranes were then probed with
the following primary antibodies: rabbit anti-TH (Chemi-
con); rat anti-DAT (Millipore), rabbit anti-Mac1 (AbCam),
mouse anti-gp91phox (BD Transduction Laboratories),
b-actin (Cell Signaling). After incubation at room tem-
perature for 1 hr, membranes were washed and treated
with appropriate secondary antibodies conjugated with
horseradish peroxidase (HRP) and blot were exposed onto
radiographic film (Hyperfilm; Amersham Bioscience).
Membranes were reprobed for b-actin immunolabeling as
an internal control. The bands from the Western blots
were densitometrically quantified on X-ray films (Image-
Quantity One). The data from experimental band were
normalized to b-actin, before statistical analysis of variance
and values expressed as % of saline-injected controls.

Statistical analysis
Data were analyzed by means of two-way analysis of var-
iance (ANOVA), with group and time as independent vari-
ables and given as mean±SEM. Striatal neurochemical data
(nmol or pmol mg protein-1) are expressed as % of con-
trols. Comparisons a posteriori between different experi-
ments were made by Student-Newman-Keuls t-test.

Results
HCT1026 preventive administration counteracts MPTP-
induced down-regulation of high affinity synaptosomial
DA uptake in the striatum
We first assessed the short-term effect of the control and
medicated diets on striatal high affinity synaptosomial
[3H]DA uptake (Figure 1A,B), a sensitive quantitative
indicator of DAergic axonal terminal density [76]. In 2-3
month-old mice fed with flurbiprofen or HCT1026 diets
and treated with saline, DA uptake levels were not

different compared to saline-treated mice fed with the
control diet. On the other hand, in mice fed with a con-
trol diet and exposed to the subacute MPTP (15 mg kg-1,
4 times a day, at 2 h intervals), we observed after 7 d the
severe decrease (-75%) of striatal DA uptake (Figure 1A).
In mice fed with flurbiprofen and treated with MPTP, a
certain degree of protection was observed, as reflected by
the less severe decrease (-54%) of DA uptake. On the
other hand, HCT1026 afforded a greater protection, as
illustrated by the significantly (p < 0.05) smaller (-25%)
decrease of [3H] DA uptake levels as compared to mice
fed with the control or flurbiprofen diets. With the sub-
chronic (administration of MPTP at 24-h interval, for 5
consecutive days) regimen, increasing the daily doses of
MPTP resulted in a dose-dependent loss of DA uptake
levels (Figure 1B). By contrast, mice fed with HCT1026
and exposed to 5 mg kg-1 day-1 for five days, were resis-
tant to MPTP-induced DAergic toxicity, as revealed by
the counteraction of the almost 38-48% loss of striatal
DA uptake measured in mice fed with the control or flur-
biprofen diets. In addition, mice exposed to higher (15
and 30 mg kg-1 day-1) MPTP doses and fed with control
or flurbiprofen diets exhibited far greater (p < 0.05)
decreases of striatal DA uptake compared with mice fed
with HCT1026 (Figure 1B).
The preventive oral administration with HCT1026 was

well tolerated and did not cause any measurable toxic
effect throught the treatment, whereas flurbiprofen-fed
mice showed severe gastrointestinal side-effects (bleed-
ing). Due to flurbiprofen toxicity, only HCT1026 was
studied in the long-term experimental protocol.
To more closely mimick PD condition, we next

assessed the longterm efficacy and safety of HCT1026 in
ageing (9-11 month-old) mice. Reportedly, the process
of ageing increases DAergic vulnerability to MPTP and
limits the repair capacity of the nigrostriatal DAergic
system [77,78]. We thus selected the subchronic MPTP
regimen, at a dose of 15 mg/kg [28,32,42]. Consistent
with previous findings [77,78], ageing mice fed with a
control diet did not recovered from MPTP insult, as
revealed by an almost 70-75% decrease of DA uptake
levels measured up to 40 dpt, whereas in mice fed with
HCT1026, a significant degree of protection was mea-
sured, as reflected by the significant amelioration of
striatal DA uptake levels at all time-points studied (Fig-
ure 1C). These data indicate that the neuroprotective
activity of HCT1026 was maintained up to 40 dpt. In
addition, the longterm administration of HCT1026 does
not cause any measurable toxic effects.

HCT1026 inhibits MPTP-induced motor impairment
To verify the ability of HCT1026 to affect MPTP-induced
impairment of motor coordination [42,79,80], we assessed
the ability to maintain the balance on a rotating cylinder
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and to adapt to the rate of locomotor activity, by using the
Rotarod test, as described (Figure 1D). Saline- and MPTP-
treated mice fed with a control or HCT1026 diet (n = 10/
experimental group) were assessed for their Rotarod per-
formance one week before saline or MPTP treatment (day
-7) and + 1, + 3 and + 7 d post-MPTP. Because of the
high degree of challenge of this task, mice of saline
injected groups (-MPTP) fed with either a control or
HCT1026 diet, performed better on the second trial (+ 1
d) and subsequent days, compared with d -7. By contrast,

MPTP-treated mice fed with a control diet exhibited a sig-
nificant decrease in the mean latency to fall at all time-
points tested, compared to saline-injected mice (p < 0.05),
defining a motor deficit in MPTP-treated animals (Figure
1D). In MPTP mice fed with HCT1026, the mean latency
to fall was significantly (p < 0.05) increased compared to
MPTP mice fed with a control diet at all time tested. By 7
dpt, HCT1026-fed mice performed as good as the control
mice, indicating a significant reduction of the motor
impairment by the preventive treatment with HCT1026.

