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Abstract: Normal brain function highly relies on the appropriate functioning of astrocytes. These
glial cells are strategically situated between blood vessels and neurons, provide significant substrate
support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules.
Astrocytes respond to many metabolic conditions and regulate a wide array of physiological pro-
cesses, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for
the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits
counterregulatory mechanisms in order to couple whole-body energy availability with brain function.
Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of
molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of
fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control
of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that
have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.
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1. Introduction

The field of neuroscience has experienced significant advancement in knowledge on
how the brain processes information as a result of the growing evidence supporting that
glial cells, as with astrocytes, are fully integrated into neuronal networks, thus forming
one functional regulatory circuit required for brain function [1]. In addition to serving as a
support system, active functions have been assigned to astrocytes, including the control
of cerebral vascular remodeling and blood flow [2], and the regulation of all aspects of
neuronal function, such as neurogenesis [3], neuronal transmission [4], and synapse forma-
tion/elimination and homeostasis [5], among others. By providing energy substrates and
neurotransmitter precursor molecules via the astrocyte-neuron lactate shuttle [6] and the
glutamate/γ-aminobutyric acid (GABA)-glutamine cycle [7], astrocytes ensure adequate
neuronal metabolism, connectivity, and brain functioning. The characteristic star-like shape
of astrocytes possesses specific non-overlapping territorial domains and hence fills the local
environment, interacting with a large number of synapses that can dynamically change
depending on the surrounding microenvironment in response to neuronal activity and/or
metabolic status for the regulation of physiological responses [1,8]. Remarkably, astro-
cytes play a key role in neurotransmitter clearance [1] and spatial K+ buffering [9], which
support neurotransmission homeostasis. Astrocytes, as with neurons, sense and respond
to metabolic [8] and synaptic cues [10] through specific metabolic and neurotransmitter
receptors/transporters expressed along their membranes, thus influencing the active state
of synapses to which they are often intimately associated [11]. Seminal findings demon-
strated that astrocytes display changes in their intracellular Ca2+ concentration [12], a signal
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that appears to be the relevant signal for astrocytic responses [4,13]. As secretory cells,
astrocytes possess the molecular machinery to send molecules and ions back and forth,
which are essential in regulating all physiological processes (e.g., synaptic connectivity)
required for a normal brain function [1,14].

Astrocyte Gliotransmission: The Hallmark of Astrocyte Communication

Despite the absence of membrane electrical excitability, astrocytes exhibit a marked
ionic handling in response to diverse stimuli, which is crucial for proper regulation of
physiological processes controlled by the brain [1]. For instance, internal K+, Na+, Ca2+,
and H+ fluctuations in astrocytes are associated with increased synaptic activity whereas Cl-

permeability is involved in astrocyte volume changes. Since compelling evidence suggests
the existence of Ca2+-dependent astrocyte-neuron communication [4,13], intracellular Ca2+

signaling has been extensively studied in astrocytes. Several works have reported that an
enhancement in synaptic activity may result in astrocyte Ca2+ rises following the activation
of specific metabotropic G-protein coupled receptors (GPCRs) by synaptic neurotransmit-
ter spillover, such as glutamate [15,16], GABA [17], ATP [18], acetylcholine [19,20], and
dopamine [21]. Intracellular Ca2+ events at the soma, primary branches, and branchlets of
astrocytes are greatly mediated by the inositol 1,4,5-trisphosphate receptor type 2 (IP3R2)
signaling pathway that mobilizes Ca2+ from the endoplasmic reticulum to the cytosol.
However, astrocyte Ca2+ responses may occur in an IP3R2-independent manner, especially
at their fine processes, i.e., astrocyte leaflets, in which Ca2+-permeating channels [22] and
Na+/Ca2+ exchangers [23] underlie the mechanism of Ca2+ entry into the cytosol. Ca2+

