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Abstract: The dark and humid environment of underground coal mines had a detrimental effect
on workers’ skeletal health. Optimal risk prediction models can protect the skeletal health of coal
miners by identifying those at risk of abnormal bone density as early as possible. A total of 3695 male
underground workers who attended occupational health physical examination in a coal mine in
Hebei, China, from July to August 2018 were included in this study. The predictor variables were
identified through single-factor analysis and literature review. Three prediction models, Logistic
Regression, CNN and XG Boost, were developed to evaluate the prediction performance. The training
set results showed that the sensitivity of Logistic Regression, XG Boost and CNN models was 74.687,
82.058, 70.620, the specificity was 80.986, 89.448, 91.866, the F1 scores was 0.618, 0.919, 0.740, the Brier
scores was 0.153, 0.040, 0.156, and the Calibration-in-the-large was 0.104, 0.020, 0.076, respectively,
XG Boost outperformed the other two models. Similar results were obtained for the test set and
validation set. A two-by-two comparison of the area under the ROC curve (AUC) of the three models
showed that the XG Boost model had the best prediction performance. The XG Boost model had a
high application value and outperformed the CNN and Logistic regression models in prediction.

Keywords: male underground coal mine workers; bone density abnormalities; XG Boost

1. Introduction

Bone mineral density (BMD), known as bone mineral density, is an important indicator
of bone strength, reflects the degree of osteoporosis, and is an important predictor of fracture
risk [1]. BMD was classified according to World Health Organization standards: normal
bone mass, reduced bone mass, and osteoporosis [2]. Osteoporosis (OP) is a systemic
disease characterized by low bone mass and destruction of bone structure, abnormal BMD
was the main cause of OP. At present, the incidence of OP had jumped to the 7th in common
disease, and more than 200 million people worldwide suffered from osteoporosis [3]. The
results of the October 2018 China Osteoporosis Epidemiology Survey showed that the
prevalence of OP among people aged 40–49 years in China was 3.2%, including 2.2% for
men and 4.3% for women, and the highest incidence among people aged 65 years or older
was 32.0%. Globally, one osteoporotic fracture occurs every 3 s, and 50% of first-time
osteoporotic patients will have another osteoporotic fracture [4]. Abnormal bone density
had become an increasingly serious public health problem due to the accelerated ageing of
society’s population, abnormal bone density in a large number of people, and a general
lack of awareness of bone density.

The coal industry is one of the economic pillar industries in China. There are a
great number of people engaged in coal industry, their health status directly related to
the development of China’s coal industry. Some studies had pointed out that the special
environment of underground coal mines had a significant effect on bone metabolism of
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people who worked underground for long years [5]. The vast majority of coal miners
are male. They worked in the dark, damp and relatively narrow working environment
deep underground for a long time, and exposed to occupational harmful factors such
as shifts, their risk factors for abnormal bone density differ from those of the general
population. A study by the World Health Organization reported that the health and
diseases of the population were caused by a variety of factors, including behavioral lifestyle,
environmental factors, biogenetic factors and the quality of health care services, among
which behavioral lifestyle was the most important influencing factor, accounting for 60%,
and miners mostly had bad habits such as smoking, alcohol consumption and high-salt
diet [6], which together led to underground workers’ bone metabolic alterations. Currently,
domestic and international studies on BMD abnormalities focused on the risk factors and
pathogenesis of BMD decline [7–9], and there were fewer studies on its early prevention
and risk assessment. In addition, domestic studies on BMD had mainly focused on the
elderly and menopausal women [10], with fewer studies on BMD in coal miners. If coal
miners at risk of abnormal bone density can be identified early, and changing their own
unhealthy lifestyles. The number of abnormal BMD can be effectively reduced and the
incidence of OP and osteoporotic fractures can be reduced.

Data Mining is the process of extracting knowledge and information with potential
application value from large databases and is a new type of information processing system
that had developed rapidly in recent years. Disease risk prediction is a very important task
in data mining, which is to take the precondition of multiple pathologies of diseases, select
multiple influencing factors of diseases, and use suitable statistical analysis methods to
construct models so as to predict the probability of occurrence of certain diseases in groups
or individuals with certain characteristics [11]. Commonly used models include Logistic
regression, neural networks, decision trees, support vector machine (SVM), and so on. Each
of these methods had its own characteristics and had been widely and successfully used in
the medical field [12]. In recent years, many scholars had used data mining risk prediction
methods in the medical field, and all of them had obtained better results. For example, the
heart disease risk prediction model based on Convolutional neural network (CNN) by Jian
Wang [13] had high prediction accuracy (89.89%) and can accurately predict the risk of heart
disease development; Chao-Wen Tan [14] et al. applied convolutional neural networks
to effectively improve the robustness and accuracy of heart sound signal classification,
which was expected to be applied to machine-aided auscultation. Sethuraman [15] used a
feed-forward neural network for feature selection and reduced the number of attributes to
12, which also helped the prediction model achieve 89.4% training accuracy and 82.2% test
accuracy. Heydari et al. [6] compared neural network, SVM, decision tree and Bayesian
methods in type II diabetes diagnosis and found that the neural network model had the
highest accuracy. Tian-Pei Su [16] developed a diabetes risk prediction model based on the
eXtreme Gradient Boosting (XG Boost) algorithm, and found that XG Boost was overall a
better fit and more accurate than random forest. Hong-Xia Zhang [17] et al. established
a prediction model for type II diabetes based on the XG Boost algorithm, which had
a good prediction effect with an accuracy of 86.6%. In addition, most of these models
currently developed are for disease risk assessment in the general population, and ignore
the special groups in the occupational population. There were a large number of coal
miners in China, and their special occupational environment such as high temperature,
noise, shift work, and other occupational exposures can cause or affect the development
of chronic diseases [18–22]. Therefore, prediction models for BMD abnormalities in the
general population are not applicable to coal miners. To improve the quality of life and
health status of coal miners, there is an urgent need to develop a new predictive model for
the risk of BMD abnormalities in coal miners.

