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Radiosensitivity index emerges as a potential biomarker for
combined radiotherapy and immunotherapy
Yang-Hong Dai 1, Ying-Fu Wang1, Po-Chien Shen1, Cheng-Hsiang Lo1, Jen-Fu Yang1, Chun-Shu Lin1, Hsing-Lung Chao1,2 and
Wen-Yen Huang 1,3✉

In the era of immunotherapy, there lacks of a reliable genomic predictor to identify optimal patient populations in combined
radiotherapy and immunotherapy (CRI). The purpose of this study is to investigate whether genomic scores defining radiosensitivity
are associated with immune response. Genomic data from Merged Microarray-Acquired dataset (MMD) were established and the
Cancer Genome Atlas (TCGA) were obtained. Based on rank-based regression model including 10 genes, radiosensitivity index (RSI)
was calculated. A total of 12832 primary tumours across 11 major cancer types were analysed for the association with DNA repair,
cellular stemness, macrophage polarisation, and immune subtypes. Additional 585 metastatic tissues were extracted from MET500.
RSI was stratified into RSI-Low and RSI-High by a cutpoint of 0.46. Proteomic differential analysis was used to identify significant
proteins according to RSI categories. Gene Set Variance Analysis (GSVA) was applied to measure the genomic pathway activity (18
genes for T-cell inflamed activity). Kaplan-Meier analysis was performed for survival analysis. RSI was significantly associated with
homologous DNA repair, cancer stemness and immune-related molecular features. Lower RSI was associated with higher fraction of
M1 macrophage. Differential proteomic analysis identified significantly higher TAP2 expression in RSI-Low colorectal tumours. In the
TCGA cohort, dominant interferon-γ (IFN-γ) response was characterised by low RSI and predicted better response to programmed
cell death 1 (PD-1) blockade. In conclusion, in addition to radiation response, our study identified RSI to be associated with various
immune-related features and predicted response to PD-1 blockade, thus, highlighting its potential as a candidate biomarker for CRI.
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INTRODUCTION
Radiotherapy is one of the most effective treatments for
uncomplicated locoregional tumours, and around half of all the
cancer patients receive this treatment modality during their
course of disease management1. With the aid of systems biology,
a rank-based radiosensitivity index (RSI) derived from 10 genes
(AR, c-JUN [JUN], STAT1, PKC [PRKCB], Rel A [RELA], cABL [ABL1],
SUMO1, CDK1, HDAC1, and IRF1), has been generated to predict
the survival fraction at 2 Gy (SF2) across 48 cancer cell lines2. The
prognostic value of RSI has been validated using several
independent data sets, such as those available for the breast
and pancreatic cancer, and glioblastoma3–5. Moreover, with the
inclusion of a linear-quadratic model, the radiation dose could be
further adjusted and personalised6.
Immunotherapy has revolutionized cancer management since

the approval of immune checkpoint inhibitors (ICI) for treatment
of metastatic melanoma7. Several combinatorial approaches are
being investigated to maximize the antitumor immune response,
such as radiotherapy combined with immunotherapy (CRI), which
possess the potential of inducing durable and synergic effects
together. Moreover, over 114 clinical trials involving combined
treatment with ICIs and radiotherapy are currently underway8. RSI
associates important biological networks regulating signalling in
response to radiation9. Here, we studied the robust association of
RSI with intratumoral immune landscape. Moreover, we also
identified its correlation with immunotherapy, especially the
response to PD-1 blockade. By using whole transcriptomic and
matched proteomic data from 12832 primary and 585 metastatic

tumours, we aimed to improve decision of the combinatorial
therapy.

RESULTS
Quality control of RSI across platforms
The output radar plot from sigQC showed that the 10 RSI genes as
a signature were characterised by concordant statistical metrics
between the Cancer Genome Atlas (TCGA) and Merged
Microarray-Acquired dataset (MMD) (Supplementary Fig. 1a). The
rank-transformed values for each RSI gene also showed similar
distributions (Supplementary Fig. 1b). Taken together, these
results suggest that RSI is applicable across these two platforms.

RSI is altered in tumours
A total of 14502 tumour and normal solid tissues were analysed
(Supplementary Fig. 2a). Overall, both tumour and normal tissues
demonstrated wide distribution of RSI, with more normal tissues
displaying low radiosensitivity. This corresponded to a significantly
higher mean RSI in normal tissues in both datasets (0.293 [median
= 0.289] vs. 0.340 [median= 0.321] in MMD; 0.537 [median=
0.536] vs. 0.629 [median= 0.633] in TCGA, p < 0.001, Supplemen-
tary Fig. 2b). Moreover, in different cancer types, we found that
the RSI profiles also altered to varied degrees, with significant
differential patterns observed in cancer originating in the breast,
colon, kidney, and liver (Supplementary Fig. 2c). We also found the
differential patterns of RSI gene expression between tumour and
normal tissues were specific for these four cancer types
(Supplementary Fig. 3a). Further, the RSI is different across cancer
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types (Supplementary Fig. 3b, ANOVA p < 0.001) and the patterns
were similar between the TCGA and MMD, even though most
TCGA samples were derived from resected early-stage tumours.
Similar to clinical observations, pancreatic cancer, kidney cancer,
and melanoma showed higher median RSI, whereas liver cancer
showed low median RSI. These findings suggest RSI is altered in
tumours and could serve as a biomarker in cancer.