transients in astrocyte processes may also occur via Ca2+ efflux from mitochondrial mem-
brane permeability transition pores (mPTPs) [24]. Therefore, there are multiple sources of
Ca2+ that contribute to the increased cytosolic Ca2+ content in response to synaptic activity
(Figure 1), highlighting the complex Ca2+ dynamics within astrocyte cellular compartments,
ranging from slow, global Ca2+ events to rapid, local Ca2+ transients [25–28]. In turn, as-
trocyte Ca2+ elevation promotes the release of signaling molecules, such as glutamate,
ATP, D-serine, and GABA, which can influence the activity of neighboring neurons and
other cells to ultimately modulate local metabolism and the information processing within
neuronal networks, a process known as gliotransmission [4]. Such signaling molecules are
released from astrocytes through several intracellular pathways including vesicle-mediated
exocytosis and diffusion through channels (Box 1). The complex intracellular Ca2+ dy-
namics in astrocytes and the great variety of mechanisms releasing their gliotransmitters
suggest distinct, specific roles of astrocyte gliotransmission depending on the spatial loca-
tion, quality, and intensity of the stimulus as well as the gliotransmitter releasing site and
astrocyte interactions with the surrounding microenvironment (Figure 1).
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Figure 1. Mechanisms underlying intracellular Ca2+ rises and gliotransmitter release from astrocytes. (A) At the soma,
branches and branchlets of astrocytes, the activation of G-protein-coupled receptors (GPCRs) following increased synaptic
activity triggers cytosolic Ca2+ rises by several mechanisms, such as via the 1,4,5-trisphosphate receptor type 2 receptor
(IP3R2)-dependent mobilization Ca2+ from the endoplasmic reticulum (ER) or the efflux of Ca2+ through mitochondrial
membrane permeability transition pores (mPTPs). At fine processes of astrocytes, i.e., leaflets, increased synaptic activity
may promote the co-transport of neurotransmitters and Na+ into the cytosol, the latter increasing the activity of Na+/Ca2+

exchangers (NCX) that results in cytosolic Ca2+ elevations. Additionally, Ca2+-permeating channels contribute to the
influx of Ca2+ in astrocytic leaflets. The Ca2+ influx into leaflets may trigger local Ca2+ transients and propagate the Ca2+

signaling to distant domains via its signal amplification mediated by a Ca2+-dependent Ca2+ release from ERs via the
IP3R2 pathway; (B) Several mechanisms account for the release of gliotransmitters from astrocytes. Mostly, these processes
occur in a Ca2+-dependent manner via the exocytosis of vesicles. Lysosome exocytosis, bestrophin1 (BEST1) channels and
hemichannels have also been described to participate in Ca2+-dependent gliotransmitter release mechanisms. Moreover, the
involvement of a Ca2+-independent release of gliotransmitters via two-pore domain K+ (TREK) channels is reported.
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Box 1. Astrocytes release gliotransmitters via several pathways.

Vesicle-mediated exocytosis
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated

vesicular exocytosis is likely the major mechanism for the Ca2+-sensitive release of gliotransmitters
from astrocytes. Using ex vivo brain slices from mice and human, it was observed that Ca2+-
dependent astrocyte-released glutamate induces the activation of N-methyl-D-aspartate receptors
(NMDARs) in neurons triggering slow inward currents [29–32], an effect greatly attenuated by
disrupting the SNARE complex [33–35]. These currents have also been shown to be associated
with changes in neuronal excitability and neurotransmission. Accordingly, vesicular glutamate
transporters and SNARE proteins are localized in astrocyte processes adjacent to neurons [35].
The blockade of vesicular exocytosis also impairs the release of ATP from astrocytes, which may
influence synaptic transmission and behavioral responses [36–39]. Likewise, the exocytosis of
lysosomes is also thought to participate in ATP release from astrocytes [40,41].