Figure 1 HCT1026 inhibits MPTP-induced loss of high affinity synaptosomial [3H]DA uptake and reverses motor impairment. Young
and ageing C57Bl/6 mice fed with a control, flurbiprofen or HCT1026 diets (30 mg kg-1) starting at -10 d, underwent an MPTP treatment
according to the subacute (A) or subchronic (B), injection paradigms, as described. Age-matched mice fed with the different diets received
physiologic saline (NaCl, 10 ml kg-1) and served as controls. Seven days after MPTP discontinuance, loss of DAergic functionality was assessed in
striatum measuring high affinity synaptosomial striatal [3DA] uptake [8]. HCT1026 prooved to be more potent than its parent compound in
counteracting MPTP-induced decreases in striatal DA uptake levels in both the subacute (A) and subchronic (B) protocols. Differences were
analyzed by ANOVA followed by Newman-Keuls test, and considered significant when p < 0.05. **p < 0.05 vs saline, ° p < 0.05 vs MPTP +
control diet. C. Ageing mice fed with a control or HCT1026 diets, were submitted to the subchronic MPTP regimen, and striatal DA uptake levels
measured 21, 30 and 40 d after MPTP (n = 6/time point). Note the long-lasting counteraction of MPTP-induced striatal toxicity in mice fed with
HCT1026 as opposed to the control diet. D: Motor performances on Rotarod of saline- and MPTP-treated mice (n = 10/group) fed with a control
or HCT1026 diets. Time of permanence on revolving bars (ordinate) are plotted against pre- and post-treatment days (5 trials/day) during which
experiments were performed. Mean and SEM values are reported. Establishment of a motor deficit measured 1-7 dpt, is counteracted by
HCT1026. Differences were analyzed as above. ** p < 0.05 vs saline; ° p < 0.05 vs MPTP + control diet.
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HCT1026 inhibits MPTP-induced loss of striatal TH and
DAT at mRNA and protein levels
Tyrosine hydroxylase (TH) is the rate-limiting enzyme
in dopamine biosynthesis and a marker for DA neurons.
The dopamine transporter, DAT, is a highly specific
marker of projecting DAergic nigrostriatal neurons and

thus, its expression is proportional to the loss of striatal
dopamine content [76]. Accordingly, we examined TH
and DAT striatal expression using RT-PCR, immunohis-
tochemistry coupled to confocal microscopy, and wes-
tern blot (WB) analyses. RT-PCR of TH (Figure 2A and
2B) and DAT (Figure 2E and 2F) mRNAs in striatum

Figure 2 HCT1026 inhibits MPTP-induced loss of striatal TH and DAT mRNAs expression. Ageing (9-11 month-old) C57Bl/6 mice fed with
a control (ct) or HCT1026 diets (30 mg kg-1) starting at -10 d, underwent an MPTP treatment according to the subchronic injection paradigm, as
described. Age-matched mice fed with the different diets received physiologic saline and served as controls. Mice were sacrificed at different
time-intervals after MPTP. Striatal tissue samples were processed for semi-quantitative RT-PCR analysis as described. Total RNA isolated and cDNA
synthesized using Retroscript Kit (see Materials and Methods) following the manufacturer’s directions. The 250 ng of cDNA were used for PCR, by
using Super Taq DNA polymerase with specific primer pairs for TH (620 bp) and DAT (328 bp), and Classic S18 Standard (495 bp). Samples from
PCR reactions were separated electrophoretically on 2% agarose gel containing 0,2 μg/ml of ethidium bromide (B-D, F-H). Fluorescent bands of
amplified gene products were captured by using Gel Logic 200 Imaging System (Kodak), values normalized against S18 and ratios expressed as
percent of control, within each experimental group (A, E). Differences were analyzed by ANOVA followed by Newman-Keuls test, and considered
significant when p < 0.05. ** vs saline; ° p < 0.05 vs MPTP + control diet. Note the marked and long-lasting downregulation of TH (A,B,C,D) and
DAT (E,F,G,H) mRNA transcript levels in striatal samples from ageing mice submitted to the subchronic MPTP regimen and the significant
counteraction afforded by HCT1026.
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Figure 3 HCT1026 inhibits MPTP-induced loss of striatal TH- and DAT- proteins by immunohistochemistry and western blotting.
Ageing C57Bl/6 mice fed with a control (ct) or HCT1026 diets starting at -10 d, underwent an MPTP treatment, as described. At different time-
intervals, mice were anesthetized and rapidly perfused, the brains were carefully removed and processed for immunohistochemistry, as
described. TH- (A) and DAT-(E) IR in striatum (Str) assessed by immunofluorescent staining and image analysis by confocal Laser microscopy in
ageing mice fed with ct or HCT1026 diets, treated with saline or MPTP (n = 5/time point). Fluorescence intensity values (FI, means ± S.E.M.) are
expressed as % of saline. **p < 0.05 vs saline, °p < 0.05 vs MPTP fed with control diet. B-H: Representative confocal images show loss of TH-IF
(revealed by FITC, green) in Str of MPTP mice fed with a ct diet at 40 dpt (C) and a substantial rescue of TH- (D) by HCT1026. F-H:
Representative confocal images show loss of DAT-IF (revealed by FITC, green) in Str of MPTP mice fed with a ct diet at 40 dpt (G) and a
substantial rescue of DAT-IF (H) by HCT1026. E-F: For western blot analysis, at 40 d after saline or MPTP injections in mice fed with the ct or
HCT1026 diets, mice were sacrificed and striatal tissue samples processed for WB, as described. The data from experimental bands were
normalized to b-actin, before statistical analysis of variance and values expressed as % of saline-injected controls, within each respective group.
Note the significant decreased TH (I) and DAT (J) protein levels in MPTP mice fed with a ct diet, whereas a recovery was observed in HCT1026
fed mice. *p < 0.05 vs saline; *° p < 0.05 vs MPTP fed with ct.
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Figure 4 HCT1026 preventive administration inhibits MPTP-induced dose-dependent loss of TH+ cell bodies in SNpc. Ageing mice fed
with a ct or HCT1026 diets were submitted to the subchronic MPTP (5 mg, 15 mg or 30 mg kg-1, for 5 consecutive d) regimen, and DAergic
cell survival studied after 7 d. A-E: Representative confocal images of dual staining with TH- (green) and DAT- (red) -Abs of coronal midbrain
sections at the level of the SNpc 7 d after MPTP. Note the significant protection afforded by HCT10926 preventive treatment in mice treated
with the 5 mg kg-1 dose (see panels G-I) as compared to MPTP mice fed with a ct diet (D-F). F. Survival of DAergic cell bodies in SNpc. The total
number of TH+ and Nissl + neurons was counted throught the entire rostro-caudal axis of the SNpc. Treatment groups were averaged (means ±
S.E.M.) * p < 0.05 vs saline; *°p < 0.05, vs MPTP mice fed with a ct diet. HCT1026 significantly reduced the dose-dependent decrease of TH+ and
Nissl + neurons.
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Figure 5 Long-lasting protection of DAergic cell bodies in HCT1026 fed mice. Ageing mice fed with a ct or HCT1026 diet were submitted
to MPTP subchronic regimen (15 mg kg-1 for 5 cosecutive d) and sacrificed at differet time-intervals after MPTP. A-L: Representative confocal
images of dual staining with TH- (green) and DAT- (red) -Abs of coronal midbrain sections at the level of the SNpc 7 and 40 d after MPTP. As
observed, MPTP mice fed with a ct diet show a marked loss of TH+DAT+ neurons at 7 d (see panels A-C) and fail to recover 40 d following
MPTP injury (G-I). By contrast, HCT1026 afforded a significant and lonlasting protection (see panels D-F and J-L). M: The total number of TH+ and
Nissl + neurons was counted throught the entire rostro-caudal axis of the SNpc. Treatment groups were averaged (means ± S.E.M.) * p < 0.05 vs
saline; *°p < 0.05, vs MPTP mice fed with a ct diet. HCT1026 significantly reduced the decrease of TH+ and Nissl + neurons observed up to 40 d
in mice fed with a ct diet.
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indicated no significant differences in transcript levels in
saline-treated mice fed with control or HCT1026 diets.
By contrast, exposure to MPTP induced a significant
and longlasting decrease of TH mRNA in ageing mice
fed with a control diet after either 7, 21 d (Figure 2A
and 2C), 30 or 40 d (Figure 2A and 2D). In analogy
with these findings, DAT mRNA levels were sharply