RSI and molecular features associated with immune activation
Studies have shown that defective DNA repair, cancer stemness,
and mutational burden are associated with radiation as well as
antitumor immune response10,11. To investigate the relationship
between RSI and immune response, we used Homologous
recombination deficiency (HRD) and RNA stemness score (RNAss),
and total mutation burden (TMB) from TCGA and associated them
with RSI and other signatures related to radiation response.
Signatures derived from RNA-Seq or microarray were compared,
as shown in Fig. 1a, most signatures showed low correlation with
RSI in TCGA and MMD datasets except for CCL8 (Spearman’s rho
[rs]= -0.26, p= 1.12e-8). The negative correlation of CCL8 with RSI
was partly supported by the negative association of RSI with a 12-
chemokine signature which included CCL89. In addition, we found
that RSI was characterised by a generally stronger negative
correlation with HRD and RNAss than other signatures (Spear-
man’s rs= -0.26, p= 2.07e-17; -0.37, p= 2.18e-14), although CCL8
had a higher positive correlation with HRD (Spearman’s rs= 0.28,
p= 1.96e-12). Furthermore, our analysis also identified RSI to be
negatively correlated with TMB (Spearman’s rs= -0.21, p= 4.52e-
6) across most of the epithelial cancer types (Supplementary Fig.
4). The most negative correlation was observed in three
gastrointestinal cancers (colon [Spearman’s rs= -0.2697, p=
1.12e-12], pancreas [Spearman’s rs= -0.3512, p= 1.45e-10], and
stomach [Spearman’s rs= -0.3372, p= 2.84e-16]).

We then examined the expression of several immunotherapy-
related factors (CD4, CD8A, CTLA4, FOXP3, IFNG, PD1, PDL1, and
TNF). Overall, we found that the expression of MMP14, MARCO, and
CCL8 signatures was positively correlated with the expression of
immunotherapy-related genes. RSI displayed less negative corre-
lations in TCGA, with the strongest negative correlation with IFNG
(Spearman’s rs= -0.32, p= 1.02e-11, Fig. 1b). This negative
correlation was also observed in MMD (Spearman’s rs= -0.19,
p= 3.24e-8). We further identified that the expression of IFNG was
negatively correlated with RSI in all cancer sites except for prostate
cancer in MMD (Supplementary Fig. 5). Of note, APOA1, MAP3K4,
radioresistance score (RADR), and radiosensitivity signature (RSS)
correlated poorly with those genes, suggesting that these
signatures might have less roles in the crossroads of radiation
and immune response.
Using a pre-defined RSI cut-off of 0.46 for tumour stratification,

the RSI-Low tumours were found to have significantly higher
HRD and RNAss scores than RSI-High tumours (Supplementary
Fig. 6). Furthermore, RSI was also significantly associated with
different molecular subtypes in cancer (Fig. 1c, d), where
tumours with low RSI showed significantly higher proportions
of the luminal (bladder), basal-like (breast), immunoreactive
(ovary), Epstein–Barr virus (EBV)-associated, and microsatellite
instability (MSI) molecular subtypes (stomach) (all p < 0.05).
Intriguingly, the RSI-Low tumours displayed both molecular
features of MSI and higher TMB in stomach cancer, which were
shown to be subgroups with favourable outcomes after
immunotherapy12. With higher HRD scores, RSI-Low tumours
could be characterised by higher genome instability and
subsequently higher mutational burden. Taken together, RSI-
Low tumours may represent a special subpopulation and
therapeutic target for immunotherapy.

Fig. 1 Association of RSI and other gene signatures with immune-related phenotypes and molecular features. a Matrix heatmap of
Spearman’s correlation among RSI, RADR, RSS, APOA1, MAP3K4, MARCO, CCL8, HRD, RNAss, and TMB in TCGA (upper panel) and MMD (lower
panel). Colour bar indicates Spearman’s rho. b Matrix heatmap of Spearman correlation with immunotherapy-related genes (TNF, PD1, PDL1,
IFNG, FOXP3, CTLA4, CD8, and CD4) in TCGA (upper panel) and MMD (lower panel). Colour bar indicates Spearman’s rho. c Association of RSI
with molecular subtypes in cancer of the BLCA, BRCA, OV, and STAD in TCGA. d Association of RSI with molecular subtypes in cancer of the
bladder, breast, ovary, and stomach in MMD. The black horizontal lines represent the median. CIN: chromosomal instability; EBV: Epstein–Barr
virus (EBV)-associated; GS: genomically stable; MSI: microsatellite instability; IR: immunoreactive. Mann–Whitney U-test ***p < 0.001, **p <
0.01, *p < 0.05.