Diffusion through channels
In addition to exocytotic mechanisms, the release of astrocyte gliotransmitters may occur through

ion channels. For instance, glutamate can be released via Ca2+-activated bestrophin 1 (BEST1)
channels localized at astrocyte microdomains [42] to modulate synaptic plasticity [43,44]. BEST1
channels are also permeable to GABA, which may tonically inhibit neighboring neurons [45–47]
and drive pathological mechanisms following its impaired release [48,49]. Moreover, astrocytes are
able to release gliotransmitters via hemichannels [50–54] and Ca2+-independent pathways, such as
two-pore domain K+ channels [42,55].

2. Physiological Processes by Which Astrocytes Regulate Systemic Metabolism

Although diverse studies have reported the mechanisms underlying Ca2+ responses
and gliotransmitter release from astrocytes in the regulation of local metabolism and
synapse physiology [1,2,4], their influence on the control of systemic metabolism has
recently begun to be explored. Understanding the communication between astrocytes
and neighboring cells involved in whole-body counterregulatory responses to metabolic
challenges may add relevant insights on how physiological processes are controlled by the
brain. In this section, we aim to describe the contribution of astrocyte gliotransmission to
the modulation of the surrounding microenvironment and synaptic transmission that are
related to the homeostatic regulation of systemic metabolism and behavior.

2.1. Cerebral Vascular Integrity and Remodeling

The brain stores a low amount of energy [56] and largely depends on oxidative
metabolism for supporting its energy requirements [57]. Therefore, a constant, adequate
supply of glucose and oxygen from the brain vasculature is needed in order to match the
high metabolic demand of neurotransmission and brain function [58–60]. In this regard,
astrocytes are situated in a strategic position to control continuous fuel supply to the brain
by enveloping virtually all brain blood vessels with their endfeet [61] and making close
contact with synapses by their processes [11], thus regulating the cerebral vascular tone to
accomplish neuronal function in both resting and active states. In the last decade, multiple
studies have highlighted the active role of vascular endothelial growth factors (VEGFs)
in angiogenesis and vascular architecture in the brain [62] by modulating tight-junction
proteins in blood vessels for controlling blood-brain barrier (BBB) permeability [63–66].
Astrocytes have been shown to be the predominant source of VEGF within the brain [67,68],
as the blockade of astrocytic VEGF-dependent releasing mechanisms attenuates BBB leak-
age in animal models [68–70]. Other studies have pointed out that angiogenesis correlates
with higher astrocyte density and elevated VEGF expression levels in the brain of mice and
humans [71]. Notably, additional studies have reported that a hypercaloric diet rapidly
increases the number of astrocytes in the hypothalamus [72] and promotes angiogenesis
and endothelial dysfunction in both rodents and humans [73,74]. Recently, it has been
revealed that VEGF-derived hypothalamic astrocytes are directly involved in obesity-
induced hypothalamic microvasculature remodeling and elevated systemic blood pressure
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via sympathetic outflow, an effect dependent on leptin signaling and concomitant with the
onset of obesity [75] (Figure 2A). Further, the selective disruption of the hypoxia-inducible
factor 1α-VEGF signaling cascade in astrocytes protected mice against obesity-induced
hypothalamic angiopathy, increased sympathetic drive, and arterial hypertension [75].
These findings reveal the astrocyte-released gliotransmitter VEGF as a relevant molecule
involved in the tuning of sympathetic outflow controlling cardiovascular function and
challenge the traditional view that microvascular complications in the brain are derived
from arterial hypertension [76].
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Figure 2. The action of astrocyte-released gliotransmitters in the control of systemic metabolism. (A) Diet-induced obesity
promotes hyperleptinemia, which hyperactivates leptin receptors (LepRs) in astrocytes from the mediobasal hypothalamus
(MBH) and leads to the release of vascular endothelial growth factors (VEGFs), promoting hypothalamic angiopathy and
systemic hypertension; (B) Astrocytes from the brainstem nucleus tractus solitarius (NTS) sense extracellular glucose
concentration drops via glucose transporter type 2 (GLUT2) and respond with ATP/adenosine (Ado) release, leading to
the activation of adenosine A1 receptors (A1Rs) in neighboring neurons to restore normoglycemia; (C) The disruption of
the brain and muscle ARNT-like protein-1 (BMAL1) signaling in astrocytes impairs energy metabolism. (I) During the
night cycle, astrocytes from the suprachiasmatic nucleus (SCN) show increased Ca2+ transients, which induce the release
of glutamate that binds to N-methyl-D-aspartate receptors (NMDARs) subtype 2C in presynaptic neurons resulting in
increased γ-aminobutyric acid (GABA)-mediated neurotransmission; (II) In the day cycle, astrocytes are silent and the
glutamate near the synaptic cleft is taken up by astrocytic excitatory amino acid transporters (EAATs), therefore reducing
the GABAergic tone onto SNC neurons; (D) Ca2+ rises in astrocytes from the MBH promote the release of ATP/Ado that
acts in presynaptic neurons and/or postsynaptic agouti-related protein/neuropeptide Y (AgRP/NPY) neurons to reduce
food consumption; (E) Astrocytes from the MBH release the endozepine octadecaneuropeptide (ODN), which acts on
its receptor in proopiomelanocortin (POMC) neurons, leading to the activation of the upstream melanocortin-4 receptor
(MC4R) signaling to reduce food intake and body weight; (F) Fasting/ghrelin may activate astrocytes from the arcuate
nucleus of the hypothalamus (ARC), promoting the release of prostaglandin E2 (PGE2) to increase the activity of AgRP/NPY
neurons, ultimately inducing food intake.

