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Abstract

Identifying targets of antibacterial compounds remains a challenging step in antibiotic 

development. We have developed a two-pronged functional genomics approach to predict 

mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries 

containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus 
transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation 

signatures, identified from directional biases in insertions, revealed known molecular targets and 

resistance mechanisms for the majority of these. Because single gene upregulation does not always 

confer resistance, we used a complementary machine learning approach to predict mechanism 

from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II 
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as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that 

docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes 

these lytic natural products, showing the utility of our approach for nominating antibiotic 

mechanism of action.

The need for new antibiotics to treat hospital- and community-acquired bacterial infections 

has been widely publicized1. Nevertheless, antibacterial development has struggled to keep 

pace with emerging resistance. Multi-drug resistance in Gram-negative and Gram-positive 

pathogens has severely limited the effectiveness of major antibiotic classes, including 

fluoroquinolones, β-lactams, and glycopeptides2,3. The dwindling number of efficacious 

drugs to treat bacterial infections necessitates the development of better approaches to 

produce the next generation of antibacterials.

Target identification is a major bottleneck to advancing antibacterials through clinical 

development. It is crucial to identify the molecular target of a compound to rule out non-

specific mechanisms of action and guide structure-activity studies. Whole genome 

sequencing can provide the molecular target if resistant mutants can be raised to a 

compound. When this approach is not feasible due to compound limitations or fails due to a 

compound’s mechanism, other approaches must be used. Numerous strategies to 

characterize the mechanism of action of antibacterial compounds have been developed. 

These include biochemical approaches that compare how a compound affects incorporation 

of radiolabeled precursors into macromolecules (MMS assays, for macromolecular 

synthesis)4, imaging approaches that examine how compound treatment affects cytological 

profiles (BCP, for bacterial cytological profiling)5, and functional genomics strategies that 

systematically evaluate compound activity against arrayed over- and underexpression mutant 

libraries6,7. Functional genomics strategies can nominate individual molecular targets and 

resistance mechanisms, whereas the other biochemical approaches typically provide 

information about pathways only; however, arrayed libraries are time-consuming to make, 

expensive to maintain, and laborious to interrogate with new compounds as each library 

member is assayed individually.

We thought it might be possible to predict antibiotic mechanism of action using mutant 

fitness data from pooled Staphylococcus aureus transposon libraries. Next-generation 

transposon sequencing methods such as Tn-seq can map the locations of all transposon 

insertions in a pooled mutant library, and it is possible to assess the fitness of each gene 

knockout under a given condition by comparing sequence reads for that gene in treated and 

untreated samples8–11. Transposon libraries for Tn-seq analysis are typically prepared using 

a single transposon cassette that generates only inactivation mutants. However, we have 

developed a S. aureus transposon mutagenesis platform that includes a suite of bar-coded 

transposon cassettes with outward facing promoters11. Depending on the orientation of 

insertion, a transposon with an outward facing promoter that inserts proximal to a gene may 

upregulate it. Target upregulation is known to shift the minimum inhibitory concentrations 

(MIC) of many antibiotics and has been exploited previously to identify targets of 

antibacterial compounds by either: 1) testing upregulation mutants for a shift in MIC in an 

arrayed library format, or 2) selecting upregulation mutants from a pooled library by plating 
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on antibiotic, a strategy that achieves spatial separation of transposants12. While the latter 

strategy is efficient, it is very compound-intensive. We thought that if upregulation 

signatures could be clearly discerned in Tn-seq data, then direct analysis of antibiotic-treated 

library cultures would have substantial advantages over other methods in terms of efficiency 

and compound usage; moreover, Tn-seq data provides information concerning mutations 

that decrease fitness as well, which collectively could provide additional insights into 

mechanism and intrinsic resistance factors9,11,13. Because antibiotics having similar 

mechanisms can be clustered based on their inactivation mutant fitness profiles14, we 

thought it might be possible to use these profiles to predict the mechanism of action for 

unknown compounds in cases where upregulation signatures are insufficient.

We previously reported a S. aureus transposon library containing 690,000 unique transposon 

mutants, which was made by combining six sublibraries, each prepared using a different 

transposon cassette11 (Supplementary Table 1). The transposon cassettes contained outward-

facing promoters of different strengths to induce a gradient of gene expression levels when 

inserted in the correct orientation upstream of a gene12. To develop computational methods 

that use Tn-seq data to predict mechanism of action, we have treated the transposon library 

with 32 antibiotics with known mechanisms. We show that the known targets for many of 

the compounds, as well as other known and new resistance mechanisms, can be identified 

from directional biases in transposon insertions. We also show that inactivation mutant 

fitness data can be used to predict mechanism of action. In a striking validation of the latter 

approach, we have reassigned the mechanism of action of a family of bacteriolytic 

antibiotics called the lysocins.

RESULTS

Mutant fitness profiles were obtained for 32 antibiotics

We grew the high-density S. aureus transposon library in the presence of 32 different 

antibiotics (Fig. 1 and Supplementary Table 2) to obtain Tn-seq data (Fig. 2a). All major 

targets for broad spectrum antibiotics were represented. The cell wall biosynthetic pathway 

was particularly well represented and included inhibitors that prevent Lipid II biosynthesis 

by inhibiting intracellular enzymes in the peptidoglycan biosynthetic pathway (fosfomycin 

and D-cycloserine)15, by blocking lipid carrier recycling (bacitracin and amphomycin)16, 

and by sequestering the lipid carrier in other intermediates (wall teichoic acid export 

inhibitors)17,18. We also tested cell wall inhibitors that allow Lipid II synthesis, but block its 

assembly into crosslinked peptidoglycan. CDFI and DMPI act by preventing Lipid II export 

to the cell surface19; moenomycin, cefaclor, and oxacillin inhibit late-stage enzymes that 

polymerize or crosslink peptidoglycan15; vancomycin, ramoplanin, and lysobactin also 

inhibit late steps in peptidoglycan assembly, but do so by binding to Lipid II15. For other 

pathways, we included antibiotics representing several distinct mechanisms (Supplementary 

Table 2). For example, we included four mechanistically different protein translational 

inhibitors20: chloramphenicol and linezolid, which bind to the peptidyl transferase site in the 

50S subunit; tetracycline, which binds to the 30S subunit and prevents aminoacyl-t-RNA 

binding to the A site; and mupirocin, which prevents protein translation by inhibiting 

isoleucyl t-RNA synthetase. The three fatty acid biosynthesis (Fab) inhibitors we tested 
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(triclosan, cerulenin, and platensimycin) also inhibit different steps in the Fab pathway21. 

