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nuclear charge distribution and
electron correlation effects on magnetic shieldings
and spin-rotation tensors of linear molecules†

I. Agust́ın Aucar, * Carlos A. Giménez and Gustavo A. Aucar

The nuclear charge distribution effects (NChDE) on two response properties, the NMR magnetic shielding

(s) and the nuclear spin-rotation (SR) constants (M), are analyzed. We do it employing point-like and

Gaussian-like models for describing the nuclear charge density of three linear molecules: HBr, HI and

HAt. According to our results, both properties are sensitive to the NChDE. We show that the NChDE are

almost completely relativistic, i.e., they nearly vanish in the non-relativistic limit of both properties. We

calculated the NChDE on s and M, and analyzed the differences between them in terms of a relativistic

relation between these two properties. Using that relation we found that the electronic core

mechanisms are the main ones for the NChDE on the shielding of nuclei of both, molecules and free

atoms. The NChDE are smaller on SR constants than on shieldings. Nevertheless, within the relativistic

polarization propagator formalism at the RPA level of approach they are very important for SR constants

of nuclei in heavy-atom-containing compounds. Astatine in HAt has the largest influence: MAt ¼
�9.95 kHz for a point-like model and �50.10 kHz for a Gaussian-like model. Correlation effects must be

included and we do it using different DFT schemes. The PBE0 functional gives results that are closest to

experiments for Br and I, though the LDA gives the closest for hydrogen. The value of the SR constant of

At is reduced among 350 kHz and 500 kHz from its RPA value, when different and usual functionals are

applied. Given that the NChDE on M and s are mostly relativistic in their origin, these effects are also

dependent on electron correlation. They have also a nonvanishing dependence with the Gaunt

electron–electron interactions.
1 Introduction

Accurate representation of the electronic structure of atoms and
molecules, together with its properties, requires to consider the
nuclear model as a nite one. This is specially the case for
studies performed within a relativistic framework.1 Besides,
phenomenologically modeled distributions of the nuclear
charge and the dipolar nuclear magnetization are, till present,
enough to get precise theoretical results. At the moment one
does not need to resort to nuclear structure calculations.

Different types of both distributions can broadly be divided
in two: point-like or nite-like. For the last one the rst and
usual option for electronic structure calculations is the spheri-
cally symmetric Gaussian-like nuclear model, due to its easy
computational implementation. The electronic wave function is
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usually expanded in terms of Gaussian-type functions, and
therefore the electron-nucleus attraction integrals appearing in
the molecular calculations are easier to evaluate by employing
the same efficient primitive integral routines used to evaluate
the electron–electron repulsion integrals. In addition, this
model depends on only one parameter, and the calculations are
only sensitive to the rms charge radius.1–3

In 1993 Shabaev proposed few nite nuclear size corrections
to the energy levels of multicharged ions4 and then, Visscher
and Dyall were among the rst to include the nuclear charge
distribution effects, NChDE, in the calculation of the atomic
ground state electronic energy.2,3 They considered different
nuclear models and found that signicant differences only
appears when employing point-like or nite-like nuclear
models. Their calculations gave close results for any of the
following three different nite-size nuclear models: the homo-
geneously charged sphere, the two-parameter Fermi distribu-
tion and the Gaussian charge distribution. Few years later the
NChDE were also included in electronic structure calculations
of atoms and molecules by Andrae.5 He proposed an scheme to
detect different values of physical properties when they are
calculated using different nite nuclear models in standard
quantum chemical electronic structure codes; specially in the
This journal is © The Royal Society of Chemistry 2018
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total energy shis and also in the energy differences in
hydrogen-like atoms. One of the main conclusions of all these
studies was that, to calculate the energy spectra, it is only rele-
vant the switching from a point-like nuclear model to any of the
nite-like nuclear charge distributions.

During the 90's, only the inuence of the nite nuclear size
models on calculations of wave functions and energies were
carefully studied. More recently, considering that the hyperne
operator acts very close to the nucleus, the NChDE have become
of particular interest for heavy-element-containing systems.
Several works have been devoted to include such nuclear
models in the expression of hyperne operators. We can
mention the work of Fukuda et al. about NMR chemical shis at
Douglas–Kroll–Hess (DKH) level of approach employing a nite-
nuclear model,6 and the work of Hamaya et al. whom included
the NChDE on NMR shieldings (s) of halogen halides.7 In line
with this, E. Malkin and co-workers have studied the effect of
a nite nuclear model on the hyperne structure at DKH-2/DFT
level of theory8 and later at Dirac–Kohn–Sham (DKS) level of
theory.9

Concerning the NChDE on NMR spectroscopic parameters,
Autschbach has employed a Gaussian-type nuclear charge
distribution model to calculate its inuence on J-couplings.10,11

In this case the relativistic zeroth-order regular approach
(ZORA), combined with both non-hybrid and hybrid density
functionals were applied, and both, spin-free and two-
component spin–orbit terms were calculated. It was shown
that the NChDE on the hyperne integrals are quite
pronounced, and therefore, they noticeably alter J-coupling
constants when heavy atoms are involved. Few years later some
of us found that relativistic effects largely enhance the NChDE
on those parameters and also that J-couplings are more sensi-
tive than shieldings in both, relativistic and non-relativistic
(NR) regimes. The highest effect, which is larger than 10% of
variation was found for J-couplings among lead and iodine in
PbIH3.12

Kita and Tachikawa13 have also found that the nuclear size
effects on s, and also on the molecular magnetic susceptibility,
may be important for heavy-element-containing systems.
Furthermore, Arcisauskaite et al. used a Gaussian-type model to
include the NChDE on shielding constants in HgX2 (X ¼ Cl, Br,
I, CH3).14 They found that the NChDE are larger when four-
component calculations are performed, as compared with
ZORA results.

In the case of the relativistic spin-rotation constants, its rst
calculations (presented at the 10th REHE International
Conference in 2012) were performed with a nite nuclear charge
distribution model. It is also worth to highlight the fact that
a Gaussian-type nuclear charge distribution model was
employed in the rst two published articles with calculations of
M, performed at the relativistic four-component Dirac–Kohn–
Sham15 and Dirac–Hartree–Fock levels of theory.16 In any case,
until now no detailed studies of NChDE on this property were
made.

Given that the relativistic nuclear spin-rotation (SR) tensor
(M)17–19 is closely related to the NMR shielding tensor, or turning
this statement around, the relativistic extension of Flygare's
This journal is © The Royal Society of Chemistry 2018
relationship20,21 shows that the NMR shielding tensor is related
with the SR tensor, the shielding constant of free atoms and
a new term (see below) named vS, one may expect that the
NChDE should be important for M. On the other hand, given
that electron correlation and relativistic effects are not inde-
pendent each other for the NMR spectroscopic parameters,22

there may be a relationship among electron correlation and
NChDE if these last effects are enhanced by relativistic effects,
as seems to be the case. The main goals of this work are related
with the answers to these two inquiries. We shall analyze the
NChDE on the SR constants by the rst time, and consider also
its relativistic relationship with the shielding constants in some
details, to shed some light on the electronic origin of the
NChDE in both properties. Besides the previously mentioned
aims of this work, another one is the analysis of the electron
correlation as related with the total NChDE. Furthermore, we
analyzed the electron correlation effects treated at the relativ-
istic DFT level of theory, on both properties and also on its
NChDE. We shall also show how important could be the
consideration of the two-electron (SS|SS) integrals at the Dirac–
Fock level on the NChDE, and also the electron–electron Gaunt
interactions.

