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Summary
Background Tisagenlecleucel was approved by the Food and Drug Administration (FDA) in 2017 for refractory B-cell
acute lymphoblastic leukemia (B-ALL) and B-ALL in ≥2nd relapse. Outcomes of patients receiving commercial
tisagenlecleucel upon 1st relapse have yet to be established. We aimed to report real-world tisagenlecleucel utilisation
patterns and outcomes across indications, specifically including patients treated in 1st relapse, an indication omitted
from formal FDA approval.

Methods We conducted a retrospective analysis of real-world tisagenlecleucel utilisation patterns across 185 children
and young adults treated between August 30, 2017 and March 6, 2020 from centres participating in the Pediatric Real-
World CAR Consortium (PRWCC), within the United States. We described definitions of refractory B-ALL used in
the real-world setting and categorised patients by reported Chimeric Antigen Receptor (CAR) T-cell indication,
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including refractory, 1st relapse and ≥2nd relapse B-ALL. We analysed baseline patient characteristics and post-
tisagenlecleucel outcomes across defined cohorts.

Findings Thirty-six percent (n = 67) of our cohort received tisagenlecleucel following 1st relapse. Of 66 evaluable
patients, 56 (85%, 95% CI 74–92%) achieved morphologic complete response. Overall-survival (OS) and event-free
survival (EFS) at 1-year were 69%, (95% CI 58–82%) and 49%, (95% CI 37–64%), respectively, with survival
outcomes statistically comparable to remaining patients (OS; p = 0.14, EFS; p = 0.39). Notably, toxicity was
increased in this cohort, warranting further study. Interestingly, of 30 patients treated for upfront refractory
disease, 23 (77%, 95% CI 58–90%) had flow cytometry and/or next-generation sequencing (NGS) minimum
residual disease (MRD)-only disease at the end of induction, not meeting the historic morphologic definition of
refractory.

Interpretation Our findings suggested that tisagenlecleucel response and survival rates overlap across patients treated
with upfront refractory B-ALL, B-ALL ≥2nd relapse and B-ALL in 1st relapse. We additionally highlighted that def-
initions of refractory B-ALL are evolving beyond morphologic measures of residual disease.

Funding St. Baldrick’s/Stand Up 2 Cancer, Parker Institute for Cancer Immunotherapy, Virginia and D.K. Ludwig
Fund for Cancer Research.

Copyright © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
We searched PubMed for full-text clinical trials written in
English published up to September 6 2023, to identify papers
through search terms spanning outcomes for upfront
refractory and relapsed B-ALL, prognostic implications of MRD
in pediatric and young adult B-ALL, standard definitions for
refractory disease and relapse in leukemia, and clinical trials
using CD19 CAR T-cell therapy and eligibility criteria in
registrational trials of tisagenlecleucel (CD19-specific CAR
T-cell therapy). The search revealed both a scarcity of clinical
reports of tisagenlecleucel use for patients with 1st relapse
who are excluded from the approved indication unless
considered refractory as well as lack of standardisation for
definitions of refractory and relapse used to determine
candidacy for tisagenlecleucel. Prior real-world retrospective
analysis identified a patient cohort treated with commercial
tisagenlecleucel upon first relapse.

Added value of this study
To the best of our knowledge, this is the first clinical report
on response, toxicity and survival outcomes of patients
treated with tisagenlecleucel upon 1st relapse, as compared to

patients treated for primary refractory disease or second or
greater relapse. We establish that survival of children and
young adults with B-ALL treated upon 1st relapse are
comparable to survival outcomes in patients treated for
refractory B-ALL or ≥2nd relapse. To our knowledge, this is
the first report distinctly reporting outcomes of this 1st
relapse cohort. We additionally report that definitions of
refractory and relapse in the real-world setting do not adhere
to morphologic measures of disease.

Implications of all the available evidence
Our real-world evidence supports the tolerability and efficacy
of tisagenlecleucel in patients with 1st B-ALL relapse that
warrants further large and multi-centre outcomes research.
Additionally, we highlight the need to refine the formal
definitions of refractory and relapse B-ALL to incorporate the
frequent use of flow cytometry and next-generation
sequencing MRD to detect disease persistence or
recrudescence early and alter therapy before patients meet
classical definitions of relapsed or refractory disease. This
information benefits clinicians and families evaluating CAR
T-cell therapy as a treatment for refractory or relapsed B-ALL.
Introduction
In contrast to high survival rates approaching 90% in
children and young adults treated for upfront B-cell
acute lymphoblastic leukemia (B-ALL), survival declines
profoundly for patients with relapsed or refractory
disease.1–3 The five-year overall-survival (OS) rate upon
first B-ALL relapse in children and young adults is
50%,4,5 with cumulative decline upon subsequent re-
lapses.6,7 Studies have identified higher risk patient
subsets, with inferior survival following first relapse,
www.thelancet.com Vol 65 November, 2023
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including patients experiencing early bone marrow
relapse (<36 months from diagnosis),4 early isolated
extramedullary relapse (<18 months from diagnosis),3

and infant B-ALL.8 The largest Children’s Oncology
Group (COG) post-relapse OS analysis to date (N = 1967
patients with ALL relapse) highlights a 5-year OS rate of
only 28% in patients with B-ALL bone marrow relapse
<18 months from diagnosis.8 Patients with high-risk
first-relapse present a critical gap ripe for novel thera-
pies, yet despite established need, are excluded from the
FDA-approved indication for CD19-chimeric antigen
receptor (CAR) T-cells.

