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New vaccine platforms are needed to address the time gap be-
tween pathogen emergence and vaccine licensure. RNA-based
vaccines are an attractive candidate for this role: they are
safe, are produced cell free, and can be rapidly generated in
response to pathogen emergence. Two RNA vaccine platforms
are available: synthetic mRNAmolecules encoding only the an-
tigen of interest and self-amplifying RNA (sa-RNA). sa-RNA is
virally derived and encodes both the antigen of interest and
proteins enabling RNA vaccine replication. Both platforms
have been shown to induce an immune response, but it is not
clear which approach is optimal. In the current studies, we
compared synthetic mRNA and sa-RNA expressing influenza
virus hemagglutinin. Both platforms were protective, but
equivalent levels of protection were achieved using 1.25 mg
sa-RNA compared to 80 mg mRNA (64-fold less material). Hav-
ing determined that sa-RNA was more effective than mRNA,
we tested hemagglutinin from three strains of influenza
H1N1, H3N2 (X31), and B (Massachusetts) as sa-RNA vaccines,
and all protected against challenge infection. When sa-RNA
was combined in a trivalent formulation, it protected against
sequential H1N1 and H3N2 challenges. From this we conclude
that sa-RNA is a promising platform for vaccines against viral
diseases.

INTRODUCTION
Today’s vaccine systems lack important features to be fast or flexible
enough to respond to today’s challenges in pathogen control and new
systems are urgently needed, especially for epidemics and pandemics.
Because of increased globalization and access to rural areas, the emer-
gence of new pathogens is increasing1 and new strategies are desper-
ately needed to accelerate vaccine availability from discovery to
dispensation. Nucleic acid based vaccines are promising candidates
because of the speed from pathogen sequence data acquisition in
the field to vaccine production. Furthermore, they may potentially
require fewer regulatory tests than for instance inactivated or attenu-
ated viruses, because nucleic acid is the invariant base product no
446 Molecular Therapy Vol. 26 No 2 February 2018 ª 2017 The Author
This is an open access article under the CC BY license (http://creati
matter the pathogen. Two nucleic acid platforms have been proposed
for vaccination, namely RNA and DNA. RNA is favorable since—
unlike DNA vaccines, which have to overcome two barriers to tran-
scription,2 the cell and nuclear membranes—antigens can be trans-
lated from RNA vaccines as soon as they enter the cytoplasm. This
increases transfection efficiency and should therefore have a knockon
effect on immunogenicity. RNA vaccines further combine features of
safety with fast, totally cell-free production; moreover, they induce
both B and T cell responses.3

Using a cellular-like mRNA encoding the protein of interest (syn-
thetic mRNA) there is an immediate translation of the antigen.
Though good antiviral protection has been shown,4 a lot of syn-
thetic mRNA material is needed. Scaling up from the amount of
material required in small animals to humans may limit the avail-
ability of vaccine in cases of emerging epidemic and pandemic dis-
eases. Therefore, further development of this approach is required.
Modification of the synthetic mRNA molecule itself can be benefi-
cial for immunogenicity and antigen expression, for example the
development of new cap-analogs.5,6 However, an alternative sin-
gle-stranded RNA platform approach is available, that combines
modification processes with increased protein translation. Self-
amplifying RNA (sa-RNA) vaccines are derived from alphaviruses:
positive-strand, non-segmented RNA viruses. The alphaviral
genome is divided into two open reading frames (ORFs): the first
ORF encodes proteins for the RNA dependent RNA polymerase
s.
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(replicase), and the second ORF encodes structural proteins. In
sa-RNA vaccine constructs, the ORF encoding viral structural
proteins is replaced with any antigen of choice, while the viral repli-
case remains an integral part of the vaccine and drives intracellular
amplification of the RNA after immunization.7