Treatment concentrations were chosen empirically by identifying at least one concentration 

that resulted in a moderate delay (three to five hours) in growth to stationary phase 

compared to the untreated control, as well as one concentration that resulted in a substantial 

delay (~20 hours). DNA was prepared for sequencing as previously described11. In general, 

we found that lower concentrations of antibiotic were useful for revealing compound-

susceptible mutants (negative selection) whereas higher concentrations selected for 

compound-resistant mutants (positive selection).

Insertion bias identifies upregulated genes

We reasoned that if gene upregulation conferred a fitness advantage in the presence of an 

antibiotic, we should observe both a strong bias in the orientation of insertions and an 

increase in the sequence reads ahead of the upregulated gene compared with the untreated 

control. We developed an automated method to identify upregulation signatures based on 

these expectations (Supplementary Fig. 1). The “upregulation signatures” potentially reveal 

molecular targets as well as other resistance mechanisms (Fig. 2 and Supplementary Fig. 2). 

While we recognize that a transposon promoter may upregulate a gene several kilobase pairs 

away from the insertion, especially if the genes are in the same operon, we assumed for this 

analysis that the genes proximal to strongly biased insertions were most likely to be 

upregulated. For non-essential candidate genes, if gene upregulation increases resistance to a 

compound, then inactivating the same gene should increase susceptibility to the compound, 

and we would expect very few reads in the treated sample compared to the control.

Gene upregulation signatures can reveal known targets

Several classes of upregulated genes previously implicated in antibiotic resistance were 

identified from upregulation signatures, including genes for known targets. For example, for 

fosfomycin we identified both alleles of murA22; for DMPI and CDFI we identified murJ, 

which encodes the Lipid II flippase19,23 (Fig. 2b); and for triclosan we identified fabI, which 

encodes enoyl-ACP reductase 24 (Supplementary Table 3). We also identified genes for other 

known resistance mechanisms such as efflux pumps (norA for ciprofloxacin25; lmrB2/3, 

emrA, and yhgE for platensimycin; lmrB2 for sorangicin), antibiotic modification genes 

(fosB, which encodes an enzyme that inactivates fosfomycin26), target modification genes 

(uppP, which encodes an enzyme that dephosphorylates undecaprenyl pyrophosphate, the 

target of bacitracin27), and genes encoding stress response systems (vraRS for cefaclor28). 

For daptomycin, a calcium-dependent lipopeptide antibiotic that disrupts membrane 

integrity29,30, we identified mprF (Fig. 2c), which encodes a polytopic membrane protein 

that attaches lysine to phosphatidylglycerol to modify cell membrane charge31. Consistent 

with this, other groups have identified genetic changes in both clinical and laboratory 

daptomycin-resistant isolates that increase MprF activity29,32. In the daptomycin-treated 

sample, we also identified other strong upregulation signatures for genes putatively encoding 

small proteins of unknown function (SAOUHSC_00969, SAOUHSC_02149, and 

SAOUHSC_02164).

We confirmed that upregulation signatures identify mutants for which increased fitness is 

due to increased expression of downstream genes in two ways. First, we raised resistant 
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mutants to four of the antibiotics on plates and identified colonies with transposon insertions 

in the promoter region of known target genes. Sequencing identified the specific location of 

the insertion as well as the promoter found in the transposon construct, and semi-quantitative 

RT-PCR confirmed increased expression of the target genes compared to the wildtype 

control (Supplementary Fig. 3). For the genes of unknown function identified as conferring a 

survival benefit in the presence of daptomycin, we showed that overpression from a plasmid 

increased resistance to daptomycin, but not to several other antibiotics tested, consistent with 

the Tn-seq data that showed an upregulation signature only for daptomycin (Supplementary 

Table 3; Supplementary Fig. 4 and 5). Inactivation mutants of two of the genes were also 

tested and found to have increased susceptibility to daptomycin. We conclude that 

upregulation signatures in Tn-seq data can identify known targets as well as other resistance 

mechanisms for many antibiotics even when the mutant pools are large and complex.

Genome-wide fitness profiles can predict mechanism

We sought alternative ways to use the Tn-seq data to predict antibiotic mechanism of action 

because upregulation of a gene cannot always identify a target. For example, some 

antibiotics do not have protein targets. Others may have protein targets, but if these are part 

of a larger complex, and if the target is not the limiting component, then upregulation of its 

gene may not confer a fitness advantage. For other targets, overexpression may be toxic and 

upregulation may only confer a fitness advantage under a narrow range of antibiotic 

concentrations, which may not have been tested. We wondered whether it would be possible 

to predict mechanism of action of an antibiotic by comparing its mutant fitness profile to the 

profiles of a panel of antibiotics with known mechanisms (Fig. 3a). To test this possibility, 

we assigned a normalized fitness value to each gene based on the change in number of reads 

mapping to it upon antibiotic treatment compared to an untreated control. Reads for all six 

transposons were combined to obtain these fitness values, which ranged from 0 (depleted 

compared to the control) to 1 (enriched). Once fitness values were assigned, we explored a 

supervised machine learning approach that would allow us to categorize the antibiotics used 

in our training set into different classes based on their known mechanisms (Supplementary 

Table 4). We found that including mainly the data from library samples grown in antibiotic 

concentrations that did not severely inhibit growth gave the most consistent results. We 

compiled a list of the genes with the highest and lowest fitness scores from each Tn-seq file, 

resulting in a set of 342 genes that were used with the K-nearest neighbors’ algorithm (k=3) 

to predict mechanism. To validate the method, we used an exhaustive leave-one-out cross-

validation approach in which all samples but one were used as the training dataset while the 

remaining sample was used as the test dataset. The algorithm predicted the correct pathway/

mechanism 72% of the time, a respectable outcome (Fig. 3b and Supplementary Table 5); 

however, there were distinct differences in prediction accuracies depending on the pathway. 

For some classes of inhibitors, e.g., fatty acid synthesis inhibitors and RNA polymerase 

inhibitors, all predictions were correct at all concentrations, while for others, e.g., the DNA 

replication inhibitors and folate pathway inhibitors, the predictions were mostly incorrect. 

This likely reflects the multitude of cellular processes affected during folate depletion and 

replication inhibition.
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The lysocins were predicted to perturb Lipid II flux

The best test of a method for predicting antibiotic mechanism of action is whether it 

provides useful information on a compound having an unknown mechanism. In the process 

of isolating gliding bacteria to discover novel anti-infectives, we isolated a strain of 

Lysobacter enzymogenes and found strong antibacterial activity in crude extracts active 

against several Gram-positive bacteria. Following activity-guided fractionation, we isolated 

three natural products with m/z 809.4416 [M+2H]2+, m/z 816.4492 [M+2H]2+, and m/z 
823.4570 [M+2H]2+. We did not initially recognize that one of these compounds 

corresponded to the recently reported lysocin E33 and so we proceeded with purification, 

structure elucidation, and evaluation of the antibacterial profiles of all three compounds (Fig. 