The five-year overall-survival (OS) rate for children
and young adults with B-ALL declines to <40% when
end of consolidation disease remains detectable at
≥0.01%.9 Efforts to overcome chemotherapy refractori-
ness have traditionally been approached through
chemotherapy intensification and allogeneic stem cell
transplantation.10–12 Despite traditional risk stratification
systems and chemotherapy intensification, post-
induction MRD status remains independently prog-
nostic of poor survival,9 highlighting the need for
mechanistically-distinct therapy, such as CAR T-cells,
for chemotherapy resistant or refractory patients.

Tisagenlecleucel, the sole CAR approved for pediat-
rics, is a CD19-specific autologous T cell product that
was FDA approved for patients ≤25 years with refractory
B-ALL or B-ALL in ≥2nd relapse in August 2017.
Approval was based on an 81% complete response rate
in the registrational trial (ELIANA), with long term
follow-up data demonstrating 3-year relapse-free sur-
vival with and without censoring for subsequent therapy
of 52% (95% CI, 37 to 66) and 48% (95% CI, 34 to 60),
respectively.13 ELIANA inclusion criteria included ≥2nd
bone marrow relapse, primary refractory disease,
defined as not achieving complete response (CR) after 2
cycles of standard chemotherapy, chemorefractory B-
ALL, defined as not achieving CR after 1 cycle of
chemotherapy in the relapsed setting, as well as patients
ineligible for hematopoietic stem cell transplant (HSCT)
due to comorbidities or bone marrow relapse after
HSCT.14

Whereas both refractory and relapsed disease are
listed as indications for tisagenlecleucel by the Food and
Drug Administration (FDA), methods and thresholds of
disease detection defining refractory and relapse are left
to physician discretion. Traditionally, primary refractory
disease is defined as morphologic disease of ≥5%
following two standard induction chemotherapy regi-
mens, whereas relapsed B-ALL is defined as detection of
morphologic disease after previously achieving com-
plete response.15,16 Minimal residual disease (MRD)
testing using flow-cytometry17,18 (sensitivity of 10−4

nucleated cells) and next-generation sequencing
(NGS)19,20 (sensitivity of 10−6 nucleated cells) achieves
B-ALL detection at lower levels compared to standard
morphologic testing. Increasing data supports the
www.thelancet.com Vol 65 November, 2023
prognostic value and clinical applications of detecting
disease, and the rate of disease eradication, through
higher sensitivity methods.9,11,17,20–22

We hypothesised that with CD19-CAR T cell com-
mercialisation and increasing MRD data and access, real
world use of CAR has diverged from traditional
morphologic definitions of relapsed and refractory dis-
ease. We conducted a retrospective study analysing real-
world utilisation patterns of tisagenlecleucel in children
and young adults, and established associated outcomes
stratified by indication. We explored the qualifying
criteria used by physicians in the real-world setting to
administer tisagenlecleucel and demonstrate that defi-
nitions of treatment refractoriness and relapse are not
universally standard and continue to evolve across
morphologic, flow-cytometric, and molecular measures
of residual disease. We importantly establish outcomes
across patients treated with CAR T cells in first relapse,
an indication omitted from the tisagenlecleucel FDA
approval, and a cohort with clinical need, where prior
reporting remains limited.
Methods
Study design and participants
We conducted a retrospective study analysing clinical
indications and outcomes across 185 children and
young adults ≤26 years, treated with tisagenlecleucel
between August 30, 2017 and March 6, 2020 (Median
follow-up; 335 days, range 6–963 days).23 Data was
collected from 15 sites within the United States of
America participating in the Pediatric Real-World CAR
Consortium (PRWCC). Retrospective, de-identified
data was collected using a HIPAA compliant REDCap
collection tool, with informed consent waived due to
retrospective de-identified nature of data and ethical
approval obtained from institutional review boards
(IRBs). We analysed baseline characteristics, clinical
response, relapse rates, survival, and toxicity outcomes,
as stratified by indication for CAR T-cell therapy. We
analysed 3 patient cohorts; patients receiving CAR
upon determination of upfront refractory disease
without relapse, patients treated following 1st relapse
and patients treated following ≥2nd relapse (Table 1).
We described indications for CAR T-cell therapy, as
reported by primary oncology care team. As an
exploratory aim, we descriptively reported end of
upfront chemotherapy induction disease status by
morphology and flow cytometry MRD (Table 2), to
better understand real world definitions of refractory
disease.