Based on the information from the physical examination data of underground coal
mine workers, we developed three bone density abnormality prediction models: Logistic
regression, CNN, and XG Boost. Overall, our study includes two contributions.
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1. Based on the data information of 3695 underground coal mine workers’ physical
examinations, the risk factors of their BMD abnormalities were screened to provide
a basis for the development of early prevention strategies for BMD abnormalities in
underground coal mine workers.

2. The XG Boost model had better predictive performance of the three models. The XG
Boost model can be used to predict the risk of BMD abnormalities in underground coal
mine workers, so as to achieve early prevention of BMD abnormalities in underground
coal mine workers.

2. Materials and Methods
2.1. Study Subjects

A total of 3695 male on-the-job underground workers who participated in occupational
health physical examination from July to August 2018 in Gequan and Dongpang mines
of Hebei Jizhong Energy were selected for the study. Inclusion criteria: age greater than
or equal to 18 years; more than 1 year of service. Exclusion criteria: age greater than or
equal to 60 years; those with incomplete information; those with congenital metabolic
diseases affecting bone metabolism. All study subjects signed an informed consent form.
The study was conducted in accordance with the Declaration of Helsinki and was reviewed
and approved by the Ethics Committee of North China University of Technology (approval
number: 15006).

2.2. Information Collection

Face-to-face questionnaires were administered to the study subjects by uniformly
trained investigators, and the information collected included (1) demographic information:
age, education level, marital status, BMI, per capita monthly household income, etc.;
(2) lifestyle habits: smoking, alcohol consumption, sleep, physical exercise, etc.; (3) physical
and laboratory examinations: bone mineral density, blood pressure, blood glucose, lipids,
etc.; (4) exposure to occupational hazards: length of service, shift work, work intensity, etc.

2.3. Laboratory Tests

Fasting venous blood was collected by the doctors early in the morning from the study
subjects. Blood specimens were sent to the hospital’s Laboratory Department for blood
biochemistry testing using Myriad Automatic Biochemistry Analyzer (BS-800).

2.4. Diagnostic Criteria for Abnormal Bone Density

The heel bone density of underground coal mine workers was measured using a
CM-200 ultrasonic bone densitometer (FURONO, Japan). Bone density abnormalities were
classified according to WHO standards [2].

Normal bone mass: T ≥ −1; reduced bone mass: −2.5 < T < −1; osteoporosis:
T ≤ −2.5.

2.5. Variable Definitions

1. Hypertension: blood pressure: systolic blood pressure ≥ 140 mmHg and/or dias-
tolic blood pressure ≥ 90 mmHg, or a previous history of hypertension and current
use of antihypertensive medication was defined as hypertension according to the
classification criteria of the Chinese Guidelines for the Prevention and Treatment of
Hypertension, 2018 Revised Edition [23].

2. Diabetes: according to the classification criteria for glucose metabolic status in the
Chinese guidelines for the prevention and treatment of type 2 diabetes (2017 edi-
tion) [24], fasting blood glucose ≥ 7.0 mmol/L, or a previous history of diabetes
mellitus currently undergoing diabetes treatment was defined as diabetes.

3. Smoking: according to the WHO definition of several terms for smoking [25], smoking
status was classified in this study as never smoked, quit smoking and current smoking.
Smoking: smoked at least 1 cigarette per day and smoked continuously for more than
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6 months; current smoking: was smoking at the time of this survey; never smoked
quit: used to smoke but had stopped smoking for at least 6 months at the time of
this survey.

4. Drinking: according to the definition of drinking by the Chinese Center for Disease
Control and Prevention [26], drinking was classified in this study as never drinking,
having stopped drinking, and now drinking. Never drinking: drinking at least once a
week and drinking continuously for more than 6 months; Now drinking: drinking at
the time of this survey; Already abstaining: used to drink but had stopped drinking
for at least 6 months at the time of this survey.

5. Shift situation: a working hour system that requires 24 h continuous work in the
production process and is ensured by one or several teams working in shifts. This
study classifies the shift situation into the following three cases, never shift, once shift
now not shift, and now shift.

6. Years of shift work: the sum of years of shift work performed, this study divided the
years of shift work into 5 groups, 0, 0~, 10~, 20~, and more than 30 years.