Y.-H. Dai et al.

2

npj Genomic Medicine (2021)    40 Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



RSI and M1 macrophage polarisation
Across the 22 immune cell subtypes, we found the fraction of M1
macrophages to be most negatively correlated with RSI (Spear-
man’s rs= -0.261, p= 1.07e-10 in MMD, and -0.248, p= 2.16e-18
in TCGA; Fig. 2a). This correlation improved upon examining the
relative proportion of M1 and M2 macrophages (M1/2, Spearman’s
rs= -0.29, p= 1.16e-10 in TCGA, and -0.31, p= 2.06e-9 in MMD,
Fig. 2b). Additionally, as interferon-γ (IFN-γ) has been shown to
induce M1 polarisation (M1P)13,14, a strong positive correlation
was also observed between intratumoral IFNG expression and log2
(M1/M2) (Spearman’s rs= 0.532, p= 1.69e-19 in TCGA; Supple-
mentary Fig. 7). Additionally, RSI-Low tumours harboured sig-
nificantly higher portion of follicular T helper cells, T cell gamma
delta cells, activated NK cells, and M1 macrophages than RSI-High
tumours (Fig. 2c).
The differential expression analysis of 5561 proteins in 95

colorectal adenocarcinoma (COAD) samples indicated high levels
of TAP2 (log Fold Change [FC]= -1.33), PARP14 (logFC= -1.25),
and GBP4 (logFC= -1.09) in the RSI-Low tumours (Supplementary
Fig. 8a and Supplementary Table 1). Concordant with the
proteomic analysis, expression of TAP2, PARP14, GBP4, CKB and
TRIP6 was significantly high in RSI-Low COAD samples (Supple-
mentary Fig. 8b). TAP1 was included in these differential genes
since it forms a heterodimer with TAP2, facilitating antigen
presentation to the major histocompatibility complex I (MHCI).
Higher expression of these genes was observed in higher M1/M2,
especially in cancer of the bladder, breast, colon, melanoma, and
stomach (Supplementary Fig. 9). Higher expression of TAP2 has

been reported to associate with improved response to anti-PD-1
treatment15. Taken together, RSI-Low tumours were characterised
by enhanced antigen presentation machinery and higher M1
proportion, which could lead to pro-inflammatory status and
better response to PD-1 blockade.

RSI and immune landscape in cancers
To confirm the role of RSI as a candidate signature associated with
immunotherapy, we investigated its distribution across different
immune categories. We observed that the related RSI and CCL8
signatures could differentiate C2 (IFN-γ dominant response) from
other immune subtypes (Fig. 3a). The density plot also demon-
strated a deviated trend of C2 tumours toward lower RSI, with an
optimal cut-off value of 0.458, which is very close to the value
(0.46) defined previously for RSI stratification (Fig. 3b)2.
To identify which RSI genes had a higher impact on this

difference, we calculated the feature importance for C2 and non-
C2 classifications. Among the 10 RSI genes, the mean feature
importance was 177.8 (Supplementary Fig. 10a). STAT1 was
identified to have the highest feature importance (mean decrease
in Gini [MDG]= 283.5), followed by CDK1 (MDG= 236.8), JUN
(MDG= 228.5), IRF1 (MDG= 215.4), and ABL1 (MDG= 180.7). The
expression of JUN, CDK1, IRF1, and STAT1 was significantly higher
in the RSI-Low tumours (Supplementary Fig. 10b). A classifier
based on JUN, CDK1, IRF1, STAT1 and ABL1 showed a high
classification accuracy of 82% across all malignancies (95%
confidence interval [CI]= 0.798–0.841), with an area under the

Fig. 2 RSI and immune cell infiltrates in tumours. a Heatmaps showing Spearman’s correlation between RSI and the relative fraction of 22
immune cell types obtained from CIBERSORT. b Correlations between RSI and M1/M2 ratio. Relative portion of M1 and M2 macrophages
obtained from (M1/M2) was log2 (M1/M2) transformed for plotting. c Distribution of relative abundance of the 22 immune cell subtypes
between RSI-High and RSI-Low tumours in TCGA (upper panel) and MMD (lower panel). M1: Macrophage M1; M2: macrophage M2.
Mann–Whitney U-test ***p < 0.001, **p < 0.01, *p < 0.05.
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receiver operating characteristic (ROC) curve of 0.8449 (Supple-
mentary Fig. 10c). In the TCGA dataset, C1 (wound healing) and C2
were the main immune subtypes in most cancer sites, except for
renal and prostate cancers, which harboured more C3 (inflamma-
tory) subtypes (Fig. 3c). Instead of KICH and PRAD, tumours in the
C2 subgroup were generally associated with significantly lower RSI
than those in the C3 subgroup (Fig. 4a). These findings suggest
that RSI-Low tumours are mainly dominated by IFN-γ-related
responses.