Outcomes
We described rates of morphologic complete response
(CR) at day 28 post-CAR infusion and describe overall
relapse rates and CD19+ and CD19-relapse rates across
cohorts. For survival outcomes, the primary endpoint of
3
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Tisagenlecleucel indication Refractory 1st Relapse ≥2nd Relapse p-value

(N = 30) (N = 67) (N = 87)

Baseline patient characteristics

Age at Infusion (years)

Median (Range)
IQR

13 (3–24)
10–18

10 (<1–26)
5–17

13 (1–25)
9–18

0.1197

Age at diagnosis

Median (Range)
IQR

12.5 (2–23)
9–18

7 (<1–25)
3–14

7 (<1–22)
3–13

0.0043

Sex

Male 17 (57%) 36 (54%) 57 (66%) 0.3169

Female 13 (43%) 31 (46%) 30 (34%)

Race/Ethnicity

Non-hispanic white 15 (50%) 35 (51%) 40 (46%) 0.1913

Hispanic 15 (50%) 25 (37%) 29 (33%)

Black/African American 0 0 7 (8%)

Asian 0 2 (3%) 5 (6%)

Other 0 5 (7%) 6 (7%)

NCCN cytogenetic risk classification

High risk 21 (70%) 29 (43%) 14 (16%) <0.0001

Intermediate risk 6 (20%) 15 (22%) 28 (32%)

Low Risk 2 (7%) 8 (12%) 15 (17%)

Unknown 1 (3%) 15 (22%) 30 (34%)

Disease burden (4 unknown)

High Burden (≥5% bone marrow lymphoblasts, CNS3, non-CNS extramedullary disease) 11 (37%) 38 (57%) 45 (52%) 0.2629

Low burden (<5% bone marrow lymphoblasts) 10 (33%) 16 (24%) 15 (17%)

Undetectable Disease 9 (30%) 12 (18%) 24 (28%)

Prior HSCT

Yes 0 10 (15%) 38 (44%) <0.0001

Prior CD19-targeted therapy

Yes 3 (10%) 10 (15%) 25 (29%) 0.0371

Table 1: Baseline characteristics from CAR T-cell therapy of 185 patients treated across 15 Pediatric Real-World CAR Consortium (PRWCC) centres, stratified by CAR indication.
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interest was overall-survival (OS), and the secondary
endpoints were event-free survival (EFS), duration of
remission (DOR) and duration of B cell aplasia (DBA)
across refractory, 1st relapse and ≥2nd relapse cohorts.
Due to lack of standardisation in the field on BCA
definition, timing of B cell recovery was captured as per
Refractory (N = 30) 1st Rel

Complete response rate

Morphology 28 (93%) 56 (85

MRD

Flow cytometry 28 (93%) 52 (79

Relapse rate*

Overall 7 (25%) 17 (30

CD19 status at relapse

CD19+ 6 (86%) 10 (59

CD19− 1 (14%) 7 (41%

Relapse rate* amongst morphologic CR responders.

Table 2: Response and relapse rates, stratified by CAR indication.
institutional thresholds and reporting. Retrospective
nature of data capture did not allow for harmonisation
of BCA definition across all participating centres. As an
exploratory analysis, we additionally compared OS, EFS,
DOR and DBA in patients with refractory disease
treated with CAR upfront, without relapse, to patients
apse (N = 66) ≥2nd Relapse (N = 87) p-value

%) 71 (82%) 0.3061

%) 67 (77%) 0.1324

%) 28 (39%) 0.3490

%) 14 (50%)

) 14 (50%) 0.2897
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characterised as having refractory disease, yet only
treated upon later relapse.

OS and EFS were measured from time of CAR-
infusion and data was censored at time of last follow-
up. EFS events were defined as lack of Day 28 (d28)
CR, relapse after achieving CR, myelodysplastic syn-
drome (MDS) or death. DOR was measured from time
of response (d28 after infusion) in only patients
achieving CR. The primary event for DOR analysis was
defined as a composite of death and relapse, with
censoring at HSCT, MDS or last follow-up. Exploratory
competing risk analysis for DOR was also performed
treating HSCT and MDS as competing risks and is
included in supplemental data. DBA was measured in
only patients achieving remission and BCA, from time
of establishing BCA (d28). For DBA, relapse, death,
HSCT and MDS were considered as competing risks,
as these events eliminated our ability to subsequently
attribute BCA specifically to tisagenlecleucel. Data was
censored at time of last follow-up if no events occurred.
No patient experienced death as an initial competing
event in our competing risk analyses of DBA. We
described select CAR-mediated toxicities, with CRS
retrospectively graded according to the American So-
ciety for Transplantation and Cellular Therapy
(ASTCT)24 for all patients. Neurotoxicity was graded per
institutional standards, with ASTCT,24 CAR-related
encephalopathy syndrome (CRES),25 as well as other
institutional scales for grading neurotoxicity. Our
reporting window predated the establishment of
ASTCT guidelines and Immune Effector Cell-
Associated Encephalopathy (ICE) scores were there-
fore not applied universally, precluding harmonised
Immune Effector Cell-Associated Neurotoxicity syn-
drome (ICANS) reporting.