down-regulated at 7, 21 (Figure 2E and 2G), 30 and 40
d (Figure 2E and 2H) post- MPTP in mice fed with a
control diet. By contrast, in mice fed with HCT1026,
TH and DAT mRNAs (Figure 2A, B, C and 2D) and
DAT mRNA (Figure 2E, F, G and 2H) levels were signif-
icantly increased compared with those measured in
MPTP mice fed with a control diet, thus supporting

Figure 6 HCT1026 inhibits MPTP-induced increased reactive Mac-1+ microglia in striatum and SNpc. Ageing (9-11 month-old) C57Bl/6
mice fed with a control (ct) or HCT1026 diets (30 mg kg-1) starting at -10 d, underwent an MPTP treatment, as described. At different time-
intervals mice were anesthetized and rapidly perfused, the brains processed for immunohistochemistry. Coronal sections at the level of the
striatum and SNpc were stained with Mac-1-Ab to localize microglial cells. A-B: Reactive (ameboid-like) microglial cells were counted at different
time-intervals after saline and MPTP injection (n = 4/experimental group) in mice fed with a ct or HCT1026 diets, within both Str (A-G) and SNpc
(H-N). Differences were analyzed by ANOVA followed by Newman-Keuls test, and considered significant when p < 0.05. **p < 0.05 vs saline; *° p
< 0.05 vs MPTP mice fed with ct diet. B-E: Representative confocal images of Mac-1 staining (green) in saline (B), 3 d after MPTP in mice fed
with ct diet (C, 20× and D, 40×) or HCT1026 (F, 20× and G, 40×). Insets (100×) show microglia morphologic appearance. I-N: Representative
confocal images of Mac-1 staining (red) in SNpc. Note the high density of reactive Mac-1+ cells with rounded cell bodies and short, thick
processes 3 d after MPTP administration in mice fed with a ct diet (J-K), as compared to Mac-1 microglia of mice fed with HCT1026 (M-N),
exhibiting a more elongated cell body and long ramified processes.
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Figure 7 HCT1026 inhibits MPTP-induced increased Mac-1, PHOX, iNOX and 3-Nitrotyrosine expression in SNpc. A-B: Western blotting
of phagocyte oxidase PHOX (A) and Mac-1 (B) within the VM at different time-intervals after saline or MPTP injection in mice fed with the
control or HCT1026 diet. The data from experimental bands were normalized to b-actin, before statistical analysis of variance. Values are
expressed as % of saline-injected controls. Differences were analyzed by ANOVA followed by Newman-Keuls test, and considered significant
when p < 0.05. * p < 0.05 compared to saline; ° p < 0.05 vs MPTP fed with the control diet. C. Semi-quantitative RT-PCR for iNOS. The 250 ng of
cDNA were used for PCR, by using Super Taq DNA polymerase with specific primer pairs for iNOS (500 bp) and Classic GADPH Standard (270
bp). Samples from PCR reactions were processed as described. Fluorescent bands of amplified gene products were analyzed, the values
normalized against GADPH and ratios expressed as % of control, within each experimental group (C), see text for details. Differences were
analyzed by ANOVA as above. ** p < 0.05 vs saline; ° p < 0.05 vs MPTP + control diet. D: Mean numbers of Mac1+iNOS+ cells within the SNpc in
saline and MPTP mice fed with the control or HCT1026 diet. Cell counts obtained as described in Material section. E-F: Representative confocal
images showing double staining with Mac-1 (green) and iNOS (red) in MPTP mice fed with the control (E) or HCT1026 (F) diets. G: Percent (%)
of TH+ neurons colocalizing with 3-nitrotyrosine (3-NT), a peroxynitrite footprint. Dual stained TH+ 3-NT+ neurons were counted as described and
values expressed as % of total TH+ neurons. H-I: Representative confocal images showing dual immunostaining with 3-NT (green) and TH (red)
in MPTP mice fed with a ct diet (H) showing that a large proportion of DAergic neurons colocalize (orange-to-yellow) as opposed to TH neurons
of mice fed with HCT1026 (E) where no colocalization was observed in the large part of SNpc neurons.
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HCT1026-induced striatal DAergic neuroprotection was
maintained at long time intervals.
As observed (Figure 3A and 3E), average striatal