One pathogen with pandemic potential is influenza virus, which be-
longs to the family of Orthomyxoviridae and can be divided into 3
genera, influenza A, B, and C. Because of their segmented RNA
genome, many subtypes exist, especially within the influenza A vi-
ruses. Mutation and recombination of different virus subtypes occurs
fairly easily leading to the frequent emergence of novel strains. In hu-
mans, influenza viruses caused 3 pandemics in the 20th Century. The
most recent “swine flu” pandemic in 2009 was considered a low-path-
ogenicity strain but still infected approximately 200 million people
and caused an estimated 201,200 fatalities.8 The currently emerging
H5N8 bird flu virus isolate further demonstrates the urgent need to
flexibly adjust vaccines to highly promiscuous subtypes.9 The highly
changeable nature of influenza virus and the history of pandemics un-
derpin the urgent need to be ready for a new pandemic influenza
virus. As the characteristics of pandemic viruses cannot be predicted,
a quickly adaptable vaccine platform is needed to address this threat.
Currently, most influenza vaccines are prepared from inactivated
viruses, grown in embryonated chicken eggs. This can be problematic,
particularly for avian-derived viruses, which may be highly patho-
genic to the chicken embryo, resulting in a low titer of recoverable
virus. In this respect, RNA vaccines could offer a considerable saving
in time. mRNA has already been used to immunize mice, ferrets, and
pigs against influenza,4,10 and also sa-RNA has been introduced for
protection against H1N111 and newly emerging subtype H7N911

influenza in 2013.

In the current study, we looked at the possibility of replacing the pro-
tein based seasonal influenza trivalent vaccine with an RNA vaccine.
The first question is which RNA vaccine platform was best, synthetic
mRNA or sa-RNA. While it is more immunogenic, the production
process and stability of the sa-RNA product is more challenging
because of the length of constructs. We compared synthetic mRNA
and sa-RNA encoding the hemagglutinin (HA) gene from a model
influenza virus strain. 64-fold less sa-RNA material was required to
induce a similar level of protection, namely 80 mg mRNA versus
0.05 mg sa-RNA was needed for full survival. We then developed
and tested sa-RNA encoding HA from seasonal influenza virus
A and B strains and observed that they were protective both singly
and as a trivalent formulation.

RESULTS
sa-RNA Achieves Equivalent Protection to mRNA but Requires

Less RNA

To determine the protective potential of synthetic mRNA, BALB/c
mice were immunized intramuscularly (i.m.) with a prime-boost
regime of 120, 80, or 20 mg synthetic mRNA encoding HA from
the H1N1 influenza virus A/Puerto Rico/8/1934 (H1N1/PR8), inac-
tivated virus was used as a positive control. Antibody responses
were assessed by hemagglutination inhibition (HAI) (Figure 1A)
or viral neutralizing titer (VNT) (Figure 1B). Antibody responses
against HA increased with increasing mRNA dose and though
80 mg induced seroconversion in all immunized animals, only
120 mg gave a VNT that was significantly greater than that in
buffer-treated animals. When infected intranasally with a 10-fold
lethal dose of H1N1/PR8, the 120- and 80-mg dose groups were fully
protected against infection and the 20-mg dose group was partially
protected (Figures 1C and 1D). In comparison, we independently
performed a dose response of sa-RNA expressing the H1N1/PR8
HA antigen to analyze whether less RNA material is needed for pro-
tection compared to synthetic mRNA. Lower amounts of sa-RNA
were already suspected to be potent, and therefore titration started
with a lower dose. Vaccination induced an anti-H1N1/PR8 func-
tional antibody response (Figures 1E and 1F), and a 1.25-mg dose
gave a significantly greater response than did that of the buffer con-
trol. On challenge, the 1.25 mg sa-RNA group was fully protected
against H1N1/PR8 infection, and the 0.25 and 0.05 mg groups
were partially protected (Figures 1G and 1H). Comparing the re-
sponses (Table 1), the response in the 1.25 mg sa-RNA group was
equivalent to the response in the 80 mg mRNA group, so that a
64-fold lower dose of sa-RNA than synthetic mRNA was required
to give an equivalent protective response.

sa-RNA Gives Extended Expression Compared to mRNA

Unlike proteins, nucleic acid vaccines have to be expressed in situ
prior to inducing an immune response. We investigated whether dif-
ferences in expression could explain the difference in the dose
required for mRNA or sa-RNA immunization. Upon i.m. application
of 4 mg mRNA or sa-RNA encoding firefly luciferase, we observed
substantial differences between the two RNA vaccine types (Figure 2).
Luciferase expression from sa-RNA was delayed, peaking at day 8 af-
ter transfer at a 5-fold higher peak level than mRNA and lasting for
about 10 days above the peak level of mRNA (Figure 2B).