This article has the following structure: in Section 2 we
briey introduce a description of the nuclear charge distribu-
tion models we use. We also present in that Section a summary
of the backgrounds of the relation between M and s within
a relativistic framework. In Section 3 we describe in some detail
how our calculations were performed and then, an analysis of
the NChDE on SR and s is presented in Section 4, where
a systematic study of the origin of these effects is exposed. It
includes the analysis of the Gaunt interactions. The main
conclusions are given in Section 5.
2 Theory and models
2.1 Nuclear charge distribution models

The use of nite nuclear models in electronic structure calcu-
lations modies the electrostatic Coulomb electron–nucleus
potential. Its most important consequence is associated with
the change from a point-like nucleus (with a singularity at the
nuclear position), to some spherically symmetric one.1

There are some nuclear models available in the bibliography.
In this work, we focus on one-dimensional spherically
symmetric models for the nuclear charge density distributions,
because the tridimensional models are not yet implemented in
the computational codes commonly used to calculate the
properties of our interest. There are four basic types of one-
dimensional nuclear charge distributions (NChD): the point-
like nuclear model and three nite-size distributions. Between
the latter, we can recognize the uniform, the Gaussian-type and
the Fermi-type distributions. In our case we focus our attention
to only two of those models: the point-type one and the
Gaussian-type one.

It is known that the differences between potential energy
functions obtained from the three different nite-size nuclear
distributions are always moderate.5
RSC Adv., 2018, 8, 20234–20249 | 20235
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The nuclear charge density distribution of both, point-type
and spherically symmetric Gaussian-type of a nucleus of
atomic number Z (rP(r) and rG(r), respectively), can be written as

rP(r) ¼ Zd(r); rG(r) ¼ rG,0 e
�lr2, (1)

where rG,0 is xed through the normalization condition

rG;0 ¼ Z

�
l

p

�3
2

; l ¼ 3

2hR2〉
: (2)

Atomic units were used in the last expressions and will be
adopted throughout all this work.

The nuclear charge density distributions rP(r) and rG(r) give
rise to spherically symmetric potentials, given as

VPðrÞ ¼ �Z

r
; (3)

VGðrÞ ¼ �Z

r
erf
� ffiffiffi

l
p

r
�
; (4)

where erf(x) denotes the error function, which is the probability
that a measurement error will be between�x and x, and is given
by

erfðxÞ ¼ 2ffiffiffiffi
p

p
ðx
0

e�t
2

dt: (5)

The main parameter used to describe the Gaussian-type

distribution is the rms nuclear radius
ffiffiffiffiffiffiffiffiffihR2〉

p
, which can be

approximately related to the cubic root of the mass number A of
the given nucleus via the empirical relation23ffiffiffiffiffiffiffiffiffihR2〉
p ¼ ð0:836 A1=3 þ 0:570Þ fm:
2.2 NMR shieldings and spin-rotation constants

We now turn to the relationship among the shielding and SR
constants. Since the rst decades of the NMR spectroscopy,
a close relationship between the NMR shielding tensor of
a nucleus Y, sY, and its nuclear spin-rotation tensor MY was
broadly used to determine absolute scales of shieldings. It was
rst proposed by Ramsey24 and then improved by Flygare,25,26

being very useful until our days. Such a relationship was
derived within a NR framework, and is expressed (in atomic
units) as

sY ¼ s
NR�para
Y þ sNR�dia

Y

z
mp

gY
MNR

Y 5I þ s
atom;NR
Y :

(6)

This relation was recently found to be not any longer valid
within the relativistic framework. In eqn (6), mp is the proton
mass, gY is the nuclear g-value of nucleus Y, and I is the
molecular moment tensor of inertia in the equilibrium geom-
etry, with respect to its center of mass. Besides Flygare have
shown that eqn (6) is more accurate for the isotropic values than
for each individual tensor element.26–28
20236 | RSC Adv., 2018, 8, 20234–20249
The Ramsey–Flygare relation of eqn (6) was recently gener-
alized to the relativistic framework.20,21 The new model can be
used to obtain absolute shieldings.

The spin-rotation tensor of a nucleus Y in a molecule in its
equilibrium position (for which the electric eld at each nucleus
is zero) can be expressed as a sum of two terms (MY ¼ Mnuc

Y +
Melec

Y ). One of them depends only on nuclear variables
(Mnuc

Y ) whereas the second one includes the electronic depen-
dence (Melec

Y ).17,26

Working within the four-component polarization propa-
gator, the tensor Melec

Y can be splitted into two terms that arises
by considering separately the electronic excitations from occu-
pied positive-energy orbitals to unoccupied positive-energy
orbitals (e–e contributions) and to negative-energy ones (p–p
contributions).29,30 The tensor Melec

Y can be expressed as

Melec
Y ¼ gY

2mpc2

** 
r� rY

jr� rYj3
� ca

!
; Je

++
5I�1 (7)

where � ; [ stand for the relativistic polarization propagator,
a represent the Dirac matrices, and the relativistic electronic

total angular momentum operator, Je ¼ ðr � rCMÞ � pþ 1
2
S, is

the sum of the corresponding orbital and spin angular
momenta. The orbital angular momentum is considered with
respect to the molecular center of mass, and S is the four-
component extension of the Pauli matrices. It must be high-
lighted that eqn (7) does not include the effects of the Breit
electron–nucleus interactions. They are not treated at all in the
present work. The very small inuence of these effects was
analyzed in a previous work.31

On the other hand, the tensor sY is written in the polariza-
tion propagator formalism as

sY ¼ 1

2c2

** 
r� rY

jr� rYj3
� ca

!
; ðr� rGÞ � ca

++
(8)

where rG stands for the position of the (arbitrary) gauge origin of
the magnetic potential.

In order to extend the NR Ramsey–Flygare relation to the
relativistic domain we started from the recognition of common
electronic mechanisms in both sY and MY tensors, rst
applying the linear response within the elimination of the small
components (LRESC) model, and then generalizing it to the
four-component case.17,20,21,32 Few other research groups also
published recently other developments about the relativistic
extension of Ramsey–Flygare's relationship.15,19

Assuming that the LRESC model is reliable in reproducing

the leading order (in a
1
c2

expansion) relativistic effects of SR and

shielding constants for both, its (e–e) and (p–p) contributions,
we proposed few models that link both properties within
a relativistic framework.20,21 The most precise of them, the
model M–V, relates sY and MY as follows:

sM�V
Y ¼ mp

gY
MY5I þ satom

Y þ 1

2c

�
nSY � n

atom;S
Y

�
; (9)
This journal is © The Royal Society of Chemistry 2018
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where satom
Y is the shielding tensor of the nucleus Y for the free

atom, and nSY is dened as:21

nSY ¼ 1

c

** 
r� rY

jr� rYj3
� ca

!
;Se

++
; (10)

where Se ¼ 1
2
S:

In the special case of linear molecules, the tensor sY can be
written as a diagonal matrix, whose elements are st,Y (simply
degenerate) and sk,Y. This last term is the shielding of the
nucleus Y when the applied magnetic eld is aligned parallel to
the molecular bond axis, whereas st,Y is the shielding experi-
enced by the nucleus when the magnetic eld is aligned
perpendicular to the bond axis.