2.2. Brain Glucose Sensing

Astrocytes are highly glycolytic cells [6] and exhibit higher glucose transport and
utilization in comparison to neurons [77]. Using a fast-responsive machinery, astrocytes do
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not only sense extracellular glucose drops but also monitor interstitial glucose presumably
to elicit autonomic responses to restore normoglycemia. Among several glucose trans-
porters (GLUTs) expressed in astrocytes [78], GLUT1 is the predominant active isoform at
the cell membrane and plays a marked role in basal glucose uptake [79]. Astrocytes also
express GLUT2, which has a low affinity for glucose [80–82], providing a wide range of
sensitivity to changes in glucose availability. Notably, GLUT2 expression in astrocytes,
but not in neurons, has been reported to be necessary and sufficient to increase plasma
glucagon levels in response to hypoglycemic conditions in mice [83]. The hypothalamus
and the hindbrain are well-known glucose-sensing central areas [84], particularly due to
their close location to brain ventricles. Here, we report evidence from the literature that
describes how hypothalamic and hindbrain astrocytes may modulate local circuits and
systemic metabolism in response to glucose concentration fluctuations.

2.2.1. Hypothalamus

Hypothalamic neurons are capable of directly responding to changes in systemic
glucose levels [85,86]. Application of glucose induces Ca2+ rises in tanycytes—specialized
glial cells lining the floor of the third ventricle located exclusively in the mediobasal
hypothalamus—which promote the release of ATP via connexin 43 (Cx43) hemichannels
acting on neighboring tanycytes through purinergic P2Y1 receptor to result in cellular
activation by an IP3R-mediated Ca2+ signaling [87,88]. Although astrocytic Ca2+ rises in
response to glucose fluctuations have not been demonstrated in the hypothalamus yet,
hypothalamic astrocytes are markedly involved in the regulation of glucose homeostasis [8].
Particularly, insulin signaling in hypothalamic astrocytes is essential for adequate glucose
transport into the brain and systemic glucose handling [89]. Other findings have also
pointed out that elevated glucose levels lead to reductions in astrocyte coverage on proopi-
omelanocortin (POMC) neurons—an effect associated with increased excitatory synaptic
input onto these neurons [90]. Moreover, hypothalamic astrocytes induce insulin secretion
in response to acute intracarotid injection of glucose [91], presumably via Cx43-containing
gap-junction functioning [92].