4a and Supplementary Note). After structure elucidation, the compound with m/z 809.4416 

[M+2H]2+ (calculated for C75H118N20O20:809.4410) turned out to be lysocin E, while the 

compound with m/z 823.4570 [M+2H]2+ (calculated for C77H122N20O20: 823.4567) is 

lysocin I. The third natural product displaying m/z 816.4492 [M+2H]2+ (calculated for 

C76H120N20O20:816.4488) is a new lysocin derivative, lysocin J33, that has so far only been 

described in a patent34 with no evidence of its isolation. Lysocins are peptolides that share a 

common skeletal backbone consisting of 12 amino acids (2 x L-Thr, 2 x D-Arg, L-Ile, L-

Leu, L-Ser, L-Glu, D-Gln, D-Trp, Gly and N-Me-D-Phe) where the absolute configuration 

was determined by Advanced Marfey’s Analysis35. Structurally, these three compounds 

differ in the length of the 3-hydroxy fatty acid chain linked to the amino group of L-Thr1.

Lysocin E was previously reported to be active against Gram-positive bacteria, including 

Mycobacterium spp., in vitro and in silkworm infection models33. We found in vitro activity 

in the same concentration range as reported and confirmed lysocin J and lysocin I as having 

similar in vitro potency (Supplementary Table 6). While active against M. smegmatis, S. 
aureus, S. epidermidis, and some other Gram-positive bacteria, the compounds were 

virtually inactive against Enterococcus spp., Streptococcus pneumoniae, Gram-negative 

bacteria and yeast/fungi (Supplementary Table 6). Due to their potent activity against 

laboratory S. aureus strains, including MRSA and VISA (vancomycin-intermediate S. 
aureus), we tested lysocins against clinical isolates of S. aureus and confirmed their potency 

(MIC50 1–2 μg/mL; n =15) (Supplementary Table 7). The already reported bactericidal and 

bacteriolytic effects of lysocin E33 were also observed for lysocin J and lysocin I. Lysis was 

extremely rapid, with the density of an S. aureus culture (in cfu/mL) dropping by more than 

five logs in two hours (Fig. 4b and Supplementary Fig. 6). Strong bactericidal activity was 

also observed against mycobacteria (Supplementary Fig. 7). Despite these bacteriolytic 

properties, the compounds were not hemolytic against human red blood cells at 

concentrations well above the MIC (25x) against S. aureus (Supplementary Fig. 8). 

Therefore, the compounds are not non-specific membrane disruptors, but recognize features 

of bacterial cell surfaces as a prelude to lysis.

Based on high level resistance of menA null mutants with some supporting biochemical 

data,33 it was proposed that the membrane target of lysocin E is menaquinone, an electron 

carrier important for aerobic synthesis of ATP. Mutants in menaquinone biosynthetic genes 

have a reduced membrane potential, low ATP levels, and other changes in metabolism that 

result in very slow growth; they also display reduced susceptibility to aminoglycosides and 

Santiago et al. Page 6

Nat Chem Biol. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell wall-active antibiotics, including the Lipid II binder nisin (Supplementary Fig. 9)36–38. 

We tested several other electron transport system mutants to determine if the resistant 

phenotype was specific to men pathway nulls. Five of nine mutants tested, menA, menB, 
menH, hemX, and hemB, showed lysocin E resistance in spot dilution assays (Fig. 4c and 

Supplementary Fig. 10a). In liquid culture, the menA, menB, and hemB mutants (Fig. 4d 

and Supplementary Fig. 10b), which have a small colony variant phenotype37, showed high 

level resistance while the other two mutants, which formed larger (i.e., faster growing) 

colonies, showed lower level resistance. Therefore, the resistant phenotype was not specific 

to menaquinone depletion, but was also observed for mutants defective in the biosynthesis of 

heme, the cofactor used for the cytochromes that act as terminal oxidases in the electron 

transport chain. Therefore, we questioned whether the primary membrane target of the 

lysocins is, in fact, menaquinone. We tried to use macromolecular synthesis inhibition to 

identify the pathway affected by the lysocins, but lysis occurred so rapidly that all pathways 

were affected and the results were inconclusive, as reported 33.

We treated the transposon library with two concentrations of the three lysocin compounds to 

obtain mutant fitness profiles that might provide additional information about the 

mechanism of action. Profiles were obtained for two concentrations of each compound 

(0.25x and 0.5x MIC). Application of the machine learning algorithm predicted an 

“uncertain” mechanism for two of the samples, but the other four were predicted to perturb 

Lipid II pools. Compounds in the training set with this mechanism include bacitracin, which 

depletes Lipid II, and ramoplanin, which accumulates Lipid II. Although the lysocins are 

rapidly lytic, we observed a modest accumulation of Lipid II at sub-MIC concentrations 

(Supplementary Fig. 11a)39. Lipid II accumulation can only occur if MurJ, the Lipid II 

flippase is blocked, in which case accumulation is intracellular, or if Lipid II utilization on 

the cell surface is prevented because the compound in question somehow blocks the action 

of the polymerases that make peptidoglycan from Lipid II (Fig. 4e). We decided to test 

whether lysocin E prevents Lipid II polymerization using a prototypical peptidoglycan 

polymerase, S. aureus SgtB40.

The lysocins bind to Lipid II

To obtain the necessary substrate to assess mechanism, we isolated S. aureus Lipid II using a 

two-step extraction procedure41,42. We then monitored its polymerization by SgtB at 0, 4 

and 8 μM lysocin E as the Lipid II concentration was varied (Fig. 5a). The peptidoglycan 

polymer was labeled with biotin to enable detection42. There was no reaction in the presence 

of lysocin E until the Lipid II concentration exceeded half the inhibitor concentration (Fig. 

5b, 5c and Supplementary Fig. 12). The distinctive shape of the inhibition curves is 

characteristic of compounds that bind Lipid II tightly: only after free substrate becomes 

available, which occurs at an inhibitor:substrate ratio that reports on the stoichiometry of 

binding, does peptidoglycan polymer form43,44. In the case of lysocin E, the inhibition 

curves are consistent with an antibiotic-to-substrate binding stoichiometry of 2:1.

We developed a new affinity capture assay to confirm direct binding of lysocin E to Lipid II. 