Statistical analysis
Baseline characteristics were summarised using
descriptive statistics, such as median, range, and inter-
quartile range (IQR) for continuous variables and fre-
quency and percent for categorical variables. Difference
in these characteristics were compared across 3 cohorts
using Kruskal–Wallis tests for continuous variables and
Fisher’s exact tests for categorical variables. Response
and relapse rates among morphologic CR patients were
compared across 3 cohorts using Fisher’s exact tests.
Toxicities and their treatments were also compared
across 3 cohorts using Fisher’s exact tests. For all the
percentages, 95% exact confidence intervals (CIs) were
calculated using the Clopper-Pearson method. For OS,
EFS and DOR, Kaplan Meier (KM) curves were gener-
ated and compared across groups using log-rank tests.
Survival estimates at 6 month and 1 year and associated
95% CIs were calculated through the KM method. For
DBA and exploratory analysis of DOR, cumulative
incidence curves (and 95% CIs) were generated and
compared using Gray’s test. A two-sided p value < 0.05
www.thelancet.com Vol 65 November, 2023
was considered statistically significant. Software ana-
lyses were performed in R 4.2 and SAS 9.4.

Role of the funding source
This work was supported by the Lucille Packard Asso-
ciation of Auxiliaries for Children, St. Baldrick’s, Stand
Up 2 Cancer, Parker Institute for Cancer Immuno-
therapy, and Virginia and D.K. Ludwig Fund for Cancer
Research, with the role of all funding sources in infra-
structure support. Funding sources did not play a role in
study design, data collection, analysis or interpretation,
manuscript writing, or in decision to submit for publi-
cation. All authors have had full access to all the data in
the study and accept responsibility for the decision to
submit for publication.
Results
Real-world CAR utilisation
Across 185 tisagenlecleucel infused patients, 30 (16%)
were treated due to upfront refractory disease, 67 (36%)
were in first relapse, and 87 (47%) had ≥2 relapses at the
time of treatment (Fig. 1). One patient was treated
upfront due to high-risk disease and chemotherapy
intolerance. Baseline characteristics across patients in
refractory, 1st relapse and ≥2nd relapse cohorts were
characterised (Table 1). We identified that high-risk cy-
togenetics (NCCN Cytogenetic Risk Classification) were
more likely in patients treated with upfront refractory
disease (70%) as compared to remaining cohorts
(p < 0.0001) and in patients treated in 1st relapse (43%)
as compared to ≥2nd relapse (16%) (p < 0.0001). His-
panic patients were more prevalent in the upfront re-
fractory cohort, although not achieving statistical
significance (50% vs. 37% (1st relapse) and 33% (≥2nd
relapse); p = 0.19), aligning with established data
describing higher rates of chemotherapy non-
responsiveness amongst Hispanic patients.26,27 Median
age at diagnosis was higher in patients treated with
upfront refractory disease (12.5 years) as compared to
patients treated following relapse (7 years) (p = 0.004).
Prior HSCT and prior CD19-targeted therapy were
expectedly lower in patients treated with tisagenlecleucel
due to refractory disease, with increasing rates upon
increasing number of relapses. Baseline characteristics
were otherwise evenly distributed across cohorts. Dis-
ease burden was reported as measured at the final bone
marrow assessment prior to CAR infusion. We interpret
disease burden distribution across cohorts with caution,
due to variability in duration between pre-CAR assess-
ments and CAR T-cell infusions and use of bridging
chemotherapy following disease burden assessment in
patient subsets (Supplement Table S1).

Patients treated in the upfront refractory setting
Of 30 patients treated due to upfront refractory disease,
only 7 patients (23%, 95% CI 10–42%) had >5%
5
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Fig. 1: Clinical indications and real-world utilisation of Tisagenlecleucel.
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morphologic bone marrow lymphoblasts at the end of
induction (EOI). Twenty-three patients (77%, 95% CI
57–90%) had <5% lymphoblasts at EOI, as detected by
morphology or flow cytometry, and did not meet the
historical definition of primary refractory disease, yet
were classified as refractory (Fig. 2A).