2.2.2. Hindbrain

Similar to the hypothalamus, the hindbrain is strongly involved in counterregula-
tory responses to hypoglycemia [84]. The nucleus tractus solitarius (NTS) is the primary
central site receiving afferent glycolytic inputs from peripheral domains [93]. The NTS
also contains astrocytes sensitive to extracellular glucose fluctuations [94], as is the case
in neurons [95,96]. Intriguingly, glucose deprivation triggers Ca2+ rises in astrocytes via
the phospholipase C-IP3 signaling pathway [97], an effect preceding the Ca2+ responses
in neighboring neurons [94]. Recent studies have also reported that astrocyte puriner-
gic signaling underlies counterregulatory responses to limited glucose availability via
an NTS-arcuate nucleus of the hypothalamus (ARC) circuit. In particular, infusion of
2-deoxyglucose (2-DG), a non-metabolizable glucose analog that mimics hypoglycemic
conditions, into the fourth ventricle induces blood glucose elevation in rats, an effect de-
pendent on astrocyte integrity and adenosine A1 receptor (A1R) signaling [98] (Figure 2B).
Moreover, functional astrocytes are required for purinergic P2 receptor-dependent ac-
tivation of tyrosine hydroxylase (TH)-expressing NTS neurons in response to glucose
deprivation [99]. Importantly, NTSTH neurons can bidirectionally modulate the electrical
activity of orexigenic agouti-related protein/neuropeptide Y (AgRP/NPY) and anorexi-
genic POMC-expressing neurons in the ARC to promote food intake in response to gluco-
privic conditions [100]. Notwithstanding, the ability of ATP-mediated astrocyte signaling
in tuning an NTS-ARC neuronal circuitry to ultimately modulate feeding behavior remains
to be shown.
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2.3. Feeding Circuits

Feeding is driven by an intricate neuronal network that encompasses homeostatic en-
ergy balance and hedonic responses [101]. External sensory information, vagal inputs, and
circulating nutritional signals converge and are processed in the brain to then adjust feeding
behavior according to whole-body energy demands [102]. Remarkably, the melanocortin
system has been greatly studied as being the main integrator and control center of hunger
circuits [103], and its dysfunction is directly linked with the development of metabolic dis-
eases [104]. Two melanocortin neuron populations in the ARC with opposite functions play
essential roles in the control of energy intake and expenditure: activation of AgRP/NPY-
expressing neurons induces rapid and marked food seeking and consumption [105–108]
whereas activation of POMC-expressing neurons promotes satiety and energy expendi-
ture [105,109,110]. Notably, the postnatal genetic ablation of AgRP/NPY [111,112] or
POMC neurons [112–114] results in starvation-induced death or obesity, respectively. A
great deal of evidence supports that astrocytes are active players as regulators of these
feeding responses by interacting with melanocortin neurons [89,115–117]. Specifically,
several studies have reported that astrocytes within the mediobasal hypothalamus (MBH)
are capable of responding to energy-related signals, such as hormones and nutrients, in
order to modulate neuronal and behavioral responses required for maintaining whole-
body energy homeostasis [8]. Indeed, the postnatal ablation of leptin receptors (LepRs) in
astrocytes reduces hypothalamic astrogenesis [118] and leads to a retraction in primary
processes coverage on melanocortin neurons in the ARC—the latter of which is associated
with changes in neuronal excitability and alterations in feeding behavior [116]. Accordingly,
astrocyte-specific LepR knockout induces astrogliosis in the hypothalamus of mice, blunts
hypothalamic pSTAT3 signaling, and contributes to diet-induced obesity [119]. As with lep-
tin, the disruption of insulin signaling in hypothalamic astrocytes also promotes metabolic
alterations mainly due to a defect in brain glucose sensing, resulting in an aberrant systemic
glucose handling [89]. Furthermore, the same line of studies has observed that the ingestion
of high caloric meals triggers rapid astrocyte-neuron rearrangements, including astrocyte
reactivity and alterations in the synaptology of melanocortin neurons [115]; most of these
cellular events were observed prior to body weight gain [72], suggesting their potential
role in promoting obesity.