To do so, we prepared a Lipid II affinity resin by first exchanging the terminal D-Ala in S. 
aureus Lipid II for biotin-D-Lys using S. aureus PBP439,45 and then attaching biotinylated 
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Lipid II to streptavidin-derivatized magnetic beads (Fig. 5d). Lysocin E was added to the 

beads, which were washed extensively. We found that we could elute intact lysocin E from 

the Lipid II affinity resin using 6 M guanidinium thiocyanate (GTC; Fig. 5e). In contrast, 

lysocin E added to control beds that lacked Lipid II remained in the flow-through 

(Supplementary Fig. 13). Lysocin E bound to the Lipid II affinity resin could be competed 

off the resin by adding Lipid II to the wash buffer, but not by adding menaquinone (Fig. 5e). 

As it was previously shown that lysocin E can interact with menaquinone33, these results 

imply either that Lipid II and menaquinone can bind simultaneously to different parts of 

lysocin E in a non-competitive manner or, if the binding sites overlap, that menaquinone 

binds much more weakly than Lipid II. We note that the kinetic data and the observation that 

lysocin E is retained on the affinity column through repeated washings are consistent with a 

high affinity interaction with Lipid II. Taken together, our studies indicate that the molecular 

target of the lysocins in bacterial membranes is Lipid II, consistent with the predicted 

mechanism. The high level resistance of small colony variants lacking menaquinone or heme 

may in part reflect low Lipid II levels because we found this precursor was almost 

undetectable in these mutants (Supplementary Fig. 11b).

DISCUSSION

We have reported a functional genomics platform to predict compound mechanism of action 

that makes use of upregulation as well as inactivation mutant fitness data. Upregulation 

signatures were found more often in antibiotic samples treated at relatively high 

concentrations. In part, this is because we used a stringent method requiring strong positive 

selection pressure to identify upregulated genes. Work is underway to establish new 

computational methods that include statistically valid approaches to set cutoffs so that less 

obvious upregulation signatures can be confidently identified. Nevertheless, the results show 

that gene upregulation signatures in complex Tn-seq data can be used to identify both 

antibiotic targets and important mechanisms of resistance.

Several antibacterial compounds tested, including vancomycin, ramoplanin, lysobactin, 

amphomycin, and bacitracin, do not interact directly with protein targets, so gene 

upregulation signatures that report on targets would not be expected. Additionally, some 

antibiotics, e.g., β-lactams, may have several cellular targets, and upregulation of only one of 

them may not confer a sufficient fitness advantage to be detected. This may explain why we 

did not detect upregulation signatures for penicillin-binding proteins for the β-lactams we 

tested. Other antibiotics, e.g., ribosome binders, bind to multicomponent complexes, and 

upregulation of a single component may not provide a fitness advantage unless it is limiting 

for complex formation or can titrate the antibiotic away from the complex without creating 

toxicity. These inherent limitations in single-gene overexpression for target identification 

prompted us to explore alternative computational approaches to predict mechanism from 

inactivation mutant fitness data, and we found that a supervised machine learning approach 

worked well. As Tn-seq data provides information about the fitness of every non-essential 

gene in the system under a given perturbation, one might expect similar perturbations to give 

similar fitness profiles. The resulting data is likely more complicated, however, because 

some antibiotics have more than one target and some mutants may be responsive to a 

compound’s physical properties rather than its mechanism. For example, changes in cell 
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envelope properties may increase fitness by reducing cell penetration, regardless of the 

specific molecular target of a compound46. Moreover, selection pressures can vary 

considerably with concentration, and technical challenges in standardizing selection 

pressures can complicate comparisons of antibiotics having the same mechanism. Having 

multiple concentrations for each antibiotic is ideal, but for this study we opted for a 

compromise between the number of antibiotics tested and the number of concentrations 

tested for each. Our validation rate of 72% compares favorably with a similar algorithm used 

in yeast47, but we found that the prediction accuracy varied greatly depending on the target 

pathway, with predictions for fatty acid biosynthesis inhibitors and for RNA polymerase 

inhibitors being highly accurate and predictions for DNA synthesis inhibitors being largely 

incorrect. Evidently, changes in mutant fitness profiles are more diagnostic for some 

pathways than others and it may be possible to extract this diagnostic information from the 

data.

In a remarkable example of the fitness profiling approach, we predicted that the lysocins, a 

family of bacteriolytic lipodepsipeptides, perturb Lipid II pools, and follow-up experiments 

showed that these compounds are Lipid II binders. Our training set contained three cyclic 

peptides that bind Lipid II, and was generally overweighted in compounds that perturb Lipid 

II pools, but we do not think bias in the training data explained the lysocin predictions. The 

prediction accuracy for fatty acid and RNA polymerase inhibitors was unaffected by the 

large numbers of samples that affect Lipid II pools. Moreover, we had seven datasets in total 

for daptomycin and polymyxin, which are also cyclic peptides, and only one of the seven 

samples was predicted to perturb Lipid II pools. Therefore, the high prediction accuracy for 

the lysocins again suggests that the data contain information diagnostic for this mechanism.

Our studies indicate that selectivity of the lysocins for bacterial membranes derives from 

their ability to target Lipid II rather than menaquinone. Lipid II levels are very low in the 

menaquinone and heme pathway nulls, which may partly explain their lysocin resistance. 

However, we cannot exclude the possibility that the membrane potential plays another role 

in the mechanism of action of these compounds. There are many known Lipid II binders, but 

few are rapidly lytic except at concentrations well in excess of their MIC48. The sequelae to 

Lipid II binding vary depending on structural features of the antibiotics. Vancomycin, for 

example, acts as an enzyme inhibitor that prevents Lipid II utilization and glycan strand 

crosslinking, whereas nisin forms 2:1 complexes with Lipid II that assemble into higher 

order structures in the membrane, resulting in depolarization49. For nisin and some other 

Lipid II binders, especially those having a net positive charge, it is possible that there is an 

interaction with the membrane potential that facilitates their mechanistic effects48,49. Further 

study will be required to understand what happens after Lipid II binding that explains the 

lytic behavior of the lysocins.

To summarize, we have demonstrated that Tn-seq libraries containing both upregulation and 

inactivation mutants provide a rich source of information about compound mechanism of 

action. While we have treated upregulation and inactivation mutants separately here, we 

suggest that prediction accuracy can be improved by developing a computational approach 

that combines upregulation and inactivation mutant fitness data to generate a prediction that 

factors in both. We also note that the ability to detect resistance mechanisms in addition to 
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targets, either through upregulation signatures or increased fitness of inactivation mutants, 

may be useful in guiding antibiotic development.

ONLINE METHODS

Materials

Native Lipid II was prepared from Staphylococcus aureus as previously described41,42. S. 
aureus SgtB Y181D and S. aureus PBP4 were purified as reported previously40,50. 