TH- and DAT-immunofluorescent (IF) signal intensity
(pixel ± SEM), did not differ in saline-injected mice fed
with either control or HCT1026-medicated diets. Sub-
chronic MPTP treatment decreased TH- (Figure 3A and
3C) and DAT-IF (Figure 3E and 3G). In addition, loss of
striatal DAergic innervation lasted up to 40 dpt. By con-
trast, HCT1026 significantly counteracted the loss of
TH (Figure 3A and 3D)- and DAT (Figure 3E and 3H)-
IF signal intensity, up to 40 dpt. Changes in TH and
DAT proteins were next quantified by WB in saline and
MPTP mice fed with the control or HCT1026 diet
(Figure 3I and 3J). After 40 d from from MPTP admin-
istration, a significant reduction of MPTP-induced
downregulation of both markers was observed only in
mice fed with HCT1026 diet. These and previous find-
ings support the long-term efficacy of HCT1026 in pre-
serving TH and DAT expression and function in
striatum of ageing mice exposed to subchronic MPTP
regimen.

MPTP metabolism is not affected by HCT1026 preventive
treatment
One of the first limiting factors in MPTP toxicity is the
conversion of MPTP into MPP+ by means of the mono-
amine oxidase B (MAO-B) enzymatic activity. MPP+ is
known to gain access into neurons via DAT, and
through this mechanism it is accumulated into DAergic
cells causing selective toxicity [76]. The striatal levels of
MPP+ were then measured 90 min after MPTP injection
in mice fed with the different diets and exposed to
MPTP. There was no significant difference in striatal
MPP+ levels measured 90 min after MPTP injection in
mice fed with either the control (110 ± 7 ng mg-1 pro-
tein) or HCT1026 (124 ± 12 ng mg-1 protein) diets,
thereby indicating that the greater protection afforded
by HCT1026 might not be attributed to poor MPP+

metabolism.

HCT1026 preventive administration decreases MPTP-
induced loss of TH+ cell bodies in SNpc
We next assessed the impact of HCT1026 in MPTP-
induced toxicity of nigral DAergic cell bodies (Figure 4
and Figure 5). In mice fed with a control diet, MPTP
induced a dose-dependent loss of double-stained TH+

(revealed by FITC, in green) DAT+ (revealed by CY3, in
red) cells in SNpc (compare Figure 4A, B and 4C with
Figure 4D, E and 4F), whereas MPTP-induced DAergic
neurotoxicity was signicantly (p < 0.05) reduced in
HCT1026-fed mice (Figure 4G, H and 4I). Estimation of
the total number of TH+ Nissl+ neurons using the Aber-
crombie correction, confirmed a dose-dependent

reduction of TH+ Nissl+ neurons in MPTP-treated mice
fed with control diet, suggesting an actual TH+ neuronal
loss rather than loss of TH expression (Figure 4J). By
contrast, HCT1026-fed mice exhibited a significantly
greater number of TH+ Nissl+ neurons at all doses tested
(Figure 4J). These results suggest that a certain number
of DAergic neurons could survive the MPTP insult in
mice receiving a preventive treatment with HCT1026.
In order to verify the ability of the continous oral

treatment with HCT1026 to maintain its neuroprotec-
tive effects, saline and MPTP (15 mg kg-1 day-1 per 5
consecutive days), mice fed with the control or
HCT1026 diet were sacrificed at 21, 30 and 40 dpt. As
observed, at either 7 d (Figure 5A, B, C and 5M), 21, 30
(Figure 5M), or 40 dpt (Figure 5G, H, I and 5M) MPTP
mice fed with the control diet did not recover as
reflected by the significant, long-lasting loss of TH+

Nissl+ neurons. In sharp contrast, HCT1026 exerted a
significant neuroprotective effect that was maintained
up to 40 dpt (see Figure 5D, E, F, and 5J, K, L, M), sug-
gesting increased survival/rescue of SNpc neurons in
HCT1026-fed mice.

HCT1026 inhibits MPTP-induced microglial activation
Glial inflammatory mechanisms are thought to contri-
bute to MPTP-induced nigrostriatal DAergic degenera-
tion (see Refs in Background). Indeed, when microglia
adopts a pro-inflammatory phenotype, the production
and release of a plethora of toxic mediators, including
pro-inflammatory cytokines and iNOS-derived NO, can
enhance neuronal damage in the SNpc and accelerate
the appearance of behavioral symptoms [32,81-83]. The
ability of HCT1026 to modulate MPTP-induced micro-
glial activation was next assessed during the early phase
of active degeneration [8] using immunohistochemistry,
WB and RT-PCR analysis.