The model M–V, applied to a linear molecule gives

s
M�Vðe�eÞ
t;Y ¼ mpI

gY
M

elecðe�eÞ
t;Y þ s

atomðe�eÞ
Y þ 1

2c

�
n
Sðe�eÞ
t;Y � n

atom;Sðe�eÞ
Y

�
(11)

s
M�Vðp�pÞ
t;Y ¼ mpI

gY

�
Mnuc

t;Y þM
elecðp�pÞ
t;Y

�
þ s

atomðp�pÞ
Y

þ 1

2c

�
n
Sðp�pÞ
t;Y � n

atom;Sðp�pÞ
Y

�
; (12)

and

s
M�Vðe�eÞ
k;Y ¼ s

atomðe�eÞ
Y þ 1

2c

�
n
Sðe�eÞ
k;Y � n

atom;Sðe�eÞ
Y

�
(13)

s
M�Vðp�pÞ
k;Y ¼ s

atomðp�pÞ
Y þ 1

2c

�
n
Sðp�pÞ
k;Y � n

atom;Sðp�pÞ
Y

�
: (14)

Therefore, the isotropic shielding constant for linear mole-

cules
�
sisoY ¼ 2st;Y þ sk;Y

3

�
can be expressed, according to the

model M–V, as

s
M�V;iso
Y ¼ 2

3

mpI

gY
Mt;Y þ satom

Y þ 1

2c

�
n
S;iso
Y � n

atom;S
Y

�
; (15)

where Mt,Y is the perpendicular component of the spin-
rotation tensor (simply called “nuclear spin-rotation
constant”, M, for linear molecules).
3 Computational details

Four-component relativistic calculations of shielding and SR
tensor elements for three linear molecules were performed
using a locally modied developer version of the DIRAC16 (ref.
33) program package.

The previous nomenclature that pointed out any nucleus as
Y shall now be enlarged to introduce a distinction between the
heavy nucleus and the hydrogen. The HX (X ¼ 79Br, 127I, 210At)
molecules are our model systems. They were displayed along
the z axis. For symmetry reasons, as we deal with linear mole-
cules, only diagonal components of shielding and SR tensors
are no null. In the case of the M tensor, in both relativistic and
NR domains only its perpendicular components are non-zero
and equal each other. These tensor elements are known as
This journal is © The Royal Society of Chemistry 2018
the spin-rotation constant M. On the other side, within the
relativistic domain the shielding tensor has nonzero parallel (sk
¼ szz) and perpendicular (st ¼ sxx ¼ syy) elements. However, in
the NR case sNRk ¼ sNRzz ¼ 0.

Unless otherwise stated, four-component calculations are
based on the Dirac–Coulomb Hamiltonian, employing the
default Hamiltonian of the DIRAC code. It uses an energy
correction to avoid the explicit calculation of (SS|SS) integrals,
i.e., two-electron integrals containing only small component
basis functions.34 In addition, in some appropriately indicated
calculations the (SS|SS) integrals were also included in order to
analyze the importance of this contribution. Furthermore, the
most precise calculation of this work are based on the Dirac–
Coulomb–Gaunt Hamiltonian (where, due to implementation
reasons, the Breit electron–electron interaction is replaced by
the Gaunt interaction, i.e. neglecting the retardation terms),
including explicitly the calculation of (SS|SS) integrals. We
assume that the Gaunt interaction provides a useful approxi-
mation to the Breit interaction; it is considered to be an order of
magnitude larger than the retardation term.35,36

Most of the response calculations were performed within the
Dirac–Hartree–Fock–Coulomb relativistic polarization propa-
gator approach at the random phase level of approach (RPA).
Nevertheless, some of the RPA calculations were performed
taking into account the Gaunt electron–electron interaction
included in the unperturbed Hamiltonian. They are explicitly
indicated as such. In addition, to analyze the inuence of
electron correlation effects within the Dirac–Hartree–Fock–
Coulomb (–Gaunt) framework, some calculations employing
the pure zeroth-order approximation (PZOA) were performed.37

Non-relativistic values of s and M (reported from here as
sNR–para, sNR–dia and MNR–elec) were obtained taking a speed of
light of c ¼ 30c0. The value of the speed of light in vacuum used
throughout all four-component calculations was c0 ¼
137.0359998 a.u.

The gauge origin of the external magnetic potential was
placed at the molecular center of mass in the NMR shielding
calculations. With this choice, a direct comparison with the SR
results can be safely made. Furthermore, in order to calculate
shieldings of nuclei in closed shell free atoms using the DIRAC
code (this feature is not implemented for open shell systems),
an electron was added to the halogen free atoms.

The following values of nuclear g-factors were taken from ref.
38 for the calculations of SR constants: 5.585694 for 1H,
1.404267 for 79Br and 1.125309 for 127I. As experimental data
does not exist for 210At, a g-factor of 1.0 was chosen for this
nucleus.

Experimental bond distances were extracted from ref. 39 for
HBr and HI. For HAt, an optimized distance was used and
calculated at the RPA level of approach. They are: 1.4145 Å
(HBr), 1.6090 Å (HI) and 1.7117 Å (HAt).

In all calculations, the NR Dunning's augmented correlation-
consistent aug-cc-pCV5Z basis set was used for the hydrogen
atom.40 For Br, I and At the Dyall's relativistic acv4z basis sets
(dyall.acv4z) were employed.41 In all cases, the uncontracted
Gaussian basis sets were used with the common gauge-origin
(CGO) approach. The small component basis sets for
RSC Adv., 2018, 8, 20234–20249 | 20237



Table 1 SR constants conversion factors. The third column values are

expressed in atomic units
� ppm

Hartree

�
, whereas those of the fourth

column are given in
ppm

kHz

mol Y
mpIðmolÞ

gY

h ppm
Hartree

i mpIðmolÞ
gY

hppm
kHz

i

HBr Br 16.94603 � 1012 2.57550783
H 4.26058 � 1012 0.64753560

HI I 27.49115 � 1012 4.17818744
H 5.53938 � 1012 0.84189143

HAt At 35.12509 � 1012 5.33841677
H 6.28840 � 1012 0.95573026

RSC Advances Paper
relativistic calculations were generated by applying the unre-
stricted kinetic balance prescription (UKB).

Point and nite nuclear models-modeled by Gaussian charge
distributions-(PNM and GNM, respectively) were employed in
all calculations, as implemented in the DIRAC code.

In order to study correlation effects, we performed PZOA,
RPA and Kohn–Sham-DFT calculations employing the DIRAC
code. The DFT calculations are based on the four-component
Dirac–Coulomb Hamiltonian, and have been done using
a variety of NR exchange-correlation functionals in several
categories: (i) The local density approximation (LDA) func-
tional,42,43 (ii) the generalized gradient approximation (GGAs)
functionals: PBE,44 KT2,45 KT3 46 and BP86,47,48 and (iii) the
hybrid functional PBE0.49 Furthermore, calculations based on
the Dirac–Coulomb–Gaunt Hamiltonian were performed
employing the PBE0 functional, scaling the Gaunt integrals
(with the GAUNTSCALE keyword of the DIRAC program) with
the same factor as for Hartree–Fock exchange. It means that this
hybrid functional include fractional Hartree–Fock Gaunt
interaction.