Biotinylated D-Lysine (BDL) was prepared as described39. Non-stick conical vials and pipet 

tips for enzymatic reactions and Fmoc-D-Lys(biotinyl)-OH were purchased from VWR. All 

other chemicals were purchased from Sigma Aldrich unless otherwise noted.

Treatment and sequencing of the transposon library

We created a transposon library in S. aureus HG003 by phage-based transposition of six 

different transposon constructs as previously described11. Library aliquots stored at −80°C 

were thawed, diluted to OD600 = 0.2, and incubated for 1 hour with shaking at 30°C. This 

culture was diluted to 2 × 105 cfu/mL in cation-supplemented TSB (TSB with 25mg/L Ca2+ 

and 12.5mg/L Mg2+) with the desired antibiotic as described previously13. Samples at 

several antibiotic concentrations above and below the MIC were incubated with shaking at 

37°C to OD600 of 1.

For each antibiotic, we processed at least two samples, one that displayed a moderate (three 

to five hours) and one that displayed an extreme (~20 hours) delay in growth to stationary 

phase. Samples were prepared for NGS as previously described11 and sequenced at the 

Harvard Biopolymers Facility or at the Tufts University Core Facility for Genomics on a 

High-Seq 2500. The sequencing data was split by transposon construct barcode, filtered for 

quality, trimmed down to the genomic sequence, and mapped to the genome using the 

Galaxy software suite51,52. SAM files were converted using Tufts Galaxy Tn-Seq software 

(http://galaxy.med.tufts.edu/) into tab-delimited hopcount files, which were converted into 

IGV-formatted files using in-house python scripts as previously described11,13.

Identification of upregulated genes

To identify upregulated genes, the IGV data sets were analyzed using custom python scripts 

(Supplementary Fig. 1). We separated the sequencing reads by the genomic strand they 

mapped to and identified the 100–200 TA sites that had the greatest increase in reads in one 

strand in the treated sample compared to the control. We defined an upregulation signature 

as one 135 bp genomic window or two consecutive windows with at least three TA sites 

enriched in the same strand with no intervening sites enriched in the opposing strand. An 

upregulation signature was considered a hit if there was a proximal gene in the same 

orientation as the promoter within the transposon

Using machine learning to predict mechanism of action

To create a tool to predict the mechanism of action of unknown antibiotics, we first selected 

training datasets. We excluded compounds without specific targets or with uncertain 

mechanisms (daptomycin, polymyxin, CCCP, and gramicidin A). We also removed data files 
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that had too little or too much antibiotic selective pressure, defined as those with fewer than 

10 genes or more than 1000 genes at least 4-fold depleted in reads compared to the control 

file. For these calculations, the control data was an average of untreated datasets from 14 

separate experiments to minimize the effects of jackpots. After this pruning, the training 

dataset had 43 files representing 25 antibiotics. Next, we developed gene fitness scores to 

compare the relative importance of genes under the different treatments. To avoid 

highlighting cases in which small read differences yield large fold-changes, we adjusted the 

read counts of genes with fewer than 0.0001x the total number of reads in the sample up to 

that value. After this correction, we calculated an initial fitness value (f) by dividing the 

number of reads in a gene by its length (l) and multiplying by the the total treated: control 

reads ratio. We then ordered genes by f and ranked them from 0 to 1, with uniform intervals 

to normalize the fitness values. We have included a supplemental comma-separated file with 

the fitness values for each gene under each antibiotic treatment, along with files tabulating 

the gene-by-gene sequencing read counts for the antibiotic-treated and untreated samples 

(Supplementary Data).

We then set up a K-nearest neighbors algorithm. From each file in the training set, our 

custom python program selected the 10 genes most depleted of reads compared to the 

control, excluding genes with fewer than 100 reads in the control,,and the 15 genes most 

enriched in sequencing reads, provided they were at least 4-fold enriched and had at least 

100 reads. Once the gene set had been curated, the program arrayed the normalized fitness 

values for each gene from each training set file. This “fingerprint” array and the mechanism 

of action categories listed in Supplementary Table 3 were then fed into the K-nearest 

neighbors (KNN) function from the Scikit-learn Python library53. We chose to use the three 

nearest neighbors for the prediction, as a smaller k led to more ties between categories and a 

higher k biased the tool to favor larger categories.

For leave-one-out validation, each dataset in the training set was re-labeled as an unknown, 

the genes contributed solely by the left-out file were removed from the “fingerprint” array, 

and the mechanism of action was predicted using the KNN algorithm (Supplementary Table 

4). The algorithm reports up to three possible mechanisms for the antibiotic and their 

respective probabilities. We classified the validation results as correct or incorrect based on 

the most probable predicted mechanism. However, if the highest probability was less than 

0.4, the prediction was labeled as uncertain.

Semi quantitative RT-PCR validation of gene upregulation

Selection for resistant mutants—~107 HG003 cells were plated on TSB agar 

containing antibiotics: 1 μg/mL DMPI, 1 μg/mL CDFI, 50 μg/mL fosfomycin, or 50 μg/mL 

D-cycloserine. After incubation at 37°C for 16–20 hours, ~20 colonies were selected from 

each plate and their resistant phenotypes were reconfirmed. The colonies were screened by 

PCR to identify transposon insertions in the target genes: murJ (SAOUHSC_01871), fosB 
(SAOUHSC_02609), and ddL (SAOUHSC_02318). The promoter regions of two mutants 

from the CDFI/DMPI, fosfomycin, and D-cycloserine plates were sequenced to identify the 

transposon insertions.
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Semi quantitative RT-PCR to measure expression of target genes—Wildtype 

HG003 and one confirmed mutant from each selection were grown in TSB overnight at 

37°C, diluted 100-fold in fresh TSB, and then incubated to OD600 ~ 0.5–0.7. Then, total 

RNA from each culture was isolated using the RNeasy Kit (Qiagen) and quantified by 

NanoDrop. Using specific primers for each target gene and gyrA (as a control), semi-

quantitative qRT-PCR was performed with One-step real-time RT-PCR (Thermo Fisher 

Scientific). The PCR settings were the following: 1) reverse transcription (48°C/30min), 2) 

PCR amplification (94°C/1min, (94°C/15s, 50–65°C/30s, 68°C/1min per 1kb)x40, 68°C/

5min). Primer sequences (5′→3′) are as follows: murJ-for: 

GACAGCAGGTGTACCATTAG, murJ-rev: CTTGGAATATCCCTCTCCATGTC, fosB-for: 

GCAGGCCTATGGATTGCTTTA, fosB-rev: GTTCTCAAGTGTGCCAGTATGT, ddL-for: 

CCAGCTGACTTAGACGAAGATG, ddL-rev: CTGTTTATCCTGGTGACGTTCT, gyrA-

for: CGGTGTCATACCTTGTTC, gyrA-rev: GTGTTATCGTTGCTCGTG. Reaction 

products were visualized on a 2% agarose gel with ethidium bromide staining and analyzed 

using ImageJ 1.48v.