Microglial cell number/morphology in striatum and SNpc
Changes in activated microglial cell number and mor-
phologic appearance at both striatal and SNpc levels
were assessed using Mac-1-Ab, an integrin receptor
known to mediate reactive microgliosis and recognized
to significantly contribute to the progressive dopaminer-
gic neurodegeneration in the MPTP model of DAergic
toxicity, both in vivo and in vitro [see [28-33] and back-
ground]. In saline-injected mice fed with either control
or HCT1026 diets, Mac-1+-microglial cells with elon-
gated cell bodies and ramified processes were present.
As previously shown, an increased number of Mac1+

cells with morphological characteristics of activated
microglia (i.e. ameboid, round shaped Mac1+ cells with
thick and short processes) was observed in both stria-
tum (Figure 6A, C, D and inset) and SNpc (Figure 6H, J,
K and inset) levels. By contrast, Mac-1+ cells exhibited a
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more elongated cell body with longer and thinner pro-
cesses in mice fed with HCT1026 diet (see insets in Fig-
ure 6G and 6N). Moreover, the number of ameboid-like
Mac-1+ cells was sharply reduced both in striatum (Fig-
ure 6A, F and 6G) and midbrain (Figure 6H, M and 6N)
of HCT1026-fed mice.

Mac-1 and PHOX expression in the ventral midbrain (VM)
Mac-1 is linked to the activation of PHOX, a chief com-
ponent of MPTP-dependent microglia activation
[29-33]. Given that Mac-1 and PHOX act in a synergis-
tic way, and are essential to enhance DAergic degenera-
tion, we next evaluated the expression of both markers
within the ventral midbrain by WB, during the maximal
phase of glia activation [8]. As previously observed, a
sharp increase of Mac-1 and PHOX followed MPTP
treatment, as early as 1 dpt, in mice fed with the control
diet, with levels remaining high at both 3 and 7 dpt
(Figure 7A, B). Conversely, HCT1026 significantly
reduced MPTP-induced Mac-1 and PHOX expression in
the ventral midbrain, supporting reduced microglial acti-
vation during the early phase of DAergic degeneration
(Figure 7A, B).

Expression of pro-inflammatory mediators: iNOS and 3-NT
The ability of a preventive treatment with HCT1026 to
inhibit MPTP-induced up-regulation of iNOS was next
evaluated by semi-quantitative RT-PCR analysis 1 d after
MPTP challenge. Within the ventral midbrain of saline-
treated mice fed with a control or HCT1026 diet, no sig-
nificant difference was observed in iNOS mRNA levels,
whereas MPTP significantly up-regulated iNOS tran-
scription (Figure 7C). On the other hand, the MPTP
mice fed with HCT1026 exhibited significantly less iNOS
mRNA expression compared to controls (Figure 7C).
When glial superoxide generated by PHOX activation

and iNOS/NO are concomitantly active, peroxynitrite
(ONOO-), and consequently protein tyrosine nitration
and hydroxyl radicals over-production occurs [33].
Hence, the generation of high NO concentration fol-
lowed by the production of peroxynitrite may be involved
in DAergic neuronal cell death. We thus used immuno-
histochemistry to localize iNOS and 3-nitrotyrosine (3-
NT) as fingerprint of iNOS-derived NO and peroxynitrite
generation. Dual immunostaining with iNOS and Mac-1
within the SNpc of MPTP mice fed with a control diet,
indicated that a significant proportion of reactive Mac-1
cells expressed iNOS, 1-7 d post-MPTP (Figure 7D, E).
Dual staining with 3-NT- and TH indicated a sharp
increase in the percentage of TH+ cells colocalizing with
3-NT at both 1 and 3 d post-MPTP (Figure 7G, H), while
a certain decrease was observed 7 dpt. Conversely, in
MPTP mice fed with HCT1026, both iNOS- (Figure 7D,

F) and 3-NT-(Figure 7G, I) were significantly downregu-
lated 1-7 dpt within the SNpc.
These results indicated an efficient reduction of

MPTP-induced microglial activation, pro-inflammatory
marker expression, i.e. Mac-1, PHOX, iNOS and 3-NT
formation within the SNpc of mice fed with HCT1026,
which might account for the observed nigrostriatal
protection.

Discussion
Grafting a NO-donating moiety into the structure of
flurbiprofen, one of the most potent non-selective anti-
inflammatory agents, yielded a drug devoided of side
toxicity and endowed with a remarkable neuroprotective
activity against MPTP-induced DAergic neurotoxicity,
motor impairment and microglia activation in ageing
mice. HCT1026 was effective in both the acute and sub-
chronic models of MPTP, and its neuroprotective activ-
ity lasted up to 40 d, as opposed to age-matched
controls indicating the longterm safety and efficacy of
the HCT1026, as opposed to flurbiprofen. The different
outcome of mice treated with HCT1026 was not due to
differences in daily food consumption, or to poor MPP+

metabolism. HCT1026-induced neuroprotection was
associated with a marked down-regulation of activated
microglial cell number and a signiof ficant decrease of
MPTP-induced pro-inflammatory mediators, including
iNOS, Mac-1 and PHOX expression, as well reduced 3-
NT formationin SNpc DAergic neurons, suggesting that
a switch in microglia pro-inflammatory phenotype
might contribute to nigrostriatal neuroprotection.
The experimental study was designed to compare the

oral activity of HCT1026 with that of flurbiprofen. How-
ever, due to the significant gastric toxicity of flurbiprofen
observed in the short-term study, only HCT1026-medi-
cated diet was further studied. In long-term experimental
protocols, HCT1026 proved to have a safe profile and a
significant efficacy in counteracting MPTP-induced stria-
tal DAergic toxicity.
Nitric oxide (•NO) is a biological molecule known to