Of patients treated with upfront refractory disease, a
morphologic complete response rate of 93% (95% CI
78–99%) was observed. Among the 28 responders, 7
patients (25%, 95% CI 11–45%) experienced disease
relapse after tisagenlecleucel, with 6 (86%) CD19+ and 1
(14%) CD19-disease (Table 2). 1 year OS, EFS, DOR
rates in the primary refractory cohort were 85% (95% CI
75–100%), 59% (95% CI 43–81%) and 50% (95% CI
28–90%), respectively (Fig. 3A). In the exploratory
competing risk analysis of DOR with HSCT as a
competing event, cumulative incidence of HSCT (before
relapse) was higher in this refractory cohort than the
remaining cohorts (Supplement Fig. S3B, p < 0.001).
Cumulative incidence of B cell recovery is 55% (95% CI
32–73%) at both 6 and 12 months, which is increased,
compared to remaining cohorts, yet without statistical
significance (Fig. 3B, p = 0.055; see Supplement Fig. S4
for cumulative incidence of the competing events).
Toxicity analysis of the 30 patients infused in the
upfront refractory setting showed that 11 of 30 (37%,
95% CI 20–56%) patients experienced any grade cyto-
kine release syndrome (CRS), with only 1 patient (3%,
95% CI 0.1–17%) having ≥ grade 3 CRS. Two of 30 (7%,
95% CI 1–22%) patients experienced any grade
neurotoxicity and none were ≥ grade 3. One patient
(3%, 95% CI 0.1–17%) required tocilizumab, no patients
required steroids and 2 patients (6%, 95% CI 1–22%)
required pediatric intensive care unit (PICU)-level care
for management of hypotension for grade 2 and 3 CRS,
respectively. As per previous clinical reporting,28 our
toxicity analysis identifies patients treated in the upfront
refractory setting to have less CRS/ICANS as compared
to patients treated following relapse (p = 0.01) (Table 3),
supporting CAR T-cell therapy in more upfront settings
as a tolerable therapeutic option.

Notably, although 30 patients received CAR T-cell
therapy due to upfront refractory disease without relapse,
of the remaining cohort treated for relapse, an additional
62 patients were reported to have upfront refractory
disease (defined as any detectable disease following
standard induction chemotherapy), yet did not proceed to
tisagenlecleucel until later in the disease course (Fig. 2A).
Within the 92 patients who were categorised with
upfront refractory disease, we contrasted outcomes of
patients receiving tisagenlecleucel in the upfront re-
fractory setting (N = 30), and patients receiving
continued chemotherapy and treated with tisagenlecleu-
cel only upon ≥1st relapse (N = 61 evaluable). Survival
outcomes from the time of tisagenlecleucel infusion in
patients categorised with upfront refractory disease did
not differ between patients treated with tisagenlecleucel
upfront compared to patients infused later, upon relapse
(Fig. 2B, OS; p = 0.11, EFS; p = 0.36). DOR was also
similar between cohorts (Fig. 2B, p = 0.94). In the
www.thelancet.com Vol 65 November, 2023
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Fig. 2: (A) Response to induction chemotherapy across infused patients. (B) Overall-survival (OS), Event-free survival (EFS) and Duration of
remission (DOR) across patients with upfront refractory disease who were treated in the upfront refractory setting vs. patients with upfront
refractory disease, who only received CAR T-cells upon subsequent relapse(s), using KM curves and log-rank tests. (C) Duration of B cell aplasia
(DBA) across described cohorts, treating relapse, HSCT and MDS as competing risks, using cumulative incidence curves and Gray’s test. Shaded
areas represent the 95% confidence intervals.
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exploratory competing risk analysis of DOR with HSCT
as a competing event, cumulative incidence of HSCT
(before relapse) was higher in patients treated in the
upfront refractory setting (Supplement Fig. S1B,
p = 0.01). Increased cumulative incidence of BCA loss
was observed in patients treated in the upfront refractory
setting, yet not achieving statistical significance (Fig. 2C,
p = 0.07; see Supplement Fig. S2 for cumulative inci-
dence of the competing events).

Patients treated in 1st relapse
In our reported cohort, 36% of infused patients (N = 67)
received tisagenlecleucel in first relapse, justified by one
www.thelancet.com Vol 65 November, 2023
or more criteria spanning chemo-refractory disease
(N = 54, 81%), contraindication to HSCT (N = 15, 22%),
relapse after HSCT (N = 9, 13%) and contraindication to
chemotherapy (N = 1, 1.5%) (Fig. 1). Notably, 9 of 15
(60%) patients contraindicated for HSCT had trisomy 21.