Bacterial growth curves

For validation of mutants found to confer resistance to daptomycin in the TnSeq data, 

transposon mutants from the Nebraska transposon library54 were transduced into HG003 

using Φ11. For the upregulation constructs, SAOUHSC_00969, SAOUHSC_02149, and 

SAOUHSC_02164 were amplified using PCR and cloned into the pLOW plasmid using 

standard methods55, followed by transduction into HG003. Overnight cultures of all HG003 

strains were diluted to an OD600 = 0.001. 150 μL of diluted culture was mixed with 1.5 μL 

of antibiotic at 100X final concentration in a well of a 96 well plate. The plate was incubated 

at 37°C with shaking for at least 16 hours, and bacterial growth was monitored by measuring 

the OD600 in a plate reader (Spectra Max plus384, Molecular Devices).

Production of Lysocins

Lysobacter enzymogenes was isolated and cultivated using previously reported methods56. 

The strain was sequenced by the Illumina paired-end technology on a MiSeq instrument at 

the Helmholtz Centre for Infection Research and assembled with Abyss-pe 1.3.6 assembler 

to produce 223 contigs with a total length of 6.1 Mbp. The strain was subsequently assigned 

to the L. enzymogenes species based on 100% identity across 100% query coverage to the 

16S gene of the complete genome sequence of L. enzymogenes M497-1 (accession ID: 

AP014940). The preculture was used to inoculate 300 mL shake flasks containing 50 mL 

CY medium (0.3% casiton, 0.1% yeast extract, 0.1% CaCl2, 50 mM HEPES, adjust pH to 

7.2 with 10 N KOH) that was incubated at 30°C for 18 hours. Six 5 mL aliquots were used 

to inoculate six times 2 L of CY medium at 30°C for 3 days at 160 rpm. 5% of XAD 

adsorber resin (Amberlite-XAD-16, Sigma) was added, and the flasks were shaken for a 

further 18 hours. The crude extract prepared from a small-scale cultivation (8 L) in Cy-

medium displayed strong antibacterial activity against several Gram-positive bacteria.
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Isolation of lysocin compounds

The culture broth containing cells and XAD resin was centrifuged at 25°C, 7000 rpm for 30 

minutes. The freeze-dried resin-cells mixture was extracted with methanol several times. 

The methanol solution was then defatted with hexane and the methanol layer was evaporated 

to dryness. The crude residue was re-suspended in DMSO:MeOH (1:1) and separated by 

preparative HPLC. A Phenomenex Kinetix 5 μm biphenyl 100 Å 250 × 21.2 mm was used 

and a gradient from 5 to 95% B in 40 minutes with (A) H2O + 0.1% FA and (B) ACN 

+ 0.1% FA at a flow rate of 25 mL/minute at room temperature. Fractions were collected by 

MS fractionation. The fractions containing compounds of interest were repurified by 

semipreparative RP-HPLC (Dionex Ultimate 3000) equipped with a Phenomenex Synergi 

Polar RP 80 Å 250×10 mm, 4 μm and using a gradient of 5 – 95% B over 55 minutes with 

(A) H2O + 0.1% FA and (B) ACN + 0.1% FA at a flow rate of 5 mL/minute at 40°C. Elution 

was monitored at 220 nm.

General derivatization protocol for Advanced Marfey’s analysis

Advanced Marfey’s analysis35 was used to determine the The absolute configuration (D/L) 

of the amino acids.

General method for identification of lysocins

The measurements to detect all lysocin derivatives were performed on a Dionex Ultimate 

3000 RSLC system using a BEH C18, 100 × 2.1 mm, 1.7 μm dp column (Waters, Germany). 

Separation of 1 μL sample was achieved by a linear gradient from (A) H2O + 0.1% FA to 

(B) ACN + 0.1% FA at a flow rate of 600 μL/minute and 45°C. The gradient was initiated by 

a 0.5 minute isocratic step at 5% B, followed by an increase to 95% B in 18 minutes to end 

up with a 2 minute step at 95% B before reequilibration under the initial conditions. UV 

spectra were recorded by a DAD in the range from 200 to 600 nm. The LC flow was split to 

75 μL/minute before entering the maXis 4G hr-ToF mass spectrometer (Bruker Daltonics, 

Germany) using the Apollo ESI source. Mass spectra were acquired in centroid mode 

ranging from 150 – 2500 m/z at a 2 Hz scan rate. Settings for MS/MS measurements were: 

minimum precursor intensity is set to 10000. Full scan spectra are acquired at 2 Hz followed 

by MS/MS spectra acquisition at variable scan speed ranging from 1 to 3 Hz, as a function 

of precursor intensity. CID energy varies linearly from 30, 35, 45, to 55 eV with respect to 

the precursor m/z from 300, 600, 1000, to 2000 m/z. The collision cell is set to ramp 

collision energy (80–120% of the set value with equal weights of both values), collision RF 

(700 to 1000 Vpp with equal weights of both values) and transfer time (90–110 μs) for every 

MS/MS scan. The number of precursor was set to 2 and precursors were moved to an 

exclusion list for 0.2 minute after two spectra were measured (typical chromatographic peak 

width was 0.10–0.15 minute). Precursors were reconsidered if their intensity changed 

fivefold.

HPLC-MS analysis of lysocin

Measurements were performed using a maXis system (Dionex Ultimate 3000 RSLC system 

and maXis 4G hr-ToF mass spectrometer (Bruker Daltonics, Germany) using the Apollo ESI 

source) or an Orbitrap system (Dionex UltiMate 3000 RSLC system coupled with an Advion 
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Triversa Nanomate nano-ESI system attached to a Thermo Fisher Orbitrap). LC flow was 

split to 500 nL/minute before entering the ion source. Mass spectra were acquired in 

centroid mode ranging from 150–1000 m/z, resolution R = 30000. A Waters BEH C18, 100 

× 2.1 mm, 1.7 μm dp column was used, injection volume = 1 μL. A gradient of A) H2O 

+ 0.1% FA and B) MeCN + 0.1% FA at a flow rate of 0.55 mL/minute was used to achieve 

separation. Gradient conditions: start at 5% B increasing to 10% B in 1 minute, increase to 

35% B from minute 1→15, increase to 50% B from minute 15→22, increase to 80% B from 

minute 22→25. After 1 minute hold at 80% B, the system was reequilibrated for 5 minute 

with the initial conditions. UV data was acquired at 340 ± 8 nm, MS detection was 

performed simultaneously.