play a major role in a wide variety of physiological and
pathological conditions [84]. Some of its functions
include vasodilation of blood vessels, GI mucosal healing
and defense. Therefore NSAIDs containing NO-donor
groups have been developed to obtain effective treat-
ment of inflammation with reduced GI side effects
[57-61]. Indeed, grafting an organic nitrate moiety onto
the NSAID scaffold has been shown to result in the
release of NO through slow kinetics (in comparison
with others NO donors, i.e. sodium nitroprusside, S-
nitroso-N-acetyl-D,L, penicillamine), possibly mimicking
the physiological levels of NO produced by constitutive
NO synthases. Thanks to NO release, and the combina-
tion of a balanced inhibition of the two main COX
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isoforms, NO-NSAIDs are endowed with little gastroin-
testinal and renal toxicity compared to their parents
compounds [56-61,65,85]. It is believed that the NO,
which is released by the metabolism of nitrate as the
compounds are broken down, may counteract the con-
sequences of the NSAID-induced decrease in gastric
mucosal PGs [65]. It seems important to mention that a
clear identification of the metabolic steps by which NO-
NSAIDs produce NO has not been established. Experi-
mental findings obtained, in vivo, show that HCT1026 is
metabolized into flurbiprofen and NO species, i.e.
nitrates and nitrites, [60,61,70], which are detected in
plasma and in brain at 2-4 h [70] and 3 h [86], respec-
tively from drug administration. In vitro, HCT1026 is
converted into flurbiprofen with different kinetics
depending on the cell assay. In rat plasma, 30 min of
incubation is required to fully convert HCT1026 to flur-
biprofen [see [63]]. By contrast, approximately 35% of
HCT1026 is converted into flurbiprofen within 1 h of
incubation in human blood, and 24 h of incubation was
necessary to reach the almost complete dissociation of
HCT1026 [62,63]. Given the rapid action of HCT1026
demonstrated in vitro, Bernardo et al. [63] suggested the
possibility that HCT1026 might reach the brain par-
enchyma and act on brain cells before being cleaved to
the nitrate moiety and flurbiprofen [63]. Alternatively,
the metabolites flurbiprofen and NO might act conco-
mitantly by activating parallel pathways that ultimately
determine the unique effects of HCT1026 [63]. Other
studies have suggested a potential action of the HCT-
1026 metabolite, 4-hydroxybutyl nitrate, since animal
studies have shown that the level of inorganic nitrite in
the brain increases after oral administration of HCT-
1026 [86]. Plasma nitrite itself has been shown to pro-
vide a source of NO under certain conditions [see [87]].
Neurochemical, morphological and behavioral changes

clearly indicate that with the ageing process, increased
vulnerability of the nigrostriatal DAergic system and
limited recovery from MPTP injury are observed
[4,5,17,18,77,78]. Indeed, the nigrostriatal DAergic neu-
rons exhibit compensatory mechanisms in response to
MPTP injury, but the degree of plasticity becomes
reduced with age [18,77,78]. Accordingly, a diminished
compensatory capacity of nigrostriatal DAergic neurons
“as a prelude” to PD is recognized to accompain the
process of aging [see [88,89]]. Among the mechanisms
at play, increased neuronal vulnerability to degenerative
conditions, dysfunction of glia-neuron crosstalk, reduced
repair capacity of injured DAergic neurons and/or lim-
ited neurogenesis may contribute to the poor recovery
observed with age [see [18] for review]. Given the role
of the ageing process as a critical risk factor for develop-
ing PD, we addressed the efficacy of HCT1026 preventive
administration schedule in 9 to 11 month-old mice and

found that longterm administration of HCT1026 resulted
in a significant DAergic neuroprotection following MPTP
insult, at both and SNpc levels. These effects lasted up to
40 dpt, supporting HCT1026 as promising approach
towards the development of effective pharmacological
neuroprotective strategies against PD.
Variable neuroprotective effects have been, so far,

reported for both steroidal and non-sterodal, mixed and
COX-2-selective inhibitors in different MPTP-mouse
models of PD [37-48]. The mixed COX-1/COX-2 inhibi-
tor indomethacine [39] and a COX-2 selective NSAID,
rofecoxib [38] treatment rescued DAergic neurons from
MPTP injury. Indomethacine, however, appeared toxic
at high doses, and rofecoxib, failed to keep its protective
properties when used in the prolonged treatment [90].
Studies on mice deficient with COX-2 showed that
COX-2 plays a critical role in animal models of DAergic
degeneration [38,32,43]. In particular, the role of
increased levels of COX-2 in generating a toxic dopa-
mine-quinone species which was responsible for DAer-
gic neuronal degeneration, was demonstrated, whereas
the selective COX-2 inhibitor, rofecoxib, exhibited a
neuroprotective effect (38). In the study of Sanchez-Per-
naute [43], the COX-2 antagonist, celecoxib, was cap-
able to prevent or slow down DAergic degeneration
induced by intrastriatal administration of 6-OHDA.
Accordingly, Vijitruth et al. [42] showed that pharmaco-
logical or genetic inhibition of COX-2 was capable to
reduce motor impairment and to protect DAergic neu-
ronal cell bodies in the SNpc as well as the striatal TH-
stained fibres against MPTP-induced neurotoxicity [42].
On the other hand, Ibuprofen, a non selective blocker,

was shown to diminish the decline of dopamine content
in striatum in the MPTP mouse model of PD, in a
dose-dependent manner, and was not toxic to the DAer-
gic system [41]. In accord with these experimental
results, ibuprofen, but not other non-selective NSAIDs,
was shown to diminish the risk/incidence of PD in men
[5,6]. The present results showing the longterm DAergic
neuroprotection in ageing mice and the safety profile of
HCT1026 are of special interest, given that non-selective
NSAIDs long-term therapies are hampered by their sig-
nificant gastrointestinal, renal and cardiovascular side-
effects [56,85].
HCT1026-induced neuroprotection observed in the