For the property calculations at DFT level of theory, experi-
mental internuclear distances were used for HBr and HI. The
optimized bond distances of the HAt molecule were again ob-
tained from each of the above mentioned functionals and basis
sets. Their values are (in Å) 1.7393 (LDA), 1.7237 (KT2), 1.7209
(KT3), 1.7473 (PBE), 1.7272 (PBE0) and 1.7486 (BP86). Doing
this we are as much coherent as possible with the scheme of
calculations adopted.

In addition, Table 1 gives the conversion factors
mpI
gY

used to

transform the SR constants from atomic units (Hartree) to ppm
(3rd column of the table), to be used in the application of eqn (6)
and (9). In the fourth column the conversion factors of SR
constants from kHz to ppm are given. They are obtained by
taking into account the relation between Hartrees and kHz
(1 Hartree ¼ 6.579683920711 � 1012 kHz).50

4 Results and discussion

In this Section, the inuence of the NChDE on the (e–e) and
(p–p) contributions to sY and MY are analyzed separately in
order to understand the origin of these effects. In line with this,
the NChDE are studied on the shielding of both, nuclei in free
20238 | RSC Adv., 2018, 8, 20234–20249
atoms and nuclei in molecules. In addition, their NR limit are
also analyzed. Furthermore, the model M–V is employed to
study the underlying physics of the NChDE in sY. Finally, an
analysis of how much the electronic correlation affects the
NChDE is presented.
4.1 Four-component RPA calculations

In order to study the NChDE on sY and MY, the relativistic RPA

values of s(e–e)t,Y ,
mpI
gY

Mðe�eÞ
t;Y , and the NR limit of both,

sNR–parat,Y , calculated with PNM and GNM are shown in Table 2.
In addition, in Table 3 we show the values of

s(p–p)t,Y ,
mpI
gY

Mðp�pÞ
t;Y and sNR–diat,Y also calculated employing both,

GNM and PNM.

The SR constants are multiplied by the factor
mpI
gY

, which is

the quotient between sNR–parat,Y and MNR–elec
t,Y (the NR limits of

s(e–e)t,Y and M(e–e)
t,Y , respectively) as proposed by the Flygare's NR

relation:25

s
NR�para
t;Y ¼ mpI

gY
MNR�elec

t;Y : (16)

Given that Melec
t,Y can be expressed as the sum of two terms

(Melec
t,Y ¼ ML

t,Y + MS
t,Y; see in eqn (7) that Je ¼ Le + Se), its values

are splitted up into ML
t,Y and MS

t,Y. In addition, the NChDE
values for each property are displayed in Tables 2 and 3.

The NChDE on sY and MY are obtained as the differences
between the values of each property employing Gaussian-type
and point-type nuclear charge distribution models.
Throughout this work, unless otherwise stated, the symbol D
will be exclusively employed to refer to these differences (for
example, DsY ¼ sGNM

Y � sPNM
Y ).

One important nding is that in all cases DML
t,Y and

DMS
t,Y have opposite signs, as shown in the last two columns of

Tables 2 and 3. For the heavy nucleus X, ΔMS(e–e)
t,X grows faster

than ΔML(e–e)
t,X as the atomic number of the X atom increases (X¼

Br, I, At). The opposite behavior is found for the hydrogen
nucleus.

The relative value of the NChDE in both properties needs
a special mention. Its importance with respect to the relativistic

effects on M(e–e)
t,Y and s(e–e)t,Y (i.e.

DMðe�eÞ
t;Y

Mðe�eÞ
t;Y �MNR�elec

t;Y

and

Ds
ðe�eÞ
t;Y

s
ðe�eÞ
t;Y � s

NR�para
t;Y

) increases from �2.5% (SR) and �0.4%

(shielding) for Br, up to �9.0% (SR) and �6.0% (shielding) for
At (see Table 2). This means that the NChDE grows faster than
the relativistic effects, specially for shieldings.

It is also worth to highlight the fact that Ds(e–e)t,Y represents
1.2% of s(e–e)t,Y for Y ¼ Br, and it grows up to 7.6% for Y ¼ At. On
the other hand, DM(e–e)

t,Y represents 0.03% of M(e–e)
t,Y when Y ¼ Br

and increases up to 77.5% for Y ¼ At!
According to our results, we can state that the choice of the

nuclear model used on relativistic calculations of shieldings
This journal is © The Royal Society of Chemistry 2018



Table 2 Calculated values of sNR–para
t , M(e–e)

t and s(e–e)
t at the RPA level of approach using both, PNM and GNM. All values are given in ppm

Molec Y sNR–para
t,Y

mpI

gY
M

ðe�eÞ
t;Y

s(e–e)
t,Y

NChDE

L S Ds(e–e)
t,Y

mpI

gY DM
ðe�eÞ
t;Y

L S

HBr Br PNM �742.0222 �933.3812 199.2331 �187.3019 �2.3174 0.6091 �0.8015
GNM �742.0164 �932.7721 198.4316 �189.6193

H PNM 16.6034 25.6238 �0.2920 25.0586 �0.0002 �0.0003 0.0000
GNM 16.6034 25.6235 �0.2920 25.0584

HI I PNM �1454.4561 �2114.7400 754.8454 650.5588 �22.9512 5.6493 �8.0874
GNM �1454.4296 �2109.0907 746.7580 627.6076

H PNM 17.8542 49.0594 �2.0569 44.9705 �0.0032 �0.0037 0.0002
GNM 17.8542 49.0557 �2.0567 44.9673

HAt At PNM �2661.1988 �4445.6835 4383.2938 11 293.7041 �794.5878 24.8291 �239.2336
GNM �2661.0624 �4420.8544 4144.0602 10 499.1163

H PNM 18.4044 147.3452 �22.0295 103.3245 �0.1183 �0.1989 0.0404
GNM 18.4044 147.1463 �21.9891 103.2062

Table 3 Calculated values of sNR–dia
t , M(p–p)

t and s(p–p)
t at the RPA level of approach using both, PNM and GNM. All values are given in ppm

Molec Y sNR–dia
t,Y

mpI

gY
M

ðp�pÞ
t;Y

s(p–p)
t,Y

NChDE

L S Ds(p–p)
t,Y

mpI

gY
DM

ðp�pÞ
t;Y

L S

HBr Br PNM 3128.2970 55.7286 �55.6017 2916.0124 0.3968 0.0258 �0.0257
GNM 3128.2769 55.7544 �55.6274 2916.4092

H PNM 4.8032 0.0007 �0.0005 4.8423 �0.0001 0.0000 0.0000
GNM 4.8031 0.0007 �0.0005 4.8422

HI I PNM 5507.2979 144.2528 �143.8763 4889.9425 2.8728 0.4270 �0.4262
GNM 5507.2060 144.6798 �144.3025 4892.8153

H PNM 3.2126 0.0014 �0.0005 3.3116 �0.0004 0.0000 0.0000
GNM 3.2125 0.0014 �0.0005 3.3112

HAt At PNM 10 561.1286 282.9505 �281.8745 8598.5672 40.8135 16.4999 �16.4524
GNM 10 560.6251 299.4504 �298.3269 8639.3807

H PNM 1.5937 0.0021 �0.0003 2.6640 �0.0080 0.0000 0.0000
GNM 1.5932 0.0021 �0.0003 2.6560
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and SR constants is increasingly more important as heavier
nuclei are involved. It can still be crucial for calculations of SR
constants of nuclei belonging to the 6th row of the periodic
table.