T cell-inflamed activity (TCIA) is enriched in tumours with low
RSI
About 41% tumours in the 11 TCGA cohorts were found to be
potentially sensitive to pembrolizumab according to our defined
threshold (0.35, Supplementary Fig. 11). We found an overall
negative correlation between RSI and TCIA (Spearman’s rs= -0.26,
p= 2.38e-15 in TCGA; -0.23, p= 6.87e-13 in MMD, Fig. 3d). The
TCIA signature consisted of 18 genes that intersected RSI genes
with STAT1 (Fig. 3e). The 18 genes showed high intra-correlation in
both TCGA and MMD. Moreover, two RSI genes, PRKCB and IRF1,
showed a high positive correlation with the TCIA signature. The
highest correlation was found between IRF1 expression and TCIA
in melanoma (Spearman’s rs = 0.93, p= 2.12e-15 in TCGA; 0.85,

p= 4.43e-15 in MMD, Fig. 3f and Supplementary Table 2). Divided
by 0.35 to determine enrichment, TCIA was found to be enriched
in most RSI-Low tumours (Fig. 4a). The most pronounced
enrichment was observed in colon, kidney, lung, and stomach
cancers (Table 1).

RSI is predictive of survival in several cancer types
Univariate analysis in the entire TCGA cohort showed that tumours
with high RSI and TCIA associated with favourable survival
outcomes (Hazard ratio [HR]= 0.29, 95% CI= 0.23–0.36, p <
0.001 for RSI; HR= 0.86, 95% CI= 0.82–0.91, p < 0.001 for TCIA;
Supplementary Fig. 12). However, using the optimal cut-off for
overall survival (OS) in tumours enriched in TCIA (Supplementary
Table 3), cancer of the bladder, breast, and colon with low RSI
displayed favourable survival outcomes (Fig. 4b), whereas
unfavourable outcomes were observed in cancer of the kidney
and prostate (Supplementary Fig. 13).

Metastatic tumours are characterised by low RSI with varied
TCIA
In the MET500 database, the median RSI was found to be less than
0.5, in 10 cancer types (Fig. 5a and Supplementary Table 4). Bone
marrow was the most sensitive metastatic site, with higher RSI

Fig. 3 RSI and immune landscape. a Scatter plot showing distribution of six immune categories along axes of RSI and CCL8. C1, C2, C3, C4, C5,
and C6 denote wound healing, IFN-γ-dominant, inflammatory, lymphocyte-depleted, immunologically quiet and TGF-β-dominant pathways,
respectively. Dotted circle indicates clustering of the C2 subtype. b Density plot showing distribution of RSI in C2 and non-C2 categories.
Dotted line indicates the optimal cut-off value. c Distribution of RSI in TCGA cohorts separated by immune subtypes. The black horizontal lines
represent the median. d Spearman’s correlation between RSI and TCIA across the 11 cancer types in TCGA (upper panel) and MMD (lower
panel). Colour bar indicates Spearman’s rho. eMatrix heatmap of Spearman’s correlation between the 18 TCIA genes and 10 RSI genes in TCGA
(left panel) and MMD (right panel). Red arrowhead indicates the overlapped gene between TCIA and RSI. Colour bar indicates Spearman’s rho.
f Correlations between IRF1 expression and TCIA score.
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observed for sites in organs, such as the breast, brain, adrenal
gland, and lung (Fig. 5b). For metastases originating from the
bladder, breast, and prostate (all N > 50), the median TCIA was
above 0 (Fig. 5c). Similar to the primary tumours, even with low
RSI, enrichment of TCIA was only achieved in 32.9 % (Bladder, 26/
79), 43.4% (Breast, 69/159), and 34.2% (Prostate, 53/155),
respectively.

DISCUSSION
In the large-scale analysis of RSI across 11 major cancer types, we
identified that RSI was related to various immune-relevant
genomic and molecular features, and low RSI were associated
with dominant IFN-γ signalling response and predicted therapeu-
tic efficacy of PD-1 blockade.
Tumours with defective DNA repair response (DDR) tend to

have accumulation of genomic errors, which may trigger
increased presentation of tumour-specific neoantigens16. In the
context of MHCI, the neoantigens are specifically recognized by
T cells, enhancing the antitumor immune response10. In urothelial
cancers, mutations in DDR pathways are associated with better
efficacy of PD-1/PD-L1 blockade17. Here we demonstrated lower
RSI correlated with higher HRD score and higher TMB, suggesting
the presence of deficient DNA repair mechanism and potential of
responding to immune-based therapies18. HRD score was
associated with genes involved in homologous repair, including
BRCA1, BRCA2, RAD51B, and RAD51C, and alteration of these genes
are linked to radiosensitivity19,20. Additionally, lower RSI also
correlated with higher RNAss, which indicated higher degrees of
stemness and tumour de-differentiation21. Malta et al. reported
higher RNAss is associated with increased PD-L1 protein expres-
sion in BLCA, BRCA, COAD, LUAD, KICH, KIRC, KIRP, OV, PAAD, and
STAD cohorts in TCGA, suggesting potential effectiveness to ICI for
these tumours.
Immune responses are activated in few molecular subtypes,