7. Exercise: exercise more than three times a week, no less than 30 min each time.
8. Body mass index: BMI = weight (kg)/height2 (m2). The normal range of body weight

is BMI < 24 kg/m2, the overweight range is 24.0 kg/m2 ≤ BMI < 28.0 kg/m2, and the
obese range is BMI ≥ 28.0 kg/m2.

9. Dyslipidemia: according to the Chinese guidelines for the prevention and treatment
of dyslipidemia in adults (revised 2016) [27], serum total cholesterol ≥ 6.2 mmol/L,
and/or triglycerides ≥ 2.3 mmol/L, and/or LDL cholesterol ≥ 4.1 mmol/L, and/or
HDL cholesterol < 1.0 mmol/L, or a previous A history of hyperlipidemia and current
use of lipid-lowering drugs defined as dyslipidemia.

10. High-intensity operations: The physical activity of workers was investigated using
the International physical activity questionnaire (IPAQ) (long-volume version) [28],
and weekly total physical activity levels ≥ 3000 MET-min/w were defined as high-
intensity operations.

11. Medium-intensity work: weekly total force activity level ≥ 600 MET-min/w.

2.6. Sample Size Calculation

To ensure that the model could accurately predict the mean of the outcome events, the
prevalence of abnormal bone density Ø was reviewed in the literature and was approxi-
mately 25% [29], with the margin of error δ set at 0.05, which was calculated to require at
least 289 study subjects. As shown in Equation (1).

n =

(
1.96
δ

)2
∅(1−∅) (1)

To control for the minimum mean error of all individual predicted values, the mean
absolute error MAPE was set to 0.05, the expected contraction rate R2

CS was set to 0.1, and
the predictor variable P was approximately 24, which was calculated to require at least
951 study subjects. As shown in Equation (2).

n = exp
(
−0.508 + 0.259ln(∅) + 0.504ln(P)− ln(MAPE)

0.544

)2

(2)

To ensure an expected contraction rate of 10% and to reduce model overfitting, S was
set to 0.1 and the number of study variables P was approximately 24, which was calculated
to require at least 2038 study subjects. As shown in Equation (3).

n =
P

(S− 1)ln
(

1− R2
CS
S

) (3)
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To ensure the minimum difference between the developed model and the R2
CS op-

timization adjustment value, R2
CS in Equation (4) is 0.1 and maxR2

CS is 0.65, and S’ is
calculated to be 0.75, which is calculated to require at least 671 study subjects. As shown in
Equations (4) and (5).

n =
R2

CS
R2

CS + δmaxR2
CS

(4)

n =
P

(S′ − 1)ln
(

1− R2
CS

S′

) (5)

It was calculated that a minimum of 2038 individuals needed to be included. A total of
3695 individuals were included in the study, and the sample size met the needs of the study.

2.7. Statistical Methods

Excel 2016 was used to establish the original database, and IBM SPSS24.0 was used
for statistical analysis. Count data were described by rate or composition ratio, and χ2

test was used for comparison between groups; Ordinal data were described by rate or
constituent ratio, and the Kruskal-Wallis test was used for comparison between groups.
measurement data obeying normal distribution were described by mean and standard
deviation, and non-normally distributed data were expressed as median and quartiles;
multi-factor unconditional Logistic was used for multivariate analysis of influencing factors.
The test level α = 0.05.

2.8. Software and Hardware Platform

The sample data are randomly selected in the ratio of 7:2:1 to divide the training set,
test set and validation set. Dataset partition codes as shown in Supplementary Material S1.

2.8.1. Logistic Regression Model

The Logistic regression model was built using the sklearn package. The Logistic model
codes as shown in Supplementary Material S2.

2.8.2. CNN Model

Convolutional neural network mainly consists of input layer, convolutional layer,
pooling layer, fully connected layer and output layer. In this study, the CNN model was
constructed by numpy package. The input layer included 2 nodes, both hidden layers
contained 5 nodes, and the output layer included 1 node. The sigmoid function was used
as the excitation function, softmax was used for probability normalization, cross-entropy
loss function was used as the loss function, and stochastic gradient descent was used as the
optimizer. The model was trained by updating the network parameters according to the
computed gradients. The CNN model codes as shown in Supplementary Material S3.

2.8.3. XG Boost Model

The XG Boost model codes as shown in Supplementary Material S4. Based on the m
eigenvalues and the n sample data, the XG boost prediction model was obtained by the
following equation:

ŷi = ϕ(Xi) =
K

∑
k=1

fk(Xi), fk ∈ F (6)

In the formula:
i-number of total physical examination data samples
K-total number of trees
fk-the k tree
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Once the predicted values were obtained, the objective function was obtained by the
following equation.