To improve RNA vaccination, different delivery formulation plat-
forms have been described, including polyethylenimine (PEI)-based
delivery vehicles.12 In our studies, we introduced a medium-length
PEI-based formulation suitable for in vivo nucleic acid delivery and
adapted the formulation to long RNA molecules (data not shown).
Next, we analyzed whether this formulation improved sa-RNA vacci-
nation. BALB/c mice were immunized at days 0 and 21 with 1.25 mg
sa-RNA encoding the HA of H1N1/PR8 either formulated with PEI
or non-formulated (i.e., dissolved in buffer). A third group received
only ringer-lactate as a buffer control. All animals immunized with
sa-RNA developed an immune response against the HA analyzed
by VNT. Both formulated and non-formulated RNA induced VNT
response at days 19 (Figure 3A) after the initial vaccination.
54 days after immunization, formulation of sa-RNA encoding the
H1N1/PR8-HA resulted in a significantly higher antibody titer
compared to using non-formulated sa-RNA (Figure 3B). Taken
together, these results demonstrate not only the high potency of
sa-RNA-based vaccines but also the potential to improve sa-RNA
efficacy by formulation.
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Figure 1. Different mRNA Vaccine Platforms Are Both Protective against Influenza A Disease in a Prime-Boost Regime, but IVT-mRNA Requires More

Material

BALB/c mice were immunized i.m. with 120, 80, or 20 mg H1N1/PR8-HA coding mRNA, with 5 mg of inactivated virus (def-Virus) or ringer-lactate solution only (buffer),

followed by a homologous boost 3 weeks later. H1N1-specific antibody wasmeasured by HAI (A) and VNT (B) 8 weeks after the first vaccine was administered. Animals were

infected i.n. with 10-fold MLD50 of H1N1/PR8. Survival (C) and weight change (D) were monitored daily. BALB/c mice were immunized i.m. with 1.25, 0.25, or 0.05 mg H1N1/

PR8-HA coding sa-RNA followed by a homologous boost 3 weeks later. H1N1-specific antibody was measured by HAI (E) and VNT (F) 8 weeks after the first vaccine was

administered. Thereafter, animals were infected i.n. with 10-fold MLD50 of H1N1/PR8. Survival (G) and weight change (H) were monitored daily. Lines and points represent

means and SEM of n = 5 mice. *p < 0.05 and **p < 0.001 indicate significance measured by one-way ANOVA.
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sa-RNA Vaccine Encoding Influenza A Virus HA Protects against

Current Seasonal Influenza Strains

To test the immunogenicity and efficacy of a sa-RNA vaccine against
seasonal influenza virus strains in a mouse model, BALB/c mice
received an i.m. prime vaccination followed by a homologous boost
3 weeks later. As a positive control, one group received 1/25th of
the human dose of a licensed protein-based seasonal influenza
vaccine (Begripal 2014/2015) containing 0.6 mg HA of each A/Califo-
nia/07/2009 (Cal’09 H1N1), A/Texas/50/2012 (Tx50 H3N2), B/Mas-
sachusetts/2/2012 (B/Mass). As a negative control another group
received 1.5 mg HIV gp140 sa-RNA to exclude unspecific sa-RNA ef-
fects leading to an HA-specific immune response. Mice were immu-
nized with either 1.5 or 0.5 mg PEI-formulated sa-RNA encoding
Cal’09H1N1-HA. Serum samples were taken at weeks 3 (immediately
prior to boost), 5, and 7 after the priming immunization. Total anti-
H1N1 immunoglobulin G (IgG) was determined by ELISA (Fig-
ure 4A). In all groups, no IgG could be detected above control levels
3 weeks after the priming dose. After the boost, however, significant
levels of anti-H1N1 IgG were measured in mice that received the
1.5 mg HA sa-RNA dose or the protein vaccine (p < 0.01 compared
to negative controls). 5 weeks after the prime dose, antibody re-
sponses to the licensed protein vaccine were significantly higher
than those detected in RNA-immunizedmice (p < 0.01), before falling
to similar levels by 7 weeks after the prime dose.