Antimicrobial screening

Minimum inhibitory concentration (MIC) and MIC50 were determined as described 

previously57. Three laboratory strains of S. aureus (Newman, USA300, COL) and 12 clinical 

S. aureus isolates (kindly provided by Prof. Dr. Markus Bischoff; Saarland University 

Hospital, Homburg, Germany) with various resistance phenotypes were used for determining 

MIC50 values (defined as lowest concentration inhibiting the growth of 50% of all tested 

organisms).

Bactericidal assessment of lysocin compounds

To assess bactericidal activity of the lysocin compounds, HG003 cultures grown in Mueller 

Hinton II broth at 37°C to mid-log phase (OD600=0.5) were treated with 2 μg/mL 

vancomycin (2xMIC), 2 μg/mL lysocin compounds (2xMIC), or no antibiotic. Bacterial 

viability was monitored by CFU counting hourly for 24 hours. To compare bactericidal 

activity with other known antibiotics, time-kill experiments were performed as described58 

with minor modifications. Briefly, overnight cultures of S. aureus or M. smegmatis were 

diluted in their respective growth medium to achieve an initial inoculum of 109 or 107 

CFU/mL, respectively. Lysocins were added at the assigned concentration and cell viability 

was assessed at time points as noted. For S. aureus, daptomycin and vancomycin were 

chosen as controls. Clofazimine served as control for M. smegmatis.

Spot dilution assay to determine antibiotic susceptibility

Transposon mutants (qoxA, qoxB, qoxC, ndh, hemB, hemX, and menH) in USA300 from 

the Nebraska Transposon Mutant Library and ΔmenA and ΔmenB Newman strains59 were 

used in antibiotic susceptibility assays. Cultures of mutant and wildtype strains grown at 

37°C to mid-log phase (OD600=0.5) were diluted in ten-fold increments as indicated. 5 μL 

from each dilution was spotted on TSB agar containing the following antibiotics: 1 μg/mL of 

gentamicin A; 28 μg/mL of nisin for USA300 strains, 38 μg/mL for Newman strains; 2 

μg/mL of lysocin E. The plates were incubated at 37°C overnight before imaging. To test 

susceptibility of lysocin E in liquid media, overnight cultures of the mutants were inoculated 

in 150 μL TSB containing lysocin E at various concentrations as indicated (0 to 40 μg/mL) 

in a 96-well plate, the plate was incubated at 37°C overnight, and cell growth (OD600) was 

measured.
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Lipid II accumulation assay

The Lipid II assay was performed as previously described39,43. 2 mL of S. aureus cultures 

grown at 37 °C to mid-log phase (OD600= 0.4~0.5) were treated with the following 

antibiotics for 10 min at 37 °C: 0.3 μg/mL moenomycin, 4 μg/mL vancomycin, 0.2 μg/mL 

lysocin E. Samples were normalized based on OD600 and immediately harvested by 

centrifugation, and total lipid was extracted as described and resuspended in 20 μL DMSO. 

S. aureus Lipid II in the lipid extract was labeled with biotin-D-lys(BDL) by S. aureus PBP4 

as described39,43. After 1 hr at room temperature, reactions were quenched by adding an 

equal amount of 2x SDS loading buffer, and then resolved on a 4–20% gradient SDS 

polyacrylamide gel followed by western blot analysis as described.

Determining the inhibitory activity of lysocin E on Lipid II polymerization

The S. aureus SgtBY181D mutant was purified and used in the Lipid II polymerization assay 

as previously described40,50. This mutant makes shorter polymers than wildtype SgtB, which 

allows for better quantification of products. For Lipid II polymerization, native Lipid II (at 

concentrations shown elsewhere) and 2 μM SgtB were added to PGT buffer (12.5 mM 

HEPES pH 7.5, 20 mM MnCl2, 2.5 mM Tween-80) containing 3 mM biotin-D-Lys (BDL). 

Various concentrations of lysocin E (0, 4, or 8 μM) were added, and the reactions were 

incubated for 10 minutes at room temperature. Then, 4 μM S. aureus PBP4 was added and 

incubated for 60 minutes to label the polymers with BDL. Reactions were quenched by 

adding 10 μL 2xSDS loading buffer, and then resolved on a 4–20% gradient SDS 

polyacrylamide gel followed by western blot analysis as described above. The densitometric 

quantitation for each lane was performed using Image J (http:rsbweb.nih.gov/ij). To 

calculate percent conversion of Lipid II in each reaction, the intensity from each lane was 

divided by the intensity from the reaction with 16 μM Lipid II.

Lipid II bead binding assay

Lipid extraction—An overnight culture of S. aureus RN4220 was diluted 100-fold in 500 

mL TSB broth and grown at 37°C to exponential phase. At exponential phase (OD600=0.6), 

5 μg/mL (final concentration) moenomycin was added and the culture was further incubated 

at 37°C for 30 minutes. Bacterial cells were harvested by centrifugation at 4000 rpm for 10 

minutes and resuspended in 15 mL PBS buffer pH 7.4. Total lipid was extracted by adding 

75 mL of 1:2 chloroform:methanol to the cell suspension. The mixture was stirred for one 

hour at room temperature. Cell debris was separated by centrifugation at 4000 rpm for 10 

minutes, and the supernatant was transferred to 25 mL of 1:1 chloroform:PBS buffer pH 7.4. 

The mixture was stirred for one hour at room temperature and centrifuged at 4000 rpm for 

10 minutes to separate the phases. The organic phase was transferred into a new glass tube, 

dried using rotary vacuum, and resuspended in DMSO39,43.

Lipid II labeling with BDL—In a total reaction volume of 1 mL, 100 μL of the total lipid 

extract was incubated with 10 μM PBP4 and 3 mM BDL in the PGT buffer for 2 hours at 

room temperature. To remove free BDL, 1 mL chloroform was added to the reaction and 

vortexed for 10 minutes at room temperature. The organic phase containing BDL-labeled 
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Lipid II was separated by centrifugation at 3000 rpm at room temperature and transferred 

into a glass vial, then dried and dissolved in 100 μL of DMSO39,43.