Obj(θ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω fk (7)

In the formula:
l(yi, ŷi)-the training error of the sample xi
Ω fk-the regular term of the k tree

Ω ft = γT +
1
2

λ
T

∑
j−1

w2
j (8)

In the formula:
T-number of leaf nodes
w-score values of leaf nodes
γ-parameter to balance the complexity of the model
λ-Parameter to balance the complexity of the model
XG Boost was an additive model in which the objective function changes each time

a tree was added to the model. With an additive strategy, the objective function can be
written as:

Obj(θ) =
n

∑
i=1

l
(

yi, ŷ(t)i

)
+

t

∑
k=1

Ω fk =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) + C (9)

A Taylor expansion of the loss function via Equation (9) was viewed as, and the final
loss function can be written as:

f (x + ∆x) ≈ f (x) + f ′(x)∆x +
1
2

f ′′ (x)∆x2 (10)

Obj(θ) ≈
n

∑
i−1

(
gi fi(xi) +

1
2

hi fi(xi)
2
)
+ γT +

1
2

λ
T

∑
j−1

w2
j + C (11)

2.9. Model Evaluation

The model prediction effect was evaluated comprehensively in terms of both discrimi-
nation and calibration. As shown in Table 1.

Table 1. Model evaluation indexes.

Indicators Meaning

Sensitivity The percentage of study participants who actually had BMD and were accurately determined to have
BMD by the risk prediction model.

Specificity The percentage of study participants who did not actually have BMD and were accurately
determined to not have BMD by the risk prediction model.

Youden index Correctness Index, the model correctly determined the total capacity of BMD patients
and non-patients.

F1 score The adjusted mean values of precision and recall, used to evaluate the comprehensive performance of
the model.

AUC Area under the ROC curves.

Brier score The quantitative score of the model calibration, ranging from 0 to 0.25, the smaller the value, the
better the calibration of the model.

Log loss The error between the true value of the response and the predicted value of the model.
Calibration-in-the-large The intercept of the calibration curve.
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2.10. Quality Control

The surveyors were trained by a unified induction, and the questionnaires were
checked three times after recovery, and the entry system was double-entry to ensure the
accuracy of the information. Measuring instruments were maintained and regularly cal-
ibrated by dedicated personnel. 1~2 workers were randomly selected, and the second
measurement was made by the surveyor each day, and the results were compared to en-
sure the consistency of the measurement results. Ten workers were randomly selected to
use CM-200 ultrasonic bone densitometer and QCT bone densitometer for bone density
measurement, and the QCT bone densitometer measurement results were used to cali-
brate the CM-200 ultrasonic bone densitometer to ensure the accuracy of bone density
measurement results.

3. Results
3.1. General Demographic Characteristics

The prevalence of BMD abnormalities was 28.25% among the 3695 male coal mine
workers included in the study. Analysis of the age of the study subjects revealed that
the age range of the study subjects was (19–59) years, with a mean age of (39.04 ± 8.41)
years. The results showed that the differences in the prevalence of BMD abnormalities
among male coal mine workers were statistically significant (p < 0.05) across age, education
level, BMI, marital status, fracture, smoking status, drinking status, exercise and Sleep time
(h), and not statistically significant (p > 0.05) across income, diabetes, hypertension and
dyslipidemia groups. As shown in Table 2.

Table 2. General situation of male workers in coal mines.

General Information Category Number
Abnormal Bone Mineral Density

χ2/H(K) p
Number Prevalence Rate (%)

Age

<30 419 30 7.160 447.518 * <0.001
30~ 1682 303 18.014
40~ 945 354 37.460
50~ 649 357 55.008

Education level

Junior secondary school
or lower 1647 507 30.783 14.956 0.001

High school and
secondary school 1083 308 28.440

College and above 965 229 23.731

BMI (kg/m2)
≤23.9 1321 516 39.061 180.677 * <0.001
24.0~ 1470 411 27.959
28.0~ 904 117 12.942

Marital Status
Unmarried 126 24 19.048 6.312 0.043

Married 3445 980 28.447
Other 124 40 32.258

Family per capita
monthly income (Yuan)

<1000 432 124 28.704 4.526 * 0.104
1000~ 2947 847 28.741
3000~ 316 73 23.101

Hypertension No 2379 648 27.238 3.402 0.065
Yes 1316 396 30.091

Diabetes
No 3531 990 28.037 1.848 0.174
Yes 164 54 32.927

Dyslipidemia No 2685 748 27.858 0.760 0.383
Yes 1010 296 29.307

Fracture
No 2817 694 24.636 76.564 <0.001
Yes 878 350 39.863
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Table 2. Cont.

General Information Category Number
Abnormal Bone Mineral Density

χ2/H(K) p
Number Prevalence Rate (%)

Smoking status
No smoking 1460 301 20.616 69.733 <0.001

Quit smoking 245 78 31.837
smoking 1990 665 33.417

Drinking status
No drinking 724 148 20.442 32.053 <0.001

Alcohol withdrawal 164 37 22.561
Drinking 2807 859 30.602

Exercise
No 1574 501 31.830 17.291 <0.001
Yes 2121 543 25.601

Sleep time (h)
<7 1099 419 38.126 136.080 * <0.001
7~ 1236 387 31.311
8~ 1360 238 17.500

* The K-W test was used for ordinal data.

3.2. Analysis of Occupational Hazardous Factors and Prevalence of Bone Density Abnormalities

The analysis of occupational hazardous factors in 3695 workers showed that the
prevalence of BMD abnormalities in workers increased with working ages and shift length.
There were statistically significant differences (p < 0.05) between groups of working ages,
shift conditions, shift length, high intensity work and medium intensity work. As shown
in Table 3.