As observed in Table 3, there are two important points to
be highlighted for Ds(p–p)t,Y and DM(p–p)

t,Y . The rst one is that
DM(p–p)

t,Y is close to zero for all nuclei. This behavior can be
understood by considering the LRESC model, from which the

NR limit and the leading order in a
1
c2

expansion of M(p–p)
t,Y are

found to be zero.17 The nucleus of At has the largest value,

where
mpI
gAt

DMðp�pÞ
t;At ¼ 0:0475 ppm, and

mpI
gAt

Mðp�pÞ
t;At ¼ 1:1235 ppm.
This journal is © The Royal Society of Chemistry 2018
The second point is that Ds(p–p)t,Y is less than 0.5% of s(p–p)t,Y for
all Y nuclei. Therefore, the NChDE have an inuence that is
greater on the (e–e) than on the (p–p) contributions for both
properties.
4.2 The NR limit

By applying the relativistic polarization propagator formalism
the NR limit of DMY and DsY can be straightforwardly obtained.
According to this theory the NR limit is reached when the speed
of light is scaled to innity. This is the reason why a set of
calculations of the tensor elements ofMY and sY was performed
considering the two nuclear models, and systematically
increasing the velocity of light; we employed 32 values of c
between c0 and 10c0. An smooth convergence of DMY and DsY to
values that are close to zero was found in all cases.
RSC Adv., 2018, 8, 20234–20249 | 20239



Fig. 1 NChDE on the perpendicular and parallel components of the shielding constants of nuclei X in HX (X ¼ Br, I, At) as a function of the scaling

factor of the speed of light,
c
c0
. The (e–e) and (p–p) contributions are shown separately. Calculations were performed at the RPA level of approach.

Fig. 2 NChDE on M(e–e)
t,X in the heavy nuclei X of the HX (X ¼ Br, I, At)

molecules, as a function of the scaling factor of the speed of light,
c
c0
.

The L and S contributions to the SR constants are displayed separately
in order to show their opposite behavior. Calculations were performed
at the RPA level of approach.

20240 | RSC Adv., 2018, 8, 20234–20249
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In Fig. 1 and 2 one can observe the dependence of the (e–e)
and (p–p) contributions to DsX and DMX with the velocity of
light, respectively. It is shown that all of them become vanish-
ingly small as c scales to innity.

In Fig. 1 we observe that there is a higher rate of change of
the (e–e) contributions as compared with the (p–p) contribu-
tions. This indicates a higher sensitivity of Ds(e–e)

X to the rela-
tivistic effects compared with Ds(p–p)

X . Furthermore, Ds(e–e)t,X is
more sensitive to the relativistic effects than Ds(e–e)k,X ; this is not
the behavior of the (p–p) contributions.

On the other hand, in Fig. 2 we show how DML(e–e)
t,X andDMS(e–

e)
t,X go to zero as c scales to innity. A higher slope of

DMS(e–e)
t,X than that of DML(e–e)

t,X is also observed. It means that
DMS(e–e)

t,X is most sensitive than DML(e–e)
t,X to the relativistic effects.

It is worth to mention that for At,
mpI
gAt

DMSðe�eÞ
t;At changes from

�239.23 ppm to�5.95 ppm (about +233 ppm of variation) when
the speed of light is scaled from c0 to 2.5c0. For the same values

of c,
mpI
gAt

MLðe�eÞ
t;At changes only �20 ppm (from 24.83 ppm to 4.88

ppm).
We should emphasize here that the values of

s(e–e)k,Y ,MS(e–e)
t,Y ,ML(p–p)

t,Y andMS(p–p)
t,Y are exactly zero in the NR limit,

and therefore, their NChDE vanish in such a limit. Comparing
eqn (7) with eqn (10) it can be seen that

1

2c
nSt;Y ¼ mpI

gY
MS

t;Y: (17)

Then, it indicates that nS(e–e)t,Y and nS(p–p)t,Y and their NChDE are
also exactly zero in the NR limit. Following the same argument,

the NChDE on satom(e–e)
Y and

1
2c
n
atom;S
Y are zero in such limit.
This journal is © The Royal Society of Chemistry 2018
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Therefore, we can state that
Ds(e–e)k,Y , DMS(e–e)

t,Y , DM(p–p)
t,Y , Dsatom(e–e)

Y , DnS(e–e)t,Y , DnS(p–p)t,Y and
1
2c

Dnatom;S
Y can have values that are different from zero only

within the relativistic framework. All this means that only
Ds(e–e)t,Y , DM

L(e–e)
t,Y , Ds(p–p)Y and Dsatom(p–p)

Y may have values that are
very small in the NR limit, but not exactly zero.

Still, according to eqn (11)–(14), the following NR limits are
fullled:

lim
c/N

Ds
ðe�eÞ
t;Y ¼ lim

c/N

mpI

gY
DM

Lðe�eÞ
t;Y ¼ DsNR�para

t;Y (18)

and

lim
c/N

Ds
ðp�pÞ
Y x lim

c/N
Ds

atomðp�pÞ
Y ¼ Dsatom;NR

Y : (19)

As shown in Fig. 1 and 2, they are vanishingly small.
4.3 Relation between the sY and MY tensors

In this Section we want to shed some light on the inuence of
the NChDE on each of the four terms of the M–V model given in
eqn (9). We shall see that the rst two terms of eqn (9) contain
almost the whole of the NChDE of s in a relativistic framework
Fig. 3 Relativistic effects on perpendicular (e–e) contributions to
shielding and SR constants (L and S components are shown separately)
of the heavy nuclei X in HX (X ¼ Br, I, At) molecules. Also satom and
vatom,S are displayed. Calculations were performed at the RPA level of
approach using Gaussian nuclear model. All values are given in ppm.

This journal is © The Royal Society of Chemistry 2018
because each one of the last two are close each other. Therefore
we will focus our analysis on these terms.

In Fig. 3 the relativistic effects (i.e., the differences between
four-component and NR calculations using a GNM) on
s(e–e)t,X , M

L(e–e)
t,X and MS(e–e)

t,X for the heavy nuclei X are shown. The
values of satom(e–e)

X , that has only relativistic contributions, are
also given.

It can easily be seen in Fig. 3 that the main relativistic
contribution to s(e–e)t,X comes from the shielding of the free atom
X, followed far away by that of the SR constant (which is given by
mpI
gX

MLðe�eÞ
t;X þ mpI

gX
MSðe�eÞ

t;X � s
NR�para
t;X ). Besides, the relativistic

effects on ML
t,X and MS

t,X have opposite signs, which reduces
the total relativistic effect of this property.

The value of the relativistic effect on
mpI
gAt

Mðe�eÞ
t;At is

2384.27 ppm, whereas for s
atomðe�eÞ
At� it is 10 557.13 ppm

(remember that it has no NR counterpart). The addition of both
values gives 12 941.40 ppm, which is close to the total relativ-
istic effect of s(e–e)t,At: 13 160.18 ppm. According to the M–Vmodel
(see eqn (11)) the remaining difference between those values

arises from
1
2c

�
nSt;At � n

atom;S
At�

�
, which is equal to 219.49 ppm. It

must be emphasized that nSt,Y and natom,S
Y are zero in the NR

limit.
Fig. 4 NChDE on perpendicular (e–e) contributions to shielding and
SR constants (L and S components are shown separately) of the heavy
nuclei in HX (X ¼ Br, I, At) molecules. Also NChDE on satom and vatom,S

are displayed. Calculations were performed at the RPA level of
approach. All values are given in ppm.