Lysocin E capture and release from Lipid II bead—100 μL of streptavidin magnetic 

beads (Dynabeads M-280 Streptavidin, Fisher scientific) was washed with 1 mL of PBS 

buffer pH 7.4 twice and resuspended in 100 μL PBS buffer pH 7.4. 10 μL of biotinylated-

Lipid II was added to the bead mixture and incubated at room temperature for 1 hour to 

allow capture of BDL-Lipid II on the streptavidin beads. The beads were then washed with 1 

mL PBS buffer pH 7.4 twice and resuspended in 100 μL PBS buffer pH 7.4 supplemented 

with 0.01% bovine serum albumin (BSA). 10 μL of 1 mg/mL lysocin E was added to this 

bead mixture and incubated at room temperature for 1 hour, followed by washing with 500 

μL of PBS buffer pH 7.4 three times. To recover lysocin E, beads were treated with 50 μL of 

6 M guanidinium thiocyanate, S. aureus Lipid II (40 μM or 80 μM), or menaquinone-4 (80 

μM) as indicated and incubated at room temperature for 10 minutes, after which the 

supernatant was subjected to LC/MS analysis. LC/MS analysis was performed with ESI-MS 

operating in positive ion mode using an Agilent Technologies 6120 Quadrupole LC-MSD 

instrument. The collected fractions were separated using a 16-minute HPLC method with an 

SB-C18 column (1.8 μm, 2.1 × 50 mm, Agilent) at a constant flow rate of 0.2 mL/minute. 

The gradient method was set as follows: 0–10 minutes, 95% solution A (0.1% formic acid in 

H2O)/5% solution B (0.1% formic acid in acetonitrile); 10–11 minutes, 50% solution A/50% 

solution B; 11–14 minutes, 10% solution A/90% solution B; 14–16 minutes, 95% solution 

A/5% solution B. Ions corresponding to expected compound were identified in the 

chromatograms.

Red blood cell (RBC) lysis

To assess hemolytic activity of lysocin compounds, human red blood cells were treated with 

compounds, and lysis of the red blood cells was quantified as described60. Briefly, isolated 

red blood cells (RBCs) from defibrinated whole human blood were washed three times with 

a buffer containing 10 mM Tris-HCl (pH 7.4) and 0.9% NaCl, and then diluted to 5% in the 

same buffer. Lysocin compounds and ramoplanin were added to 300 μL of the buffer with 

1% RBC as previously described, and these mixtures were incubated for 30 minutes at room 

temperature. The mixtures were centrifuged at 1300xg for 5 minutes and 250 μL of the 

supernatant was transferred to a 96 well plate. The released hemoglobin from lysed RBCs 

was measured at OD540 using a plate reader (SpectraMax, Molecular Dyanmics).

Data availability

All data generated or analyzed during this study are included in this published article, its 

supplementary information files, and the associated SRA entry or are available from the 

corresponding author on reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic showing known sites of action of antibiotics used to treat the S. aureus 
transposon library
In addition to the antibiotics shown, the library was also treated with daptomycin, CCCP, 

polymyxin, and gramicidin A. Pathways/processes affected and enzymes inhibited by 

antibiotics used in this study are summarized in Supplementary Table 2.
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Figure 2. Genes upregulated by transposon insertion reveal mechanisms of resistance for the 
tested antibiotics
(a) Schematic illustrating that gene upregulation, which can increase fitness in the presence 

of an antibiotic, can be detected by an increase in the number of reads due to insertions of 

transposons with outward-facing promoters in a single orientation ahead of a gene. (b) and 

(c) Examples of data showing insertions proximal to known targets or resistance 

determinants in untreated versus treated samples for DMPI and daptomycin. The data shown 

is for a single transposon cassette. The same findings were found using at least one other 

transposon cassette in the same pooled library experiment.
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Figure 3. Supervised machine learning predicts mechanism of action of antibiotics
(a) Inactivation mutant fitness values for an antibiotic of unknown mechanism are compared 

to fitness values obtained for known antibiotics to predict mechanism of action. Boxes 

represent genes and shading represents fitness of the corresponding inactivation mutants. 

Each column represents a data set for an antibiotic, with color-coding depicting different 

antibiotic classes. (b) Summary of prediction accuracy for different antibiotic mechanisms 

using the leave-one-out cross-validation method, with number of samples in depicted 

categories shown. FAS, fatty acid synthesis inhibitors; RNA, RNA polymerase inhibitors; 

PROTEIN, Protein synthesis inhibitors; Cell Wall, peptidoglycan biosynthetic enzyme 

inhibitors and other lipid II flux perturbing compounds; DNA, DNA gyrase/topoisomerase 

inhibitors and folate pathway inhibitors (See Supplementary Table 5 for predictions).

Santiago et al. Page 22

Nat Chem Biol. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. The lysocins
(a) Structures of lysocin E, I, and J. (b) Mid-log cultures treated with lysocins at 2x MIC for 

four hours are clear, indicating lysis. Vancomycin (Van) is not bacteriolytic at the same 

concentration. (c) and (d) Mutants defective in menaquinone and heme biosynthesis are 

resistant to lysocin E, with the level of resistance inversely correlated with mutant fitness 

(Supplementary Fig 10). Panel (c) shows spot dilutions of the indicated strains in the 

absence (upper panel) and presence (lower panel; 2x MIC) of lysocin E. The small, colorless 

colonies display a small colony variant phenotype. (d) Summary of liquid MIC results with 

growth in each well normalized to the untreated control and presented as color density, with 

dark purple representing full growth. Each column represents two-fold dilutions from 40 

μg/mL to 0 of lysocin E. The spot dilution assay and MIC tests are representative of three 

biologically independent experiments. (e) Antibiotics that affect the carrier lipid cycle of cell 

wall precursor biosynthesis can lead either to Lipid II depletion by sequestering Und-PP/
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Und-P or to Lipid II accumulation by preventing utilization of Lipid II. Examples of 

antibiotics that act at different steps are given.
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Figure 5. Lysocin E binds to Lipid II
(a) Schematic of the enzymatic method to detect polymerized Lipid II. Products 

polymerized by SgtB are detected via Western blot after labeling with biotin-D-Lysine 

(BDL) using S. aureus PBP4. Keys are same as shown in Figure 1. (b) Blot showing that 8 

μM lysocin E inhibits formation of peptidoglycan until the Lipid II concentration exceeds 4 

μM. (c) Curves showing percent conversion to polymer as a function of Lipid II 

concentration for 0, 4, and 8 μM lysocin E. See Methods for details and Supplementary Fig. 

12 for control and 4 μM blots. These curves are characteristic of a substrate binder with high 

affinity for Lipid II and a stoichiometry of 2:1 (inhibitor:Lipid II). (d) Schematic of the 

affinity capture assay developed to confirm binding of lysocin E to Lipid II. Lipid II 

biotinylated by PBP4 was bound to streptavidin beads, and then lysocin E was applied. (e) 
Total ion chromatograms showing that lysocin E bound to Lipid II beads could be eluted 

with 6 M GTC (top panel) or by including non-biotinylated Lipid II in the eluent (bottom 

panel). Menaquinone did not elute the antibiotic from the Lipid II affinity resin. These data 

are representative of at least three independent experiments.
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