such as the basal-like, immunoreactive, and EBV-associated
subtype in cancer of the breast, ovary, and stomach, respec-
tively22–24. These immune-associated subtypes show inter-similar-
ity, and are partly characterised by increased CD8+ T cell
infiltrates and up-regulated IFN-γ signalling signatures25–27.
Additionally, compared to other molecular features, these
subtypes associate with a significantly low RSI. Furthermore, the
expression of IFNG, which translates to the actionable IFN-γ
response, was negatively correlated with RSI, supporting the up-
regulation of IFN-γ signalling activity in these immune-associated
subtypes28. Tobin et al. utilized 12 chemokine genes to define the
intratumoral immune activation and identified that low RSI
significantly associates with high immune activation (using an

RSI cut-point of 0.3745)9. Interestingly, CCL8 was listed as one of
the chemokine genes, supporting its negative correlation with RSI
in the present study. Furthermore, as RSI genes such as STAT1 and
IRF1 are downstream of IFN-γ-mediated signalling, RSI has a better
correlation with various immune-related molecular features and
phenotypes than other genes and gene signatures related to
radiation response29.
Tumours with C2 subtype were characterised by the highest

M1P, highest CD8+ T cells, and high proliferation rate30.
Concordant with this phenotype, here, the RSI-Low tumours
showed high percentage of M1 macrophages. Despite an opposite
trend observed for the CD8+ T cells in the MMD, RSI-Low tumours
also harboured more follicular T helper cells, T cell gamma delta
cells, activated NK cells. Of note, these cell types are all capable of
IFN-γ secretion, suggesting a dominant role of IFN-γ in RSI-Low
tumours31–33. Studies suggest that IFN-γ could transform macro-
phages to a proinflammatory phenotype and induce M1P34,35.
When IFN-γ binds receptor on macrophages, it induces STAT1
homodimerisation, which triggers IFN-γ-dependent signalling36,37.
The canonical IRF/STAT signalling is central in modulating the
macrophage polarisation. Additionally, IFN-γ induces synthesis of
IRF138, which plays an important role in inflammation, immunity,
cell proliferation, and apoptosis38,39. Interestingly, STAT1 and IRF1
have been listed in the RSI genes, thus associating radiosensitivity
with response to IFN-γ. Further, in the IFN-γ dominant micro-
environment, the antigen processing machinery, including MHCI,
TAP1, and TAP2 may upregulate40,41. The TAP1 and TAP2 facilitate
MHCI antigen presentation42, which subsequently activate the
CD8+ T lymphocytes. The IFN-γ released by activated CD8+ T
lymphocytes primes the macrophages toward the M1 pheno-
type43. Here, the intratumoral expression of TAP1 and
TAP2 showed higher clustering with increasing M1 population in
several cancer types. Therefore, the mechanism regulating this
phenomenon may be contributed by common action of local IFN-
γ response.
An increased expression of PD-L1 on the surface of tumour cells

or immune cells has been associated with an improved response
to the PD-1 checkpoint blockade44. However, single measurement
of PD-L1 would limit the understanding of the interaction
between cancer and immune cells45. Therefore, genomics analyses
have been proposed to elucidate the complex tumour micro-
environment (TME)46–48. M Ayers et al. utilized patient cohorts
from three KEYNOTE trials and confirmed the robustness of a pan-
tumour T cell-inflamed gene signature in predicting the response
to PD-1 blockade49. The TCIA, defined by the gene signature, is
characterised by IFN-γ signalling, cytotoxic effector molecules,
antigen presentation, and T cell active cytokines. This “hot”
immune-inflamed TME associates with high CD8+ lymphocytes,

Fig. 4 Enrichment of TCIA and survival analysis. a Heatmap depicting enrichment status of the TCIA defined by the mean z-transformed
GSVA scores > 0.32 in the 11 cancer types. Columns have been ordered by increasing the RSI. b KM plots for the OS in patients with cancer of
the bladder, breast, colon, ovary, and stomach with enriched TCIA. The RSI-High and RSI-Low tumours have been stratified by the optimal cut-
off value for OS in each cancer type.
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myeloid cells, monocytic cells, high IFN levels, and stimulation of
chemokines, including CXCL9, CLCL10, and CXCL11, which predict
benefit from the PD-1 blockade50. Here, we observed enrichment
of TCIA in tumours with low RSI, which could be correlated to
favourable OS in several cancer types. However, IFN-γ plays a dual
role in cancer progression51, and upon prolonged activation of
IFN-γ in the TME, the tumour cells may develop resistance, thus
activating tumorigenic pathways41. Moreover, upregulation of PD-
L1/2 by IFN-γ in cancer, stromal, and myeloid cells would lead to
immune evasion52. Furthermore, the C2 subtype was found to

associate with a less favourable outcome in the TCGA cohort. In
addition to the edited immune response, the absence of survival
benefit in several tumours with low RSI, and the corresponding
high portion of C2 subtypes could be explained by their
aggressiveness and the associated high proliferation30. Further-
more, tumours with re-modelled immune response show loss of
genes responsible for antigen presentation, making them less
immunogenic30. Therefore, the C2 category is of prognostic value
in immunotherapy. The classifier based on five RSI genes, STAT1,
CDK1, JUN, and IRF1, and ABL1 sufficiently predicted the presence