RSC Adv., 2018, 8, 20234–20249 | 20241



Table 4 Values of (e–e) and (p–p) contributions to satom
Y� and

1
2c

n
atom;S
Y�

at the RPA level of approach using PNM and GNM. All values are in ppm

Y s
atomðe�eÞ
Y� s

atomðp�pÞ
Y�

1

2c
n
atom;Sðe�eÞ
Y�

1

2c
n
atom;Sðp�pÞ
Y�

Br PNM 528.2667 2913.4249 180.4978 �55.5860
GNM 526.1324 2913.8216 179.6876 �55.6119

I PNM 1934.1137 4887.3336 678.2519 �143.7614
GNM 1913.4712 4890.2057 670.0392 �144.1902

At PNM 11 152.2334 8595.1847 4176.7886 �279.9905
GNM 10 557.1342 8635.9570 3922.8385 �296.5936

RSC Advances Paper
Another interesting nding is the fact that
1
2c

n
Sðe�eÞ
t;X and

1
2c

n
atom;Sðe�eÞ
X are close each other (for X ¼ Br, I, At) and so, given

that they contribute with different sign, its total contribution
becomes small.

The NChDE on SR and shielding tensors have an almost
complete relativistic origin, which explain the behavior of
different contributions to the NChDE shown in Fig. 4. The main
contribution to Ds(e–e)t,X in the HX systems comes from the
NChDE on the free-atom shielding, followed by
mpI
gX

DMSðe�eÞ
t;X

�
¼ 1

2c
Dn

Sðe�eÞ
t;X

�
. In addition, DML(e–e)

t,X is almost

zero in all cases.

According to eqn (11),
mpI
gX

MSðe�eÞ
t;X must be included two

times in sM–V
t,X. It can be seen in Fig. 4 that its NChDE is almost
Table 5 Isotropic values of the shielding and SR constants at the RPA lev
using London atomic orbitals. All values are in ppm

Mol Y s(e–e)Y s(p–p)
Y

2

3

mpI

gY
M

ðe
t

L

HBr Br PNM 35.6973 2914.9512 �622.2541
(35.8770) (2914.8036)

GNM 33.4479 2915.3479 �621.8481
(33.6276) (2915.2020)

H PNM 16.5881 19.3448 17.0825
(16.5798) (19.4010)

GNM 16.5879 19.3448 17.0824
(16.5796) (19.4009)

HI I PNM 996.8285 4888.6446 �1409.826
(997.0165) (4889.1715)

GNM 974.9165 4891.5173 �1406.060
(975.1000) (4892.0221)

H PNM 28.7990 19.2680 32.7063
(28.7550) (19.0097)

GNM 28.7971 19.2677 32.7038
(28.7530) (19.0093)

HAt At PNM 10 222.0816 8596.8899 �2963.789
(10 222.6242) (8596.8895)

GNM 9536.3418 8637.6861 �2947.236
(9536.9043) (8638.1056)

H PNM 55.3711 19.5859 98.2302
(55.3218) (19.1304)

GNM 55.3180 19.5802 98.0975
(55.2687) (19.1247)

20242 | RSC Adv., 2018, 8, 20234–20249
equal to
1
2c

Dn
atom;Sðe�eÞ
X . Given that nSt,X and natom,S

X have oppo-

site signs in eqn (11), the sum of their NChDE is almost zero.

Finally, in Table 4 we display the values of the calculations of

satomX� and
1
2c

n
atom;S
X� , used to obtain sM–V

t,Y and sM–V
k,Y according to

eqn (9)–(15).
4.4 Isotropic SR and shielding constants

We turn now to the analysis of how important are the NChDE in
measurable quantities, such as the total SR constants and the
chemical shis.

In Table 5 it is observed that the NChDE on sisoY of all heavy
elements are more important for (e–e) than for (p–p) contribu-
tions, although they have opposite signs and so partially cancel
each other. As the nucleus becomes heavier, also the difference
increases in such a way that for At Dsiso(e–e)At y �686 ppm, while
Dsiso(p–p)At y +41 ppm. It means that almost all the NChDE on
sisoAt arises from its (e–e) contribution, which is known to be
related to the (e–e) part of the SR constant.

For hydrogen in HX, DsisoY has also a greater (e–e) contri-
bution than its (p–p) counterpart, but the sum of both
represent only a small contribution to the total shielding.
The NChDE is completely negligible for the shielding of
hydrogen in this series of compounds. For H in HAt, DsisoH ¼
�0.06 ppm, and the total isotropic shielding is sisoH ¼
74.90 ppm.
el of approach. Values between parenthesis correspond to calculations

�eÞ
;Y

2

3

mpI

gY
M

ðp�pÞ
t;Y

NChDE

S DsY

2

3

mpI

gY
DMelec

t;Y

132.8221 0.0846 �1.8526 �0.1282
(�1.8510)

132.2877 0.0846

�0.1947 0.0001 �0.0002 �0.0002
(�0.0003)

�0.1947 0.0001

7 503.2302 0.2510 �19.0394 �1.6249
(�19.0659)

5 497.8387 0.2515

�1.3713 0.0006 �0.0023 �0.0023
(�0.0024)

�1.3711 0.0006

0 2922.1959 0.7173 �644.9436 �142.9047
(�644.5038)

2 2762.7068 0.7490

�14.6863 0.0012 �0.0588 �0.1057
(�0.0588)

�14.6594 0.0012

This journal is © The Royal Society of Chemistry 2018
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The analysis of the isotropic SR constant is unnecessary, as it
would be completely analogous to that of the perpendicular
contribution to the SR tensor performed above. This occurs
because the parallel component of MY is always exactly zero for
linear molecules. Nevertheless, as its isotropic value is related to
the isotropic shielding constant, some remarks must be done.
The contributions DMS(e–e)

Y are more important than DML(e–e)
Y , as

it was shown in Section 4.1. In the special case of At, the NChDE
must be included in the 4-component RPA calculations. When

a PNM is used, a value of
2
3
mpI
gAt

Melec
t;At ¼ �40:87 ppm is obtained,

whereas it becomes �183.78 ppm when a GNM is employed.
Although the NChDE has an important contribution to

sisoAt in the HAt molecule (DsisoAt y �645 ppm, whereas sisoAt y
18 174 ppm), the SR constant of this nucleus cannot be calcu-
lated with a PNM, at least at the RPA level of approach (DMt,At

y �40.15 kHz, whereas Mt,At y �50.10 kHz).
Finally it can be seen in Table 5 that

2
3
mpI
gAt

DMt;At ¼ �142:90 ppm, whereas DsisoAt ¼ �644.94 ppm. If

we consider the relation between isotropic SR and shielding
constants of eqn (15), the difference of almost �502 ppm must
Fig. 5 Relativistic spin-rotation values of both nuclei in HX molecules
employing different DFT functionals are shown. In addition, PZOA and RP
Mt in the NR limit. All calculations were performed using the GNM, and th
in HBr),61 �290.83(8) (Br in HBr),61 49.22(22) (H in HI)62 and �351.1(3) (I i
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be originated in the NChDE on satomAt� ,
1
2c

nS�iso
At and

1
2c

n
atom;S
At� .