Sixty-six of 67 patients infused upon 1st relapse were
evaluable for outcomes, with 56 of 66 (85%, 95% CI
74–92%), achieving morphologic CR. Among the 56
responders, 17 patients (30%, 95% CI 19–44%) experi-
enced relapse, with 10 (59%) and 7 (41%) experiencing
CD19+ and CD19-relapse, respectively. Across 10 pa-
tients with CD19+ relapse, 6 had documented B cell
recovery prior to (n = 5), or at time of (n = 1) relapse and
7
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Fig. 2: (continued).
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4 patients did not have documentation of B cell recovery.
OS, EFS and DOR rates at 1-year post-infusion were
69% (95% CI 58–82%), 49% (95% CI 37–64%), and 57%
(95% CI 44–74%), respectively across patients treated
after 1st relapse. Comparative analysis of OS, EFS and
DOR demonstrate that outcomes of tisagenlecleucel
recipients treated following 1st relapse were not signif-
icantly divergent compared to patients treated due to
refractory B-ALL or disease in ≥2nd relapse (Fig. 3A,
OS; p = 0.14, EFS; p = 0.39, DOR; p = 0.76). One-year
cumulative incidence of B cell recovery was decreased
in this cohort, though without statistical significance
(1st relapse (27%, 95% CI 14–41%), refractory (55%,
95% C I32-73), ≥2nd relapse (36%, 95% CI 23–48)
(Fig. 3B, p = 0.055; see Supplement Fig. S4 for cumu-
lative incidence of the competing events)).

Increased toxicity was observed in patients treated in
first relapse as compared to remaining patients. Fifty-
one of 66 (77%, 95% CI 65–87%) patients treated in
1st relapse experienced any grade CRS, with 27 patients
(41%, 95% CI 29–54%) experiencing ≥ grade 3 CRS. 19
of 66 (29%, 95% CI 18–41%) patients experienced any
grade neurotoxicity, with 9 (13%, 95% CI 6–24%)
experiencing ≥ grade 3 neurotoxicity. Thirty (45%, 95%
CI 33–58%) and 17 (26%, 95% CI 16–38%) patients
required tocilizumab and steroid use, respectively, and
29 patients (44%, 95% CI 32–57%) required PICU stay
(Table 3). All PICU admissions in this cohort had CRS,
with 26/29 (90%) having ≥ grade 3 CRS, 26 (90%) pa-
tients received tocilizumab, 17 (59%) received steroids
and 2 (7%) received anakinra. Fifteen (52%) PICU pa-
tients had neurotoxicity, 9 (31%) ≥ grade 3. Twenty-five
patients (86%) had hypotension and received fluid bo-
luses, 21 (72%) received vasopressors (9 high dose, 12
low dose). Eighteen (62%) experienced hypoxia, 10
(34%) received positive pressure ventilation (7; intu-
bated, 3; BiPap only).

Patients treated in ≥2nd relapse
Of 87 patients in 2nd or greater relapse, 69 (79%) were
treated in 2nd relapse and 8 (9%), 6 (7%) and 4 (5%)
patients had 3, 4 and ≥ 5 relapses, respectively, prior to
www.thelancet.com Vol 65 November, 2023
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Fig. 3: (A) Overall-Survival (OS), Event-free Survival (EFS) and Duration of Remission (DOR) across patients infused with refractory disease, 1
prior relapse or ≥2 relapses, using KM curves and log-rank tests. (B) Duration of B cell Aplasia (DBA) across described cohorts, treating relapse,
HSCT and MDS as competing risks and using cumulative incidence curves and Gray’s test. Shaded areas represent the 95% confidence intervals.
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Toxicity Refractory (N = 30) 1st relapse (N = 66) ≥2nd relapse (N = 87) p-value

CRS

None 19 (63%) 15 (23%) 33 (38%)

Any grade 11 (37%) 51 (77%) 54 (62%) 0.0006

≥Grade 3 1 (3%) 27 (41%) 11 (13%) <0.0001

Neurotoxicity

None 28 (93%) 47 (71%) 69 (79%)

Any grade 2 (7%) 19 (29%) 18 (21%) 0.0413

≥Grade 3 0 9 (13%) 3 (3%) 0.0159

Treatment

Tocilizumab

Yes; Median doses (range); IQR 1 (3%) 30 (45%); 2 (1–5); 1–2 15 (17%); 2 (1–3); 1–3 <0.0001

No 29 (97%) 36 (55%) 72 (83%)

Steroids

Yes; Median days (range); IQR 0 17 (26%); 7 (1–31); 5–9 9 (10%); 8 (2–18); 3–12 0.0009

No 30 (100%) 49 (74%) 78 (90%)

PICU stay

Yes, Duration (days); Median (range); IQR 2 (7%); 5.5 (3–8); 3–8 29 (44%); 8 (1–24); 5–13 26 (30%); 5 (1–33); 2–8 0.0006

No 28 (93%) 37 (56%) 61 (70%)