Table 1. Distribution of RSI between TCIA-enrichment and non-TCIA-enrichment.

TCGA Low (N) High (N) P MMD Low (N) High (N) P

BLCA <0.001 Bladder 0.264

E 133 45 E 63 14

NE 140 108 NE 100 35

BRCA Breast

E 176 292 <0.001 E 770 124 0.87

NE 115 625 NE 1208 200

COAD Colon

E 69 76 <0.001 E 479 111 <0.001

NE 47 132 NE 643 281

KICH Kidney

E 2 38 0.303 E 93 39 <0.001

NE 7 44 NE 55 136

KIRC Liver

E 132 126 <0.001 E 149 8 0.3978

NE 54 293 NE 225 19

KIRP Lung

E 12 115 0.029 E 379 25 <0.001

NE 16 189 NE 501 92

LIHC Melanoma

E 154 100 <0.001 E 64 27 0.504

NE 145 22 NE 80 43

LUAD Ovary

E 138 93 <0.001 E 213 45 0.068

NE 94 249 NE 309 96

LUSC Pancreas

E 142 89 <0.001 E 24 48 0.582

NE 149 172 NE 30 76

SKCM Prostate

E 16 15 <0.001 E 104 0 0.075

NE 4 69 NE 127 6

OV Stomach

E 97 32 <0.001 E 263 41 0.009

NE 81 93 NE 341 92

PAAD

E 21 53 0.586

NE 36 72

PRAD

E 22 203 1

NE 32 292

STAD

E 127 62 <0.001

NE 91 170

RSI radiosensitivity index, TCIA T-cell inflamed activity, E Enrichment, NE non-enrichment.
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of the C2 subtype. Taken together, the identification of tumours
with the C2 subtype could better characterise the immune status
while assessing possible radiation responders.
To enhance the efficacy of PD-1 blockade, selecting tumours

with upregulated PD-L1/2 expression is of prognostic significance,
especially in tumours with increased exposure to IFN-γ41,53.
Additionally, inhibition of the PD-1/PD-L1 axis would prevent
exhaustion of CD8+ T cells, and enhance response to immu-
notherapy54. CRI seems promising, as radiation may help induce
immunogenic cell death, elicit innate immune system, and
promote antigen presentation to infiltrating CD8+ T cells41,55.
Here, the RSI-Low tumours were found to associate with active
IFN-γ signalling, M1P, upregulated antigen presentation machin-
ery, response to PD-1 blockade, and response to radiotherapy.
Therefore, CRI appears to be the most effective therapy for RSI-
Low tumours.
There were some technical limitations in our study. First, we

could not obtain the serial RSI change for tumours. Therefore, we
could not elucidate the change of radiosensitivity overtime during
the radiotherapy. Second, the immune cell infiltration was only the
estimation, not the real TME. The TME is complicated might not
purely reflect the real fractions of immune cells from RNA
sequencing. Third, the metastatic tissues from MET500 dataset
were not sufficient for statistical analysis and comparison with the
primary tumours, limiting the use of RSI in this situation.
Despite these limitations, with the help of large sample cancer

genomics dataset, our study identified strong association between
RSI and IFN-γ response and immunotherapy, although future work
would be required to elucidate the detailed mechanism and role
of RSI in CRI.

METHODS
Data source
MMD used in our study have been previously described56. The datasets
cover 11 major cancer types (bladder, breast, colon, liver, lung, kidney,
melanoma, ovary, pancreas, prostate, and stomach), and comprise of 95
independent Gene Expression Omnibus (GEO) studies (http://www.ncbi.
nlm.nih.gov/geo) and a total of 8386 samples, either tumours or relevant
normal tissues. Raw data for the 11 cancer types were independently pre-
process using author-defined methods or RMA-normalization using the R
library affy package57. All the raw data were based on the GPL 570

microarray platform (Affymetrix Human Genome U133 Plus 2.0 Array) and
were merged and adjusted by the Combat method using the R library
inSilicoMergine package58. Probes annotated with specific genes were
collapsed to the maximum expression values, which were adopted for
subsequent analyses.
Normalized RNA-Seq data based on Illumina HiSeq platform were