Those contributions are �554.33 ppm, �218.30 ppm and
�270.55 ppm, respectively (see Table 4). As expected, applying

the model M–V we found that DsatomAt� þ D
1
2c

nS�iso
At � D

1
2c

n
atom;S
At�

gives �502 ppm.
4.5 Electron correlation effects

It is already known that the inuence of electron correlation on
both properties,M and s, is not vanishingly small.16,51–55 For this
reason we want now to have an estimation of how large is the
effect of electron correlation when it is included on top of the
NChDE.

On the other hand, it was also proposed that one should
consider a likely relation among the electron correlation and
relativistic effects.51,56–60 This relation was recently shown to be
not independent one to the other.22,54 So, it may be the case that
the electron correlation and the NChDE are also dependent
each other.

We have calculated both properties employing the set of the
DFT functionals just mentioned. Their results are then
(X ¼ Br, I, At). Results at PZOA and RPA levels of approach and also
A results with c ¼ 30c0 are displayed in order to show the behavior of
e results are given in kHz. Experimental values (in kHz) are: 41.27(31) (H

n HI).62

This journal is © The Royal Society of Chemistry 2018



Fig. 6 Relativistic isotropic shielding constants of both nuclei in HXmolecules (X¼ Br, I, At). Results at PZOA and RPA levels of approach and also
employing different DFT functionals are shown. In addition, PZOA and RPA results with c ¼ 30c0 are displayed in order to show the behavior of
siso in the NR limit. All calculations were performed using the GNM, and the results are given in ppm.
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compared with those of the formalism of relativistic polariza-
tion propagator at the PZOA and RPA levels of approach.

It is worth to mention that the effect of using different
optimized geometries for the HAt molecule (see Table 6) is
analyzed in Section 4.7.

In Fig. 5 and 6 we observe the size of relativistic and electron
correlation effects on SR constants and isotropic shieldings. All
values in both gures were obtained employing GNM. It is also
observed that, in all cases (but not for H in HBr), the DFT values
are always smaller than the RPA ones. In addition, it is clearly
shown that the relativistic effects at RPA level (given by the
difference between the relativistic RPA values and their equiv-
alent NR RPA which were obtained for c ¼ 30c0) are positive and
directly proportional to ZX. This behavior is similar for both
properties, Mt,Y and sisoY .

In the special case of Mt,At, the relativistic RPA value is
�50.10 kHz (employing GNM), and all DFT values are between
�540 kHz and�400 kHz (see Table 6). This is in agreement with
previous results of Komorovsky and co-authors.53 For sisoAt , the
RPA calculation (with GNM) gives a result of 18 174.03 ppm,
whereas the DFT values (also with GNM) are between
16 525 ppm and 17 078 ppm. It means that correlation effects
are much more important for Mt,At than for sisoAt .
This journal is © The Royal Society of Chemistry 2018
The analysis of electron correlation effects within the
polarization propagator theory may start considering the
zeroth-order or PZOA level of approach and the consistent
rst order or RPA.37 The second-order level of approach or
SOPPA is not included here because it is not available in the
DIRAC code.

In Fig. 5 we show the behavior of Mt,X and Mt,H in the
whole set of HX molecules. In the case of Mt,X the PZOA
approach gives similar values in both regimes, but the relativ-
istic RPA does give a value for X¼ At that is far away from its NR
counterpart and all DFT functionals. On the other hand, for
hydrogen, the pattern of both, the NR PZOA and NR RPA is
opposite to that of the relativistic PZOA and RPA. A similar
pattern is found for sisoH though this time the pattern of the
relativistic PZOA and RPA for values of sisoX is quite similar to the
corresponding DFT values (see Fig. 6). The difference between
the patterns of Mt,X and sisoX for X ¼ At is due to the contri-
bution of the second term of eqn (15), the atomic contribution,
which makes that the RPA value of sisoAt follows the same
tendency as its equivalent DFT values.

On the other hand, the fact that the RPA value of ML(e–e)
At is

much smaller than its equivalent in DFT makes that the RPA
RSC Adv., 2018, 8, 20234–20249 | 20245
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value of Mt,At is also much smaller, in absolute value, than the
DFT ones (see ESI†). This explains what is shown in Fig. 5.

As can be seen in Table 6 the electron correlation on the
NChDE of both, Mt,At and sisoAt follows the same trend from
PZOA to RPA as from PZOA to any DFT. The main difference is
that the RPA values are little exaggerated. The same behavior is
shown in the ESI† for HBr and HI.

In the case of the NChDE on Mt we observe that the RPA
value of DMt,At is�40.15 kHz, and DFT results are between�12
kHz and�21 kHz, depending on the employed functional. These
results indicate that a proper analysis of the NChDE of theMt,At

in heavy-element-containingmolecules must include correlation
effects. DMt,At is of the order of 5% for the PBE0 level of theory.

On the other hand, the RPA value of DsisoAt is �645 ppm, but
its values for different functionals are between�597 ppm and
�564 ppm. These results indicate that the NChDE in sisoAt are,
in relative terms, less inuenced by correlation effects than
the NChDE in Mt,At. This behavior is explained by the fact
that the NChDE on shieldings is mostly given by DsatomY (as it
was shown in Section 4.3) and the fact that the shielding of
free atoms is almost not inuenced by correlation effects. In
this case DsisoAt at PBE0 level is about 3%.

The correlation effect that inuence the total NChDE does
reduce it in both properties. For At, employing the PBE0 func-
tional, Dsiso is reduced in 8.12% but in DMt its reduction is of
Table 7 Dirac–Coulomb–Kohn–Sham-DFT calculations of nuclear spi
molecule, employing two different internuclear distances

d(Å) LDA KT2 K

Mt,At [kHz]
PNM 1.7209 �496.6202 �459.2587 �
GNM �508.8192 �475.3626 �
NChDE �12.1990 �16.1038 �
PNM 1.7486 �515.1978 �473.6118 �
GNM �527.7124 �490.3322 �
NChDE �12.5146 �16.7204 �

Mt,H [kHz]
PNM 1.7209 86.7008 108.5049 11
GNM 86.6470 108.4310 11
NChDE �0.0538 �0.0739 �
PNM 1.7486 87.8273 111.1163 11
GNM 87.7737 111.0420 11
NChDE �0.0536 �0.0743 �

siso
At [ppm]

PNM 1.7209 17 275.7605 17 499.2449 17
GNM 16 712.2401 16 907.5696 16
NChDE �563.5204 �591.6753 �
PNM 1.7486 17 121.2399 17 360.2991 17
GNM 16 556.2251 16 765.9612 16
NChDE �565.0148 �594.3379 �

siso
H [ppm]

PNM 1.7209 58.6675 68.244 70
GNMss 58.6459 68.2163 70
NChDE �0.0216 �0.0277 �
PNM 1.7486 59.6896 69.9431 72
GNM 59.668 69.9155 72
NChDE �0.0216 �0.0276 �

20246 | RSC Adv., 2018, 8, 20234–20249
49.01%. In other words, both, the NChDE and the correlation
effects are not independent each other, as one may expect from
our nding that the NChDE is almost purely relativistic,
together with some previously published results where it was
shown that correlation effects are not independent of relativ-
istic effects.22

In the ESI† we give a table similar to Table 6, where results of
calculations ofMt and siso for the HBr and HImolecules at RPA
and DFT levels of approach are given. In that cases, a similar
behavior is found though much reduced in both, absolute and
percentage values.
4.6 Contributions of (SS|SS) integrals and Gaunt
interactions

Given that the NChDE are relatively small forMt,At and sisoAt , we
want to go one step further and analyze how large are the
contributions of the two-electron (SS|SS) integrals and the
electron–electron Gaunt interactions in both properties.