2.3.1. Identified Gliotransmitters by Which Astrocytes Regulate Feeding Behavior
ATP/Adenosine

Astrocytes have been reported to mediate feeding control via purinergic gliotransmis-
sion. Specifically, it was reported that mice reduce food consumption in response to chemo-
genetic Ca2+-dependent activation of MBH astrocytes, an effect associated with decreased
firing activity of AgRP neurons following adenosine A1R activation [120] (Figure 2D). Ac-
cordingly, optogenetic stimulation of MBH astrocytes leads to an increase in extracellular
adenosine content, preventing long-term fasting-induced food intake, which is abolished by
A1R antagonist injection [121]. These results indicate that MBH astrocytes can release ATP—
being converted to adenosine in the extracellular compartment—or adenosine itself [122]
to promote anorexigenic effects by decreasing the activity of AgRP/NPY neurons. Never-
theless, it is not clear whether adenosine directly reduces the excitability of AgRP/NPY
neurons, presumably by the opening of G-protein-coupled inwardly rectifying K+ channels
associated with A1Rs [123–125], or inhibits presynaptic glutamatergic neurons via A1R
activation, as observed in other brain regions [21,126,127]. On the contrary, other studies
have shown opposing results using a similar approach with chemogenetic activation of
astrocytes, but only those exclusively located in the ARC. In this case, the authors have
observed that astrocyte activation promotes food consumption by increasing the orexigenic
drive of AgRP/NPY neurons [128], although no potential gliotransmitter involved in this
mechanism was reported. The divergent findings when exploring the role of astrocytes
in the control of feeding behavior might reside in the intricate nature of neuronal circuits
confined to the MBH requiring hypothalamic nuclei with opposing roles in the control of
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metabolism. Therefore, millimetric stereotaxic variations in the affected area may target
distinct astrocytic-neuronal circuits involved in the diverse effects of feeding responses.

Other hypothalamic centered lines of investigation have shown that astrocytes lo-
cated in the dorsomedial nucleus of the hypothalamus (DMH) are involved in the sati-
ety effect of cholecystokinin (CCK), a well-known anorexigenic gut-derived peptide hor-
mone, via purinergic gliotransmission [129]. Astrocytes respond to CCK through their
CCK receptors (CCKRs) expressed along the membrane [130,131] via a Ca2+-dependent
mechanism [129,131]. Specifically, CCKR type 2-dependent astrocyte activation triggers
the release of ATP that in turn activates P2X receptors in inhibitory neurons, culminating in
increased GABA release at the synapse level. Additionally, astrocyte mGluR5 was shown to
be necessary for the CCK-mediated effects on GABAergic neurotransmission [129]. Indeed,
astrocyte mGluR5 acts as a sensor of synaptic transmission and is markedly involved
in astrocyte-neuron gliotransmission [15,16,31]. Overall, these findings suggest that the
detection of glutamatergic activity by astrocytes at nearby synaptic clefts may modulate
the release of ATP from astrocytes to fine-tune the information processing triggered by
CCK signaling in the DMH.

Additional studies have shown the involvement of extra-hypothalamic astrocytes in
feeding regulation. In this regard, the selective activation of astrocytes within the brainstem
dorsal vagal complex (DVC) induces morphological changes in NTS astrocytes and reduces
food-seeking behavior and food consumption, even following overnight fasting [132]. The
latter effect was associated with increased c-Fos immunoreactivity, as subrogate marker for
neuronal activation, in neurons from the DVC and lateral parabranchial nucleus but not
in the paraventricular nucleus of the hypothalamus [132], suggesting that the astrocyte-
mediated anorexigenic drive from the brainstem DVC may activate alternative circuitries
to the melanocortin system.