Table 3: Toxicities from CAR T-cell therapy of 184 evaluable patients treated across 15 Pediatric Real-World CAR Consortium (PRWCC) centres, stratified
by CAR indication.
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receiving tisagenlecleucel (Fig. 1). 71 patients (82%,
95% CI 72–89%) treated upon ≥2nd relapse achieved
morphologic CR. Among the 71 responders, 28 patients
(39%, 95% CI 28–52%) experienced relapse, with 14
(50%) and 14 (50%) patients experiencing CD19+ and
CD19− relapse, respectively. 1-year OS, EFS and DOR
rates were 70% (95% CI 60–81%), 47% (95% CI
37–60%), and 57% (95% CI 46–72%) respectively
(Fig. 3A). One-year cumulative incidence of B cell re-
covery was 36% (95% CI 23–48%) (Fig. 3B). CRS
occurred in 54 patients (62%, 95% CI 51–72%), with
≥grade 3 CRS in 11 (13%, 95% CI 6–21%) patients. 18
patients (21%, 95% CI 13–31%) experienced neurotox-
icity and 3 patients (3%, 95% CI 1–10%)
experienced ≥ grade 3 neurotoxicity. Fifteen (17%, 95%
CI 10–27%) and 9 (10%, 95% CI 5–19%) patients
required tocilizumab and steroid use, respectively and
26 patients (30%, 95% CI 21–41%) required PICU stay.

Sub-analysis of PICU indications demonstrated that
25/26 (96%) PICU patients had CRS, with 9/25 (36%)
having ≥ grade 3 CRS. Thirteen (50%) patients received
tocilizumab, 8 (31%) received steroids and one received
anakinra. Eight of 26 (31%) had neutrotoxicity, 3
(12%) ≥ grade 3. Nineteen (73%) had hypotension, 17
(65%) had fluid boluses, 8 (31%) required vasopressors
(4 high dose, 4 low dose). Eleven (42%) patients expe-
rienced hypoxia, 4 (15%) received positive pressure (3;
intubated, 1; CPAP).
Discussion
Relapsed B-ALL or B-ALL that is refractory to chemo-
therapy portends poor survival.12,29 Disease detection at
the end of upfront induction chemotherapy remains
highly prognostic of B-ALL survival.9,17 Accordingly,
clinical trials for upfront B-ALL include risk stratifica-
tion systems designed to intensify therapy for this high-
risk patient cohort.2,5,12,29–32 Historically, the definition of
primary refractory B-ALL was limited to detectable
morphologic disease of ≥5% at the end of 2 cycles of
chemotherapy. With expanded adoption of flow cytom-
etry MRD, even low levels of MRD have been shown to
correlate with prognosis9,10,17,20,33,34 such that current risk
stratification systems integrate flow cytometry MRD to
guide post-induction therapy. NGS of clonal B and T cell
receptors further increases the sensitivity of ALL detec-
tion to levels of 1 × 10−6, which is 1–2 logs deeper than
standard flow cytometry or PCR assays,35 yet prospective
clinical trial data on treatment intensification using
NGS-based MRD remains limited. Whereas CD19 CAR
T-cell therapy has been approved for patients up to 25
years of age with B-ALL that is refractory or in second or
later relapse (Tisagenlecleucel; Kymriah package insert),
“refractory” remains without defining criteria and
permissive of physician discretion not bound to tradi-
tional morphologic measures. We aimed to describe
what measures of disease have been implemented in the
real-world clinical CAR T-cell therapy setting to define
refractory B-ALL and establish tolerability and survival.

In this real-world retrospective study, 23 of 30 (70%)
upfront refractory patients treated with tisagenlecleucel
had EOI lymphoblast levels of <5%, as detected by flow
cytometry or morphology. We established that defini-
tions of primary refractory disease in the real-world
setting expand beyond morphologic detection of dis-
ease at levels of ≥5% and broadly include patients with
www.thelancet.com Vol 65 November, 2023
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persistent morphologic disease and/or disease detect-
able by MRD alone. One of the future most important
questions in the B-ALL CAR T-cell field is how to
advance immunotherapy to the upfront setting and
thereby offset the prolonged toxicity and duration of
standard chemotherapy. The first step, which is actively
under investigation, is to study CAR T-cell therapy in
the upfront refractory setting for high-risk patients
where outcomes with chemotherapy alone remain poor.
The Children’s Oncology Group phase II trial
(AALLL1721; CASSIOPEIA) is specifically designed to
prospectively study tisagenlecleucel outcomes in pa-
tients with high-risk B-ALL who are MRD positive by
flow cytometry at the end of consolidation, a cohort
where 5-year OS remains <40%.9 As ongoing efforts are
pursued to advance CAR T-cell therapy to the upfront
setting, it is notable that retrospective data is already
existent using CAR T-cell therapy in the upfront MRD-
positive setting,36,37 and continues to accumulate in the
real-world.