Table 3. Analysis of occupational exposure characteristics of male workers in coal underground.

General Information Category Number
Abnormal Bone Mineral Density

χ2/H(K) p
Number Prevalence Rate (%)

Working ages

<10 1089 216 19.835 122.264 * <0.001
10~ 1652 434 26.271
20~ 539 216 40.074
30~ 415 178 42.892

Shift situations
Never 1341 204 15.213 254.064 <0.001
Once 547 114 20.841
Now 1807 726 40.177

Shift length

0 1341 204 15.213 228.767 * <0.001
<10 1098 384 34.973
10~ 867 262 30.219
20~ 229 111 48.472
30~ 160 83 51.875

High intensity work No 1502 356 23.702 25.876 <0.001
Yes 2193 688 31.373

Medium intensity work No 437 70 16.018 36.606 <0.001
Yes 3258 974 29.896

* The K-W test was used for ordinal data.

3.3. Logistic Regression Analysis of Risk Factors for Abnormal Bone Density

It had been reported in the literature [30] that hypertension and diabetes had an
effect on BMD, so these indicators were also included in the model building. The variable
assignments are shown in Table 4.
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Table 4. Assignment table for variables.

Variable Variable Meaning Assignment Method

Y Bone mineral density 1 = normal, 2 = abnormal
X1 Age 1 = <30; 2 = 30~; 3 = 40~; 4 = ≥50

X2 Educational level 1 = Junior secondary school or lower; 2 = High school and secondary school;
3 = College and above

X3 BMI (kg/m2) 1= ≤23.9; 2 = 24.0~; 3 = ≥28.0
X4 Marital Status 1 = Unmarried; 2 = Married; 3 = Other
X5 Hypertension 1 = No; 2 = Yes
X6 Diabetes 1 = No; 2 = Yes
X7 Fracture 1 = No; 2 = Yes
X8 Smoking status 1 = No smoking; 2 = Quit smoking; 3 = smoking
X9 Drinking status 1 = No drinking; 2 = Alcohol withdrawal; 3 = Drinking
X10 Exercise 1 = No; 2 = Yes
X11 Sleep time (h) 1 = <7; 2 = 7~; 3 = ≥8
X12 Working age 1 = <10; 2 = 10~; 3 = 20~; 4 = ≥30
X13 Shift situation 1 = Never; 2 = Once; 3 = Now
X14 Shift length 1 = 0; 2 = <10; 3 = 10~; 4 = 20~; 5 = ≥30
X15 High intensity work 1 = No, 2 = Yes
X16 Medium intensity work 1 = No, 2 = Yes

All independent variables were tested for collinearity diagnostics and found to be free
of multicollinearity, as shown in Table 5.

Table 5. Multicollinearity of independent variables.

Variable Tolerance VIF

Age 0.402 2.489
Educational level 0.806 1.241

BMI (kg/m2) 0.879 1.138
Marital Status 0.945 1.058
Hypertension 0.899 1.112

Diabetes 0.937 1.067
Fracture 0.985 1.016

Smoking status 0.938 1.066
Drinking status 0.962 1.039

Exercise 0.932 1.073
Sleep time (h) 0.930 1.075
Working age 0.331 3.021

Shift situation 0.324 3.090
Shift length 0.279 3.589

High intensity work 0.890 1.124
Medium intensity work 0.908 1.101

The results of the multifactorial analysis showed that age, low level of education,
diabetes, hypertension, fractures, smoking status, drinking status, shift situation, high
intensity work and medium intensity work were all risk factors for abnormal bone mineral
density, with BMI, physical activity and Sleep time (h) as protective factors. As shown in
Table 6.

3.4. Bone Density Abnormalities Models Construction and Evaluation

Based on the results of the multifactorial analysis of factors, we included in the model
13 independent variables that were significant for the multifactorial analysis, including age,
education, BMI, diabetes, hypertension, fracture, smoking, alcohol consumption, shift work
status, heavy workload, moderate workload, exercise, and sleep duration. The sample data
were partitioned, with 70% of the training set, 20% of the test set and 10% of the validation
set, to construct Logistic, CNN and XG Boost models.
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Table 6. Logistic regression analysis of the influencing factors of abnormal bone mineral density.

Variable B S.E Wald p OR
95% CI for OR

Lower Upper

Age
<30 353.284 <0.001
30~ 2.272 0.261 75.697 <0.001 9.699 5.814 16.182
40~ 4.145 0.299 191.881 <0.001 63.096 35.101 113.419
≥50 5.779 0.349 273.603 <0.001 323.510 163.112 641.635

Education level
College and above 32.054 <0.001

High school and secondary school 0.222 0.117 3.594 0.058 1.249 0.993 1.571
Junior secondary school or lower 0.775 0.137 32.003 <0.001 2.171 1.660 2.841

BMI (kg/m2)
≤23.9 353.668 <0.001
24.0~ −1.784 0.124 207.232 <0.001 0.168 0.132 0.214
≥28.0 −2.978 0.165 324.298 <0.001 0.051 0.037 0.070