ForMt,At and using GNMwe observe in Table 6 that the largest
contribution appears at RPA level of approach, which is of the
order of 7%. At PBE0 its contribution is less than 0.1%. Further-
more the addition of both contributions, i.e. the (SS|SS) integrals
and the Gaunt interactions, to the NChDE gives a total variation of
the order of 1.5% at both levels of theory, RPA and PBE0.
n-rotation constants and isotropic shieldings of At and H in the HAt

T3 PBE PBE0 BP86

464.0807 �486.2404 �378.4707 �504.2249
482.5742 �501.5918 �398.7274 �519.0410
18.4934 �15.3513 �20.2567 �14.8161
477.4298 �503.0270 �387.7653 �522.0403
496.7065 �518.9058 �408.9899 �537.3335
19.2766 �15.8787 �21.2245 �15.2931

3.8844 97.3378 100.0081 97.2126
3.8095 97.2796 99.9353 97.1555
0.0749 �0.0582 �0.0727 �0.0571
6.8943 98.9913 102.3894 98.7845
6.8193 98.9336 102.3158 98.7279
0.0749 �0.0577 �0.0735 �0.0565

465.1341 17 334.9283 17 696.7445 17 258.2627
868.1533 16 758.3969 17 105.0952 16 683.6181

596.9808 �576.5314 �591.6493 �574.6446
328.5135 17 185.8907 17 581.0419 17 102.6616
727.985 16 606.8817 16 985.2613 16 525.8056

600.5285 �579.009 �595.7806 �576.856

.3058 63.3212 63.9706 63.3368

.2789 63.2993 63.9433 63.3155
0.0269 �0.0219 �0.0273 �0.0213
.1216 64.5404 65.4644 64.5248
.0952 64.5189 65.437 64.504
0.0264 �0.0215 �0.0274 �0.0208

This journal is © The Royal Society of Chemistry 2018
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In the case of the isotropic shielding of At, the contribution
of both (SS|SS) integrals and Gaunt interactions at both, RPA
and PBE0 levels of theory, is close to �0.15%. In this case its
contribution to the NChDE is x0.3% at RPA and x0.37% at
PBE0.

We should stress here that the contribution of Gaunt inter-
actions are a little bit larger than the contributions of (SS|SS)
integrals.
4.7 Internuclear distance

As it was expressed in Sections 3 and 4.5, all the calculations
that involve the HAt molecule were performed employing
different optimized geometries according to different levels of
theory (RPA or the chosen DFT functionals). An analysis of the
effects of the variation of distances in the calculations of
shieldings and SR for the HAt molecule must therefore be given.

In Table 7 we display the values of SR and isotropic shield-
ings of H and At, employing the smallest and largest internu-
clear distances optimized within the DFT level of approach:
1.7209 Å (KT3) and 1.7486 Å (BP86) (see Table 6).

As can be seen, the inuence of the variation of d(H–At) on
the NChDE of both properties and also on the properties
themselves is very small. It means that the main results of
Section 4.5 are still valid considering this effect.

Whereas it should be interesting to analyze in more detail
the importance of the effect of varying the internuclear distance
on SR and shieldings (it could give insights about vibrational
effects) it is out of the scope of the present work.
5 Concluding remarks

This work was focused on getting new insights about the
electronic origin and the size of the NChDE on spin-rotation
constants (for the rst time), and also on nuclear magnetic
shieldings. We also investigated the effect of electron corre-
lation and electron–electron Gaunt interactions on both
response properties, and whether such effects are related each
other.

We have applied several recent theoretical tools that make
easier the analysis. One of them is the possibility to separate the
four-component expression of response properties, within the
relativistic polarization propagator formalism, into two terms:
the (e–e), which is paramagnetic-like due to it goes exactly to the
paramagnetic contribution when c / N, and the (p–p), which
is diamagnetic-like because it goes to the diamagnetic contri-
bution when c / N. We also applied the recent generalization
of the Flygare's relationship to the relativistic framework. This
relationship is such that the nuclear magnetic shielding of
a nucleus in a given molecular system can be expressed as the
sum of three terms: its spin-rotation constant, the shielding of
the nucleus in the free atom, and the last term that have two
new contributions: one that can be related, for linear molecules,
with the electronic spin part of the spin-rotation constant, and
the second one which is a response property for the nucleus in
the free atom.

Our main results are the following:
This journal is © The Royal Society of Chemistry 2018
(1) The (e–e) terms of both properties are more dependent of
the NChDE than the (p–p) ones.

(2) The NChDE on both properties are almost completely
relativistic in its origin.

(3) Given that, in the NR limit only ML(e–e)
t,Y and satom(p–p)

Y are
nonzero, DML(e–e)

t,Y and Dsatom(p–p)
Y are very small and

Ds
ðe�eÞ
t;Y ¼ mpI

gY
DMLðe�eÞ

t;Y :

(4) The following are the terms which mainly contribute to
the relativistic effects on

(a) Shielding constants:���Drels
atomðe�eÞ
Y�

���. mpI
gY

���DrelMSðe�eÞ
t;Y

���. mpI
gY

���DrelMLðe�eÞ
t;Y

���..

(b) Spin-rotation constants:
���DrelMSðe�eÞ

t;Y

���. ���DrelMLðe�eÞ
t;Y

���:
In the same manner, the following are the main contribu-

tions to the NChDE on
(a) Shielding constants:���Dsatomðe�eÞ
Y�

���. mpI
gY

���DMSðe�eÞ
t;Y

���. mpI
gY

���DMLðe�eÞ
t;Y

���..

(b) Spin-rotation constants:
���DMSðe�eÞ

t;Y

���. ���DMLðe�eÞ
t;Y

���:
(5) Results of calculations performed at relativistic DFT/PBE0

level of theory are the closest to the experimental values of spin-
rotation constants of Br and I. In the case of H the best repro-
duction of experimental values is given by the DFT/LDA
functional.

(6) Electron correlation effects are very important for spin-
rotation tensors. Values at DFT/PBE0 level of theory are eight
times the values at relativistic RPA level of theory for At in HAt.

(7) When both effects, electron correlation and the NChDE
are included altogether, the NChDE on Mt,At is 5% of its total
correlated value at relativistic DFT/PBE0 level of theory. In the
case of relativistic RPA calculations, the NChDE is 80%.

(8) From the fact that the NChDE mostly is a relativistic
effect, we can expect, and actually observe, that this effect is not
independent of the electron correlation.

(9) The introduction of (SS|SS) type integrals and electron–
electron Gaunt interaction modies a few percent of the NChDE
of both properties, and less than 0.3% of sisoAt .
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O. L. Malkina and V. G. Malkin, J. Chem. Phys., 2011, 134,
044111.

10 J. Autschbach, ChemPhysChem, 2009, 10, 2274–2283.
11 S. Moncho and J. Autschbach, J. Chem. Theory Comput., 2010,

6, 223–234.
12 A. F. Maldonado, C. A. Giménez and G. A. Aucar, J. Chem.
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