extracted for the 11 cancer types and 14 cohorts from the Cancer
Genome Atlas (TCGA; abbreviation: BLCA, BRCA, COAD, LIHC, LUAD,
LUSC, KICH, KIRC, KIRP, OV, PAAD, PRAD, SKCM, STAD) using the
bioinformatics tool Xena browser (https://xenabrowser.net/). Here, rectal
adenocarcinoma was included in COAD, which was then used for
comparison with colorectal tissues in MMD. Raw RNA-Seq data were
quantified using the root square error method (RSEM), and log2
transformed (RSEM+ 1). The associated clinical parameters, such as
survival and molecular subtypes were obtained for comparative purpose.
Finally, 6116 tumour (primary tumour) and normal (solid tissue normal)
tissues were retrieved.
Raw RNA-Seq data in MET500 for the 11 epithelial carcinoma were

downloaded from the database of Genotypes and Phenotypes, subse-
quently processed using RSEM59,60, and then normalized using fragments
per kilobase of transcript per million mapped reads (FPKM) and log2
transformed (FPKM+ 0.001). A total of 585 metastatic tumours from
various cancer types and body locations (soft tissue, skin, prostate,
pancreas, lymph node, lung, liver, colon, breast, brain, bone marrow,
bladder, and adrenal gland) were analysed.

Signature quality control
As RSI was derived from microarray datasets, its use in RNA-Seq platforms
has never been elucidated. Prior to proceeding further, we first evaluated
the quality of RSI application on TCGA and MMD using sigQC61. sigQC is an
R package for gene signature quality control, which encompasses a
number of statistical metrics describing the ability of a gene signature to
represent a dataset of interest, such as variability of signature genes and
co-correlation of signature genes.

Calculation of RSI signature
RSI was calculated using a rank-based linear regression model. 10 RSI
genes were indexed from the entire genomics data in the MMD and TCGA,
and the expression values were reordered in the respective platforms.
Gene with the highest expression value was ranked 10. The RSI was

Fig. 5 RSI in the metastatic tissues. a RSI in metastatic tissues in the MET500 cohort. b RSI of tumours in various metastatic tissues. c TCIA
scores in the 11 cancer types. The black horizontal lines represent the median.
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constructed using the following equation:

RSI ¼ � 0:0098009 � ARþ 0:0128283 � JUN
þ 0:0254552 � STAT1� 0:0017589 � PRKCB� 0:0038171 � RELA
þ 0:1070213 � ABL1� 0:0002509 � SUMO1

� 0:0092431 � CDK1� 0:0204469 � HDAC1� 0:0441683 � IRF1
(1)

The RSI value corresponded to the SF2, and therefore a low RSI suggests
high radiosensitivity. Furthermore, a previous study used ROC and found a
cut-off point of 0.46, which was associated with the best predictive
accuracy in pathological response after radiotherapy2. Based on this value,
tumours were grouped into RSI-High and RSI-Low, which essentially
represent two different types of tumours in terms of response to
radiotherapy.

Gene signatures associated with radiation response
To investigate the role of RSI as a promising candidate in linking
radiotherapy and immunotherapy, we searched for other gene signatures
or genes reported to predict radiation response. A 34-gene RSS was
developed and validated by Cui et al. This signature was derived from a
microarray platform and was shown to predict the benefit of radiotherapy
in breast cancer62. RSS was calculated in MMD according to the author’s
method. Another 13-gene RADR was developed by Foy et al. and was
shown to predict recurrence after radiotherapy in head and neck
squamous cell carcinoma63. It was calculated using a single-sample gene
set enrichment analysis tool and was applied well in both RNA-Seq and
microarray platforms. In addition to the radiotherapy-associated scores, we
searched for genes relevant to the radiation response. In locally advanced
breast cancer, APOA1, MAP3K4, and MMP14 were differentially expressed in
the responders in the neoadjuvant setting64. MARCO and CCL8, which are
associated with immune infiltration and radiation outcome, were also
included65. For comparative analyses, RSS and RADR were applied in MMD,
whereas RADR, as well as APOA1, MAP3K4, MMP14, MARCO, and CCL8 were
applied to the TCGA RNA-Seq platform.

HRD and RNAss
The HRD and RNAss were retrieved from analytic data type in the Xena
browser using the TCGA-Pan-Cancer dataset. HRD and RNAss scores were
used to represent the degree of HRD and cancer stemness.

Molecular subtypes, TMB and immunotherapy-related genes
To assess the association of RSI with immune-related molecular subtypes in
cancers, seven independent datasets with annotated molecular features
were obtained (Bladder: accession number= GSE87034 in GEO; Breast:
GSE20711 and GSE21653, and BRCA in TCGA; Ovary: GSE140082, and OV in
TCGA; Stomach: STAD in TCGA). In cancer originating in the bladder, breast,
and ovary, the RSI was dichotomized based on the molecular subtypes
associated with immune response. The four molecular subtypes char-
acterised by TCGA in gastric adenocarcinoma22, based on genome stability
and infection, were considered for our study to associate with RSI and
immune responses. Furthermore, immunotherapy-related factors, includ-
ing CD4, CD8A, CTLA4, FOXP3, IFNG, PD1, PDL1, and TNF were examined and
correlated with RSI. TMB for tumour samples from the TCGA was retrieved
from the Genomic Data Commons Data Portal (http://portal.gdc.cancer.
gov/projects/). Here, the TMB was defined as the total number of simple
somatic mutations observed in each of the TCGA cancer cohorts. Tumours
containing at least one mutation were included.