Hypertension 0.243 0.105 5.327 0.021 1.275 1.037 1.567
Diabetes 0.502 0.225 4.990 0.025 1.652 1.064 2.567
Fractures 0.736 0.109 45.982 <0.001 2.087 1.687 2.582
Smoking status

No smoking 37.743 <0.001
Quit smoking 0.601 0.194 9.620 0.002 1.825 1.248 2.668

Smoking 0.646 0.107 36.522 <0.001 1.908 1.547 2.353
Drinking status

No drinking 43.725 <0.001
Alcohol withdrawal −0.136 0.277 0.243 0.622 0.872 0.507 1.501

Drinking 0.780 0.132 34.883 <0.001 2.182 1.684 2.827
Exercise −0.322 0.100 10.294 0.001 0.725 0.595 0.882

Sleep time (h)
<7 89.013 <0.001
7~ −0.242 0.114 4.506 0.034 0.785 0.628 0.982
≥8 −1.159 0.128 82.117 <0.001 0.314 0.244 0.403

Shift situation
Never 181.498 <0.001
Once −0.663 0.319 4.314 0.038 0.516 0.276 0.963
Now 1.356 0.271 25.079 <0.001 3.879 2.282 6.593

High intensity work 0.600 0.107 31.590 <0.001 1.822 1.478 2.245
Medium intensity work 1.020 0.176 33.715 <0.001 2.774 1.966 3.915
Constant quantity −6.318 0.430 215.395 <0.001 0.002 - -

The results of training set sample of 2586 cases (70%) showed that the sensitivity,
Youden index, F1 score, AUC (95% CI), Brier score, Log loss, and Calibration-in-the-large of
the XG Boost model were 82.058%, 0.715, 0.919, 0.858 (0.839~0.876), 0.040, 0.147, and 0.020,
better than the other two models. The CNN model had a better specificity of 91.866%. The
Logistic regression model performed worse. As shown in Table 7.

Table 7. Evaluation of three risk models.

Evaluation Indicator
Training Set Test Set Validation Set

Logistic XG Boost CNN Logistic XG Boost CNN Logistic XG Boost CNN

Sensitivity (%) 74.687 82.058 70.620 71.749 76.555 68.447 73.529 76.724 68.750
Specificity (%) 80.986 89.448 91.866 80.814 88.302 76.923 77.239 85.827 74.818
Youden index 0.557 0.715 0.625 0.526 0.649 0.454 0.508 0.626 0.436
F1 Score 0.618 0.919 0.740 0.631 0.753 0.571 0.583 0.787 0.600
AUC (95% CI) 0.778

(0.757~0.799)
0.858
(0.839~0.876)

0.812
(0.792~0.833)

0.763
(0.723~0.802)

0.824
(0.787~0.861)

0.727
(0.685~0.769)

0.754
(0.696~0.811)

0.813
(0.762~0.864)

0.718
(0.656~0.779)

Brier Score 0.153 0.040 0.156 0.333 0.107 0.172 0.153 0.040 0.156
Log Loss 0.540 0.147 0.492 1.124 0.358 0.538 0.540 0.147 0.494
Calibration-in-the-large 0.104 0.020 0.076 0.104 0.019 0.071 0.146 0.019 0.077
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The results of test set sample of 739 cases (20%) showed that the XG Boost model had
a sensitivity, specificity, Youden index, F1 score, AUC (95% CI), Brier score, Log loss, and
Calibration-in-the-large of 76.555%, 88.302%, 0.649, 0.753, and 0.824(0.787~0.861), 0.107,
0.358, and 0.019, better than the other two models. As shown in Table 7.

The results of test set sample of 370 cases (10%) showed that the sensitivity, specificity,
Youden index, F1 score, AUC (95% CI), Brier score, Log loss, and Calibration-in-the-large
of the XG Boost model were 76.555%, 85.827%, 0.626, 0.787, and 0.813 (0.762~0.864), 0.040,
0.147, and 0.019, better than the other two models. As shown in Table 7.

A two-by-two comparison of the area under the ROC curves (AUC) of the three models
showed that the XG Boost model had the best prediction performance, followed by the CNN
model, and the Logistic model had the worst prediction performance, with the differences
being statistically significant (p < 0.017). The test set results showed that the XG Boost model
had the best prediction performance, and the differences were all statistically significant
(p < 0.017). The results of the validation set showed that the XG Boost model outperformed
the CNN model, and the differences were statistically significant (p < 0.017); the results of
the test and validation sets showed that the differences in prediction performance between
the Logistic and CNN models were not statistically significant (p > 0.017). AS shown in
Table 8 and Figure 1.
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Table 8. AUC comparison of three models.