Endozepines

The acyl-CoA-binding protein (ACBP) is a ubiquitously expressed cytosolic molecule
that acts: (i) in intracellular pathways controlling lipid metabolism [133] or (ii) to gen-
erate and release regulatory peptides namely endozepines, such as ACBP itself, octade-
caneuropeptide (ODN), and C-terminal octapeptide (OP) [134]. Remarkably, ACBP and
ODN expression levels are enriched in the hypothalamus [135,136], particularly in glial
cells [137–140]. Indeed, multiple evidence support that astroglial-released endozepines
play a key role in the regulation of energy homeostasis. Particularly, it was shown that cen-
tral administration of ODN or OP decreases food consumption in rodents and fish [140–143]
by reducing NPY and enhancing POMC mRNA expression levels in the ARC [144]. More-
over, the hyperphagic response to central infusion of 2-DG is attenuated by co-infusion
of OP [137]. In vitro studies from rodents also support that astrocytes are able to release
endozepines upon stimulation [145,146]. Amongst several brain areas of action, astrocytes
from the MBH were demonstrated to be required for triggering an anorexigenic effect
via endozepine release [138]. A selective genetic manipulation of ACBP in astrocytes
from the ARC is sufficient to modulate feeding behavior and body weight control. In-
terestingly, ACBP-expressing astrocytes are in close opposition with POMC neurons in
the ARC [138], and ODN or OP application activates hypothalamic POMC neurons, as
observed in ex vivo brain slices [138,140]. Given that ODN-induced food intake reduction
is abolished in melanocortin-4 receptor (MC4R) knockout mice [138], astrocyte-released
endozepines appear to drive an anorexigenic effect via the melanocortin system by modu-
lating POMC neuron excitability and MC4R-dependent signaling transmission (Figure 2E).
Likewise, it is thought that ODN binds to melanocortin neurons via an uncharacterized
GPCR [142,147]. Central infusion of ODN-GPCR agonists attenuates food intake in mice
and fish [138,140,142,143], which is associated with increased excitation of POMC neurons
in the ARC of mice [138]. Accordingly, the central administration of an ODN-GPCR antag-
onist suppresses ODN-induced anorexigenic effects [138,142,143]. Emerging findings also
suggest that leptin signaling in tanycytes is required for ODN-induced anti-obesogenic
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effects in mice [140], indicating the importance of the crosstalk between astrocytes and
other glial cells for satiety control. Nevertheless, astrocyte-derived endozepine actions
in feeding behavior appear not to be restricted to hypothalamic areas. Astrocytes from
the brainstem area postrema and NTS within the DVC have been found to be enriched
with ACBP and ODN protein levels [140,148]. Consistent with the hypothalamic centered
studies, central administration of ODN or OP induces marked c-Fos immunoreactivity of
NTS neurons accompanied by food intake inhibition [140], while blunting the swallowing
reflex in mice [148]. Given that ACBP has also been shown to have CNS-independent
effects on the promotion of appetite, energy storage, and obesity in mice [149], further
investigations should be performed to disentangle the peripheral and central contributions
of endozepines in whole-body energy balance.

Prostaglandin E2

A recent study has shown that fasting, ghrelin administration, or GABA-mediated
AgRP neuron signaling increases astrocyte coverage and lowers the number of inhibitory
inputs onto AgRP neurons in the ARC, an effect accompanied by depolarization of the
membrane potential of neighboring astrocytes [150]. Additionally, the authors observed
that the application of astrocyte-derived gliotransmitter prostaglandin E2 (PGE2) increases
the firing activity of AgRP/NPY neurons from ex vivo brain slices whereas the block-
ade of PGE2 receptor EP2 abolishes ghrelin-induced food consumption [150] (Figure 2F).
These findings indicate that rearrangements between surrounding astrocytes and AgRP-
dependent circuits in a pre-feeding condition could facilitate the actions of the PGE2 in the
activity of those neurons to promote feeding.