present study was accompanied by a sharp downregu-
lation of all studied markers of microglial activation
including ameboid-like microglial cell number, pro-
inflammatory mediators as well as two key harmfull
elements, MAC-1 and PHOX, likely suggesting that a
shift from microglial pro-inflammatory (“harmfull”)
phenotype might be a major contributing factor.
Indeed, under inflammatory conditions, PHOX is the

major source of peroxides in the brain. Activation of
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microglial PHOX is synergistic with glial iNOS expres-
sion in inducing DAergic neuron death [27-36]. Accord-
ingly, PHOX/Mac-1-deficiency mitigates MPTP-induced
DAergic neurotoxicity both in vivo and in vitro [30-33].
Inflammatory stimuli together with ROS and RNS acti-
vate nuclear factor-kB (NF-kB) in microglial cells, oligo-
dendrocytes and neurons to promote the transcription
of inflammatory cytokines, COX-2, iNOS, and apopto-
sis-promoting factor including p53/Bax [see [45,46]].
Various studies (reported in Backgroud section) have
clearly underlined a “dual key mechanism” whereby
simultaneous activation glial iNOS and PHOX synergis-
tically act in killing DAergic neurons [33]. This mechan-
ism may mediate inflammatory degeneration in response
to cytokines, bacteria, ATP, arachidonate, whereas neu-
roprotection was observed by NO and peroxynitrite sca-
vengers [33]. Indeed, nitrative stress is among the
factors potentially underlying DAergic neurodegenera-
tion [8,27,28,33-36]. Interestingly, the number of DAer-
gic neurons containing 3-NT increased significantly in
rhesus monkey midbrain DAergic neurons with age,
suggesting a role for aging-related increase of nitrative
damage in the selective vulnerability of SN neurons to
degeneration in PD [91]. Here, ageing mice fed with a
control diet exhibited a dramatic increase of 3-NT colo-
calization with TH+ neurons by 3 d after MPTP, corre-
sponding to the active DAergic degeneration phase
[27,28,32,33,36], while by 7 d a certain decrease in 3-NT
accumulation within TH+ neurons was observed, possi-
bly indicating the end of the degeneration phase. In
HCT1026-fed mice, the generation of PHOX and iNOS-
derived cytotoxic mediators, including 3-NT accumula-
tion within DAergic neurons, were markedly abated,
supporting that a significant proportion of SNpc neu-
rons survived MPTP insult.
Although NSAIDs pharmacological actions are related

to their ability to inhibit PG biosynthesis, some of their
beneficial therapeutical effects are thought to be
mediated by a panel of COX-independent mechanisms.
NSAIDs are able to inactivate the transcription NF-kB
and activator protein-1 (AP-1), critically involved in the
induction of multiple inflammatory gene products
involved in the inflammatory response (i.e. iNOS, TNF-
a). In addition, NSAIDs in neuronal cells might directly
and dose-dependently scavenge ROS and RNS, thereby
blocking their detrimental effects [45,46]. On the other
hand, high concentrations of NSAIDs such as ibuprofen
and indomethacin, activate PPARg. PPARg is a ligand
activated inhibitory transcription factor that antagonizes
the activity of NFkB, AP1, signal transducer and activa-
tor of transcription-1 (STAT-1) and nuclear factor of
activated T cells (NFAT). PPARg activation is then asso-
ciated with a reduction in the expression of several
inflammatory genes and the production of inflammatory

cytokines and iNOS [45,46]. In particular, in vitro stu-
dies have reported that selective PPARg agonists such as
pioglitazone, ibuprofen, or indomethacin, can activate
PPARg in microglia, decreasing the number of activated
glial cells [see [45,46]].
The mechanisms that differentiate HCT-1026 from

flurbiprofen remains a matter of debate. In vitro studies
demonstrated that a low concentration of (1 μM) of
HCT1026, but not flurbiprofen, activated PPARg in pri-
mary cultures of rat microglia, with kinetics similar to
those of the synthetic agonist, ciglitazone [63], support-
ing additional anti-inflammatory action through PPARg
[63]. In addition PPARg agonists were reported to miti-
gate MPTP-induced DAergic neurotoxicity in different
PD models [see [13-15,45,46]]. In the recent studies of
Abdul-Hay et al. [87], flurbiprofen was 10-fold less
potent than HCT-1026 in inhibiting iNOS induction in
RAW 264.7 cell cultures. In LPS/IFNg-induced primary
astroglial cultures, HCT-1026 showed anti-inflammatory
potency towards inhibition of cytokine and iNOS eleva-
tion, providing similar observations to those in micro-
glial cultures [62]. That the anti-inflammatory activity of
HCT-1026 could translate into neuroprotection was
further demonstrated in a co-culture experiment with
LPS-stimulated RAW cells and a neuroblastoma cell cul-
ture, where HCT-1026 was highly efficacious neuropro-
tectant [87].
Grafting a NO-donating moiety to flurbiprofen was

reported to confer additional anti-inflammatory proper-
ties [51,52,60-66,87,92,93]. It has been suggested that
this effect may depend on the negative feedback regula-
tion exerted by low physiologic concentration of NO
(nanomolar range) on different inflammatory mediators
such as iNOS and COX-2, as well as on their associated
functions [94-97]. Indeed, there is evidence that at low
concentrations, NO has anti-inflammatory properties as
it inhibits the expression of pro-inflammatory proteins
(i.e. COX-2 and iNOS), and it counteracts the release of
pro-inflammatory cytokines, such as TNF-a, in activated
macrophages [94-97].
It should be recalled, that NO signaling plays an