Data Set Model Difference Value of AUC SE
95% CI

χ2 p
Lower Upper

training set
Logistic and XG Boost 0.071 0.008 0.055 0.087 8.715 0.001

Logistic and CNN 0.019 0.007 0.006 0.032 2.886 0.004
XG Boost and CNN 0.052 0.008 0.036 0.068 6.256 0.001

test set
Logistic and XG Boost 0.074 0.016 0.042 0.106 4.545 <0.001

Logistic and CNN 0.022 0.019 −0.016 0.060 1.154 0.248
XG Boost and CNN 0.096 0.020 0.058 0.135 4.923 <0.001

validation set
Logistic and XG Boost 0.039 0.025 −0.009 0.088 1.580 0.114

Logistic and CNN 0.047 0.022 0.003 0.090 2.110 0.035
XG Boost and CNN 0.086 0.020 0.047 0.125 4.281 <0.001

The XG Boost model Brier Score, Log Loss, and Calibration-in-the-large metrics all
outperformed the CNN and Logistic regression models. The calibration curves for the
training, test and validation sets were all close to the diagonal, with no serious deviations in
the results, and the calibration curves for the Logistic regression model were more deviant.
As show in Figure 2a–c.
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In summary, the XG Boost model had excellent performance in the training set, test
set and validation set, its predicted risk was in good agreement with the actual occurrence
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of risk, and each evaluation indexes were significantly better than the CNN model and the
Logistic regression model. The XG boost model was the optimal model for this study.

4. Discussion

Building risk prediction models was important for early identification and intervention
of diseases. Early detection, diagnosis and treatment can contribute to tertiary prevention
strategies for the disease. Machine learning had shown advantages in disease models.
Meng D et al. conducted a machine learning study on the incidence of hand, foot and
mouth disease in all provinces of mainland China and found that the predictive ability
of the XG Boost model was generally better than that of the random forest model [31].
Li Z et al. constructed a novel predictive model integrating GCN, CNN and squeeze in-
spired network (GCSENet) for identifying miRNA-disease associations. By applying the
three models together, Li Z et al. obtained an AUC of 0.950 and an F1 score of 0.864, which
satisfactorily predicted miRNA disease relevance [32]. Workers working underground in
coal mines were susceptible to the effects of their environment on bone metabolism [33],
and the factors affecting abnormal bone density were different from those in the general
population. Therefore, early identification of high-risk groups and strict control of their
influencing factors can reduce the incidence of BMD abnormalities. In this study, 3695 male
underground coal mine workers were investigated and their BMD abnormalities were
found to be influenced by various factors. By constructing Logistic regression, CNN and XG
boost risk prediction models, a comparison of the prediction performance of the three mod-
els revealed that the XG boost risk prediction model was the best prediction performance
model in this study.

The results of this study showed that the rate of abnormal bone density in a coal
mine worker was 28.25%. Based on the importance of the predictor variables in the three
models developed, we found that the top four variables were age, BMI, shift work and sleep
duration, indicating that these four factors play a very important role in the occurrence of
BMD abnormalities. In this study, advanced age was found to be a risk factor for BMD
abnormalities, which was consistent with previous findings [34]. The reasons for this might
be: decrease in estrogen production with age, which in turn affected parathyroid hormone
levels, affecting bone reconstruction and loss of bone mass; the level of secretion decreases
with age, inducing increased osteoclast activity and reduced bone content. However, due to
the limitation of research conditions, retired workers over 60 years of age were not included
in the scope of the study, which may lead to deviations in the research results. Subsequent
research can be conducted on retired workers to evaluate the effect of age on bone mineral
density of coal mine workers. The detection rate of abnormal bone density was lowest
when BMI was between 24.0 and 27.9, which was consistent with previous studies [35].
BMI affected bone density probably because: adipose tissue increased the body’s estrogen
content, which favored bone formation; the increased mechanical load on the skeleton at
higher BMI can promote bone formation. The risk of abnormal bone density was 1.356 times
higher for shift workers compared to workers without shift work. Possible reasons for this
were: shift work broke the normal work and rest schedule of workers, making them prone
to circadian rhythm disorders and metabolic disorders, and shift work was also associated
with the development of diseases such as sleep, hypertension, diabetes and obesity, which
can indirectly affect bone density [36]. In terms of sleep duration, this study found that the
risk of abnormal BMD in the study participants in the ≥8 h sleep group was 0.561 times
lower than that in the <7 h sleep group, which was consistent with the results of previous
studies [37]. This may be due to the reduced sleep time of workers, especially at night due
to shift work, and exposure to light at night, which reduced melatonin secretion, which can
reduce bone mass and also disrupted body metabolism, which in turn affected BMD [38].
The present study found that physical activity was a protective factor for abnormal BMD in
male coal mine workers with an OR of 0.725 (95% CI: 0.595, 0.882), similar to the findings of
Anupama DS et al. [39]. Hauger AV et al. found that high physical activity was positively
associated with total hip bone mineral density compared to a sedentary lifestyle [40]. The
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present study found that the risk of BMD occurrence was lower in workers with high
intensity work than in workers with moderate intensity work, which may be due to skeletal
muscle contraction activating bone biomodulation mechanisms that enhance BMD to adapt
to exercise load [41]. The results of numerous studies had concluded that smoking had
a negative impact on human bone. The results of the present study showed that the risk
of abnormal BMD was 1.908 (95CI: 1.547, 2.353) times higher in workers who smoked
compared to those who never smoked, which was consistent with the results of previous
studies [42–44]. The possible reasons for this were that tobacco can affect the production
and metabolism of estrogen and androgen, affect the activity of osteoblasts and osteoclasts,
and inhibit the vitamin D-parathyroid hormone axis, which can had a negative impact on
bones [45]. Adequate vitamin D increases intestinal calcium absorption, promotes bone
mineralization, maintains muscle strength, improves balance, and reduces the risk of falls.
Vitamin D deficiency can lead to secondary hyperparathyroidism, which increases bone
resorption and thus causes or exacerbates osteoporosis. Concurrent calcium and vitamin D
supplementation may reduce the risk of osteoporotic fractures. Vitamin D insufficiency
also affects the efficacy of other anti-osteoporosis drugs [46]. The current study found that
the risk of BMD abnormalities in workers who consumed alcohol was 2.182 (95% CI: 1.684,
2.827) times higher than in non-drinkers, suggesting that alcohol consumption was a risk
factor for BMD abnormalities, which was consistent with the findings of some studies [47].
However, some studies had also suggested that moderate alcohol consumption was a
protective factor for BMD abnormalities and that it was heavy alcohol consumption that
led to BMD abnormalities [48]. Previous studies have been inconsistent regarding the
relationship between education level and BMD, and Yan Ren’s analysis of hip fracture
risk factors in middle-aged and elderly Chinese found that elderly people with lower
education levels were at high risk of fracture [49]. In contrast, Chen et al. [50] observed a
positive association between education level and the risk of hip fracture in postmenopausal
women in Taiwan. The current study found a high prevalence of BMD in workers with
higher education levels. The relationship between education level and BMD needs to be
further explored. No consensus conclusion had been reached regarding the effect of alcohol
consumption on BMD, which may be related to factors such as study population selection,
alcohol intake, frequency of alcohol consumption and type of alcohol consumption.