2.4. Circadian Rhythms

The circadian rhythm is present in virtually all cells of almost all living organisms. The
cellular clock relies on oscillatory patterns of transcription factors based on a transcription-
translation negative feedback loop (TTFL) mechanism. This process ensures the synchro-
nization of biological mechanisms in an adequate time scale according to the active and
resting phases [151]. The active phase is markedly characterized by high energy expendi-
ture and nutrient consumption whereas the resting phase is associated with tissue repair,
waste clearance, and memory consolidation [151,152]. Notably, the suprachiasmatic nu-
cleus of the hypothalamus (SCN) is one of the major centers in coordinating the whole-body
circadian rhythm [151], which influences feeding/fasting patterns and thus metabolic con-
trol [153]. In fact, lesions in the SCN elicit alterations in the daily pattern of circulating
glucose, fatty acids, and insulin [154]. Besides the marked role of SCN neurons in the
control of circadian behavior [151], astrocytes have recently emerged as important players
in the regulation of neuronal circuits involved in the circadian rhythms, and in consequence,
in whole-body energy metabolism. Specifically, the lack of the clock gene brain and muscle
ARNT-like protein-1 (BMAL1) in astrocytes leads to increased food intake, body weight
gain, impaired glucose handling, and shorter lifespan in mice [155]. Such changes are
associated with alterations in the expression pattern of clock genes in SCN neurons and
also affect circadian locomotor activity in mice [156–158]. These effects seem to be driven by
the inability of astrocytes to control extracellular GABA content [155,157,159]. Considering
that the vast majority of neurons in the SCN are GABAergic [160] and the synchroniza-
tion of clock neurons in the SCN highly depends on GABAergic transmission [161,162],
astrocytes may exert relevant modulation on the inhibitory circuitry dictating circadian
oscillations via GABA homeostasis regulation. Indeed, the cooperative orchestration of the
activity fluctuations of neurons and astrocytes in the SCN governing the circadian rhythm
has gained new insights since the observation that neurons are active during the active
phase of the circadian rhythm whereas astrocytes are active during the resting phase, as
evidenced by Ca2+ measurements [158]. In this study, the authors also showed that Ca2+

variations in astrocytes match the release of glutamate, which binds to NMDAR subtype 2C
in pre-synaptic GABAergic neurons and enhances the inhibitory drive onto SCN neurons
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to control behavioral rhythms (Figure 2C). On the other hand, GABAergic tone is reduced
during the resting cycle by decreased release of glutamate and elevated glutamate clearance
via excitatory amino acid transporters by astrocytes, thereby facilitating SCN neuron activ-
ity [158]. Strikingly, astrocytes can sustain their circadian molecular oscillations for many
days even in culture [163]. Such oscillations in astrocytes endow autonomous cell-specific
molecular patterns in vivo, which are sufficient to control circadian behavior via glutamate-
mediated astrocyte gliotransmission within the SCN, regardless of the TTFL functioning in
surrounding neurons [164]. Therefore, the circadian rhythm function highly relies on the
tuning of GABA-mediated signaling by glutamatergic astrocyte-neuron communication in
the SCN.

3. Concluding Remarks

Unlike neurons, showing long and static projections for delivering long-distance
messages, astrocytes occupy small domains defined by their finger-like thin processes to
influence local circuitries. Therefore, it is not surprising that astrocytes are very plastic
cells with multiple functional roles and a high capacity to adapt their cytoarchitecture,
gene profile, and activity in response to local neuronal demands. Despite occupying small
territories, an astrocyte can physically interact with multiple synapses (estimated number >
100 synapses)—a fact that highlights the vast amount of neuronal information that a single
astrocyte can process in a short amount of time. In recent years, notable progress has been
made to elucidate many aspects of astrocyte physiology and gliotransmission by using
the most advanced neurophysiological techniques. However, the individual distinctions
of each astrocyte together with its intricate interactions with neuronal circuitries and the
complex Ca2+ dynamics at different levels of its compartments have challenged researchers
in the field to further understand how communication occurs between astrocytes and
neighboring cells. Therefore, studies focused on how astrocytes decode external signals into
spatial and temporal gliotransmitter release depending on the microdomain environment
and its interactions would also be fundamental to shed more light on these paradigms.
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