important role in the functioning of the CNS, and acti-
vation of soluble guanylate cuclase (sGC) represent one
important effect of NO. Of note, physiological release of
low concentrations of NO by constitutive neuronal NOS
is recognized to modulate extracellular levels of dopa-
mine in the striatum and to critically participate in stria-
tal DAergic homeostasis [98]. The NO/sGC/cGMP
signal transduction system is also considered to be
important for modulating synaptic transmission and
plasticity in brain regions such as the hippocampus, cer-
ebral cortex, and cerebellum, and further studies are
required to unravel potential involvement of these path-
ways in DAergic neuroprotection afforded by HCT1026.
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Besides the NO-mediated effects, most recently pro-
posed are NO-independent and NSAID-independent
actions on NF�B and MAPK/ERK signaling pathways
[see [64]]. In their study, Idris and co [64] reported the
ability of HCT1026 to inhibit receptor activator of NFkB
(RANKL), as well as RANKL-induced activation of
NFkB and ERK pathway in LPS-stimulated macrophage
cultures. In addition, HCT1026 also inhibited TNF-a,
IL-1 and LPS-induced signaling. Interestingly enough,
the pathways inhibited by HCT1026 all share a similar
kinase complex upstream of the NFkB and ERK path-
ways and this is the most likely target for the action of
HCT1026 [64].
It seems important to underline that inflammatory

pathways may become hyperactivated with age and/or
become more sensitive to immune/neurotoxic challenge,
thereby promoting degeneration [99-102]. Given that
with age, dysfunctional microglia and altered glia-neuron
crosstalk may contribute to the progression of neuronal
degeneration [18], HCT1026 preventive and long-term
treatment might thus reduce age-dependent and MPTP-
induced increase in oxidative and inflammatory attacks
to nigrostriatal DAergic neurons. Of special interest, in
view of the role of both systemic and central inflamma-
tion in modulating the severity of neuronal insult, includ-
ing DAergic injury [see [13-15,18,24,81-83]], a potential
effect of HCT1026 in influencing systemic inflammation
cannot be excluded. In addition, the mitigation of the
nitrosative/oxidative status of the nigral microenviron-
ment as revealed by downregulation of Mac-1, PHOX
and 3-NT in the VM, likely have beneficial consequences
for glial expression of critical neuroprotective/neuro-
trophic factors [18], thereby supporting TH+ neuron sur-
vival/neurorescue, possibly through an amelioration/
mitigation of SNpc nicroenvironment.
After brain injury, the inflammatory environment is

recognized to have both detrimental and beneficial
effects on neuronal outcome, depending on mouse
strain, age and sex of the host, the severity of the
lesion, the degree and timing glial activation, the hor-
monal background, the specific cellular context and
intrinsic region-specific neuronal characteristics [see
[8-18,21-26,40,77,78,100,103,104]]. In degenerative
conditions, glia serve neuroprotective functions includ-
ing the removal of dead cells by phagocytic activity
and the production of neurotrophic factors. By con-
trast, overactivation of microglia or dysfunctional
microglial cells as a consequence of ageing and age-
related events within the SN microenviroment,
[18,25,100-102] likely increase DAergic neuron vulner-
ability and/or may limit DAergic self-repair abilities. In
vivo experiments have recently shown that intranigral
administration of prostaglandin J2 (PJ2) induces micro-
glia activation, selective degeneration of DAergic

neurons in the SNpc, formation of ubiquitin- and a-synu-
clein-immunoreactive aggregates in the spared DAergic
neurons, and locomotor deficit [83]. These and other find-
ings have underlined the role of a transient initiation fac-
tor, triggering an active self-perpetuating cycle of chronic
neuroinflammation, contributing to DAergic neuronal dys-
function [13,83]. By reducing exacerbation of inflamma-
tion, HCT1026 may then improve mitochondrial
performance, increase glial-mediated neurotrophic sup-
port, thus creating a more favorable milieu for nigrostriatal
DAergic neuron survival/rescue.
The present results are in line with data obtained in

different animal models of brain inflammation, where
HCT1026 significantly reduced neuronal loss and
decreased the number of reactive microglial cells to a
greater extent than the parent compound, flurbiprofen
[66,86,87,92,93]. In experimental allergic encephalo-
myelitis (EAE), oral treatment with HCT1026 which
delayed disease onset and decreased the severity of
clinical signs in mice immunized with myelin oligoden-
drocyte peptide (MOG35-55) [66]. In addition,
HCT1026 fed mice exhibited significantly reduced
mRNA levels of pro-inflammatory cytokines, caspase-1,
and iNOS in blood cells, with reduced number of
CNS-infiltrating T cells [66]. Recently, HCT1026 was
reported to mitigate amyloid-b-induced toxicity, in cell
culture, in vitro, while enhancing cognition in response
to cholinergic blockade, in vivo [87]. Other studies
reported the ability of HCT1026 to reduce microglia
activation and to prevent muscular dystrophy pathol-
ogy in two murine models [93].

Conclusions
We herein report that oral preventive administration of
the NO-donating derivative of flurbiprofen, HCT1026,
has a safe profile and a significant efficacy in counteract-
ing MPTP-induced DAergic neurotoxicity, motor
impairment and microglia activation in ageing mice. In
particular, nigrostrial DAergic neuroprotection afforded
by HCT1026 lasted for 40 d after MPTP administration.
Hence, DAergic neurons exhibited an increased ability
to resist to the cytotoxic environment caused by MPTP
injury, leading to a significant neurorescue observed
within the striatum and SNpc, at a morphological, neu-
rochemical, and molecular levels. These effects of
HCT1026 were associated with reduced microglial
proinflammatory phenotype and reduced formation of
the peroxynitrite footprint, 3-NT, within TH+ cell
bodies. While further studies are required to clarify the
mechanism(s) of HCT1026 neuroprotective effects, the
combination of a balanced inhibition of the two main
COX isoforms with NO release provides a promising
approach towards the development of novel and effec-
tive therapeutic strategies against PD.
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