CIBERSORT and polarisation of macrophages
Relative fractions of distinct immune cell types found in the TME were
estimated using the beta version of the CIBERSORT (http://cibersort.
stanford.edu/). Next, 1000 tumours were randomly selected from cancers
originating in the breast, colon, and lung as their gene expression data in
the MMD exceeded the 500Mb file quota. Further, the LM22 signature
gene file and 500 permutations were selected as our input parameters. The
quantile normalization was disabled for runs with the RNA-Seq data. The
LM22 signature gene file contains 547 genes that accurately distinguish 22
types of immune cells, including the T cells, B cells, plasma cells, and NK
cells with different activation states, and various subsets of the myeloid
lineage, facilitating an overview of immune cells infiltrating the tumours.
Moreover, for each immune cell subtypes, the Spearman’s correlation was

calculated between the relative levels of immune cells and RSI. Next, the
polarisation of macrophages was assessed from the data generated in
CIBERSORT. The M1P status was determined using a ratio of the M1 and M2
macrophages, which was obtained based on the fraction of their relative
amounts, and was log2 (M1/M2) transformed and correlated with RSI using
the Spearman’s rs test.

Proteomic and differential analysis
To investigate the impact of RSI on the protein level, we conducted a
proteomic analysis using available data from the NCI Clinical Proteomic
Tumor Analysis Consortium (https://cptac-data-portal.georgetown.edu/
cptac/s/S016). Relative protein abundance data of 5562 genes for matched
colorectal cancer cohort of the TCGA was obtained (TCGA_Colon_VU_Pro-
teome_CDAP_Protein_Report.r2). The cohort comprised of 95 samples (64
colon and 31 rectum tumour tissues). Unshared spectral count values were
used to represent the relative protein abundance. The R library edgeR
package was used to assess differential protein expression between the
RSI-High and RSI-Low tumours66. FC > 1 or FC <− 1 and adjusted p < 0.05
were used to determine the significantly differential proteins. Volcano plot
was generated using the R library EnhancedVolcano package.

Gene set variation analysis (GSVA)
TCIA, which associates with response to the PD-1 blockade, was described
as an immunotherapy-related pathway by our group49. GSVA scores of this
pathway, inclusive of 18 genes, were computed for each tumour sample in
the MMD and TCGA datasets. The R/Bioconductor GSVA package was used
to calculate these scores, which were then transformed to z-scores67. We
applied a cut-off of 0.35 for mean z-score, which was previously identified
in melanoma46, to determine whether the samples in our study were
enriched or not for TCIA. A heatmap was used for visualization of the
correlation between the TCIA enrichment status and RSI.

Determining IFN-γ dominant response
To establish a classifier for C2 subtype, feature importance of the RSI genes
in determining IFN-γ dominant response was first quantified using the
MDG68. The MDG applies the Random Forest algorithm (RF) and utilizes the
Gini impurity to measure the feature importance. An increase in MDG
correlates with a decrease in node impurity, and thus enhanced
importance. Genes with MDG above mean feature importance were used
for building a classifier. Binary classification of the IFN-γ-dominant
response subtype (C2) was based on an optimal cut-point determined
by the R library cutpointr package. Classifier of the C2 subtype was
established using the RF algorithm, and the resultant performance of the
model was estimated using the area under the ROC curve with 95% CI. The
calculation of MDG and construction of the RF-based classifier were
performed using the R library randomForest package.

Survival analysis
Survival data obtained from the TCGA and other independent GEO
datasets were analysed using the R library survival package. The RSI
allowed stratification into RSI-High and RSI-Low groups based on the
optimal cut-point using the surv_cutpoint function in survminer package.
Kaplan–Meier (KM) survival curve was derived for OS according to RSI. The
HR of RSI and TCIA for OS was calculated and plotted using the hr_plot
function in the R library finalfit package. The log-rank test was used to
identify survival differences between the groups.

Statistical analysis
All statistical analyses were conducted in R. For comparison of variables
under defined conditions, the Mann–Whitney U-test was used to derive
the p-value. One-way ANOVA was used for multiple comparisons of RSI
across cancer types. For both statistical analyses, p-value < 0.05 was
considered statistically significant. The density plot was used to observe
the estimated distribution of RSI between the normal and tumour tissues.
For comparisons of different datasets (MMD and TCGA), the p values
derived for RSI genes for normal vs. tumour tissues were quantified and
-log10(p) transformed, and were then visualized by bubble plot.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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