Logistic regression models were widely used in the field of risk factor screening
and disease prediction. It was easy to use and had clear parameter meanings, but the
predictive power of Logistic regression models decreased when the data do not meet the
requirements [51]. Yan X et al. applied Logistic regression to build an osteoporosis risk
model and performed internal and external validation, and the results showed that the C-
index was 0.947 for internal validation and 0.946 for external validation, and the calibration
curve showed a good agreement between predicted and actual probabilities [52]. In this
study, there were limitations in applying the Logistic regression model to BMD prediction
for underground workers in coal mines, and all three data sets performed poorly in terms of
calibration index, suggesting that the consistency between the predicted and actual results
of the Logistic regression model was not high, and that it was prone to bias when used
for BMD risk prediction. The CNN model was a deep learning method of multi-layered
networks, including input layer, convolutional layer, pooling layer, fully connected layer
and output layer. The number of network parameters was effectively reduced and the
computational complexity was greatly reduced. It had been used as a neural network
model to predict the risk of various diseases in recent years [53,54], but the prediction
effect of CNN on different diseases was unstable. For example, Dai G et al. used CNN
model to explore the effect of hypertension on the retinal microvascular system, and the
results were not satisfactory, with a sensitivity of 60.94%, a specificity of 51.54% and an
AUC of 0.6506, which may be due to the fact that the model construction needed to be
further improved [55]. Jiang J et al. used a CNN model to identify the degree of left atrial
enlargement and showed that the AUCs for normal, mild and moderately severe left atrial
enlargement ECGs were 0.942, 0.951 and 0.998 respectively [56]. In this study, the CNN
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model performed better than the Logistic regression model in terms of calibration metrics,
but its ability to distinguish between abnormal and non-abnormal BMD was inferior to
the XG Boost model and was not the preferred choice for predicting the risk of abnormal
BMD in underground coal mine workers. XG Boost was an improvement of the boosting
algorithm based on GBDT, which performed a second-order loss function Taylor expansion,
which allowed for higher accuracy. The inclusion of a regular direction in the objective
function made the trained model simpler and can effectively combat over-fitting [57]. In
this study, the XG Boost model not only had a high ability to distinguish between BMD
anomalies and non-anomalies but also had the highest agreement between the prediction
results and the actual results, and had the best fit with the BMD anomaly data information
of underground workers in coal mines, which can be used for the prediction of BMD
anomalies of underground workers in coal mines.

In addition, there were limitations in this study. Our study did not measure vitamin
and D levels in underground coal mine workers, did not investigate the type and location
of fractures, and did not take into account the medication status of the study subjects. this
study only established and completed the internal validation of the risk prediction model
for abnormal bone density in coal miners, and no external validation was conducted. There
were many methods and sites of bone density measurement, and only one was selected for
this study. Moreover, this study was a cross-sectional study, and only information on the
prevalence of BMD abnormalities in coal miners was obtained, and the causality argument
was less effective, and further cohort studies could be conducted for discussion.

5. Conclusions

In this study, the data related to abnormal BMD in male underground coal mine
workers were analyzed and found that age ≥ 30 years, Junior secondary school or lower,
diabetes, hypertension, fracture, smoking, drinking, shift work, BMI ≥ 28 kg/m2, high
intensity work and medium intensity work were risk factors. Exercise and sleep time ≥ 7 h
were protective factors for bone density abnormalities.

The XG Boost model outperformed the CNN and Logistic regression models in prediction.
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