In our real-world series, tisagenlecleucel was
extremely well-tolerated in patients treated in the
upfront refractory setting, with only 3% (1/30) ≥ grade 3
CRS and no ≥ grade 3 neurotoxicity. Patient response
and survival outcomes are comparable to more heavily
pre-treated patients. Notably, the incidence of CD19-

relapse was numerically lower when treated in the
upfront refractory setting, as compared to remaining
patients, although this did not achieve statistical signif-
icance, perhaps due to small numbers (CD19- relapse
rate: upfront refractory; 1/30 (14%), 1st relapse; 7/66
(41%), ≥2nd relapse; 14/87 (50%), p = 0.29). The impact
of aggregate therapy, including chemotherapy and tar-
geted agents, on CD19 antigen loss requires further
exploration.

Children and young adults in first relapse comprise a
unique cohort wherein a subset of patients, in the
absence of high-risk features, can be re-salvaged with
chemotherapy alone. Specifically, patients with late bone
marrow relapse (≥36 months from diagnosis) and late
isolated extramedullary (IEM) disease (≥18 months
from diagnosis) represent a lower risk category, with
likelihood of establishing durable remission further
increasing if MRD at the end of block 1 of reinduction is
<0.1%.4 Chemotherapy remains the standard of care for
this cohort, with first relapse patients therefore
commonly excluded from early phase clinical trials,
which are intended for patients without standard salvage
options.

The inverse of this cohort, patients with early bone
marrow relapse (<36 months from diagnosis) and early
IEM relapse (<18 months from diagnosis), represent a
high-risk patient population with a pressing clinical
need for approved alternatives to chemotherapy. Our
outcomes analysis across patients treated with tisa-
genlecleucel following first relapse showed that survival
outcomes were comparable to outcomes across patients
www.thelancet.com Vol 65 November, 2023
treated for refractory B-ALL or ≥2nd relapse. Increased
duration of B cell aplasia was seen in this cohort yet
without statistical significance (Fig. 3B, p = 0.055). CRS
and neurotoxicity incidence and severity were higher in
the first relapse cohort. Across multiple studies, high
pre-infusion disease burden has been shown to be
associated with CRS risk and severity.23,38 While there
were no significant differences in baseline disease
burden distribution across cohorts in our analysis
(Table 1; p = 0.26), this must be interpreted with caution
due to variability in timing of baseline disease burden
assessments and use of bridging therapy in patient
subsets between disease assessment and CAR T-cell
infusion. Formal prospective studies of CAR T-cell
therapy outcomes in the first relapse setting will be
critical, with a goal of identifying which patient subsets
may benefit from an expanded CD19-CAR T-cell indi-
cation. Additional studies are also necessary to validate
differences in toxicities across cohorts and determine
causality. These studies should include an assessment
of cumulative CD19 antigen load, which could also
explain variable persistence and toxicity, and was not
systematically measured in our dataset.

Expectedly, our upfront refractory cohort had higher
risk cytogenetics, as previously defined by the NCCN
Cytogenetic Risk Classification, supportive of known
data that high-risk cytogenetics are associated with
chemotherapy resistance.39 Our analysis did not capture
treatment rationale for patients treated in the upfront
refractory setting compared to those with upfront re-
fractory disease who were only treated following suc-
cessive lines of therapy, but perhaps the presence of
MRD along with high-risk cytogenetics6,32,33,40 influenced
the choice to move to tisagenlecleucel. Indeed, one
limitation of our study was that reporting was limited to
patients who received tisagenlecleucel without control
data on a parallel cohort of patients with refractory dis-
ease or patients in 1st relapse who received ongoing
chemotherapy and no CAR T-cell therapy. Another
drawback of this study is that safety analysis was limited
to select established post-CAR toxicities of interest,
without complete capture and classification of additional
adverse events such as infection, organ damage, and
hematologic toxicities associated with conditioning
regimens.

In summary, we highlight that in the real-world
clinical pediatric and young adult B-ALL setting, defi-
nitions of relapse and refractory disease are evolving,
and standard definitions of morphologic disease have
been abandoned in exchange for more sensitive testing
for residual disease. We highlight that in the real-world,
MRD measures are being used to justify tisagenlecleu-
cel use, generating a dataset of patients receiving CAR
T-cells in the upfront MRD-setting. Treatment was very
well-tolerated in this cohort and high response rates
were seen, despite prior chemoresistance. This data can
be used to complement formal prospective studies of
11
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CAR used in the upfront MRD-setting, such as COG
AALL1721 (CASSIOPEIA). Outcome analysis across
CAR T-cell therapy indications revealed that despite
heterogeneity in real-world CAR T-cell utilisation,
response, relapse, and survival rates overlap, supporting
tisagenlecleucel therapy as an effective treatment across
all indications, including refractory disease and impor-
tantly, 1st relapse, an indication omitted from the FDA
approval.
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