To determine whether the sa-RNA vaccine was protective, mice
were infected intranasally with 3 � 104 plaque-forming units (PFU)
448 Molecular Therapy Vol. 26 No 2 February 2018
Cal’09 H1N1 4 weeks after the boost. sa-RNA-immunized mice
were protected against influenza induced weight loss, with signifi-
cantly less weight loss from day 3 post-infection compared to the con-
trol immunized mice (p < 0.05) (Figure 4B). Influenza M gene RNA
was significantly reduced in the lung following both protein and HA
sa-RNA vaccination compared with negative control on day 7 after
infection (p < 0.01) (Figure 4C), demonstrating reduced viral replica-
tion in the animals. H1N1-specific antibody was measured in the
serum 4 days after infection, both the protein vaccine and 1.5 mg
HA sa-RNA vaccine induced significantly higher total IgG levels
than the negative control (p < 0.01) (Figure 4D). Vaccination with
protein induced a significantly higher response than low dose sa-
RNA (p < 0.01). The ratio of IgG2a:IgG1 H1N1-specific antibodies
was significantly different between the protein (mean 0.05) and
high dose sa-RNA (mean 141) vaccine (p < 0.05) (Figure 4E), suggest-
ing a Th1-skewed response in the RNA groups. Mice immunized with
sa-RNA had a significantly greater proportion of H1N1-specific
CD8+ T cells in the lungs on d7 after infection than either the protein
vaccine or the control group (p < 0.01) (Figure 4F). Taken together,
these data demonstrate that H1N1 HA sa-RNA provides effective
protection against H1N1 flu challenge, reducing weight loss and viral
load as effectively as a protein vaccine despite lower antibody levels,
while inducing a higher proportion of specific CD8+ T cells.

To check whether the regime described above could be extended
to other strains of influenza, the prime-boost study was repeated us-
ing a sa-RNA vaccine encoding HA from B/Massachusetts/2/2012



Table 1. Comparison of Responses by Different RNA Platforms

Dose

mRNA sa-RNA

120 mg 80 mg 20 mg 1.25 mg 0.25 mg 0.05 mg

HAI (mean ± SD) 284 ± 325.7 88 ± 65.73 56.4 ± 66.52 104 ± 53.67 18.2 ± 14.53 42.4 ± 67.66

VNT (mean ± SD) 688 ± 581.3 140 ± 107.7 156.2 ± 152.3 576 ± 267.7 149 ± 189.6 288 ± 556.5

Weight d3 p.i. 96.7 ± 6.7 97.6 ± 2.0 93.4 ± 5.3 93.4 ± 2.9 87.6 ± 4.3 90.3 ± 5.6

HAI, hemagglutination inhibition assay titer; p.i., post-infection; VNT, viral neutralizing titer.
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formulated in PEI. The protein vaccine induced significantly higher
IgG levels than the HIV RNA control at week 5, furthering increasing
by week 7 (Figure 4G). Very little specific IgG was induced in the sa-
RNA groups. At week 7, mice were challenged with influenza B/Flor-
ida/06 (a Yamagata-like virus antigenically similar to B/Mass), and
weight loss was assessed daily. Influenza B sa-RNA provided effective
protection against weight loss at both high and low doses from days
5–7 compared with the negative control group (Figure 4H). Influ-
enza-B NS gene RNA was significantly reduced in the lung following
both protein and HA sa-RNA vaccination compared with negative
control on day 7 after infection (p < 0.05, Figure 4I).

The current seasonal H3N2 is human adapted and only able to bind
a2,6-linked sialic acid13,14 and therefore not infectious in mice. To
test whether an H3N2 antigen was protective we used the HA from
X31 (A/Hong Kong/1/68). Immunization with 1.5 or 0.5 mg sa-
RNA formulated in PEI induced significantly more X31 hemaggluti-
nin-specific IgG compared with that in control animals (p < 0.001)
(Figure 4J). Immunization also significantly reduced weight loss
following infection with X31 virus (p < 0.05) (Figure 4K) and reduced
viral load at day 7 (p < 0.01) (Figure 4L). Therefore sa-RNA-express-
ing influenza antigens can protect against matched influenza chal-
lenge with 3 different strains of influenza.

A Trivalent RNA Vaccine Protects against H1N1 Influenza

Disease in a Prime-Boost Regime

The current influenza vaccine licensed for use—the trivalent protein
vaccine used in this study—contains HA from three viral strains.
Thus, we wished to test an equivalent trivalent RNA vaccine, to deter-
mine whether combining RNA expressed antigens altered immuno-
genicity. The prime-boost regime used above was adapted such that
mice either received 1.5 mg Cal’09 H1N1 HA PEI formulated sa-
RNA alone, or a trivalent PEI formulated sa-RNA vaccine containing
1.5 mg each of RNA encoding HA from A/Califonia/07/2009 (H1N1),
A/Hong Kong/1/68 (X31, H3N2) and B/Massachusetts/2/2012. Con-
trol mice were unvaccinated (naive) or received protein vaccine. Anti-
body responses against the encoded antigens were measured in sera
on day 7 after infection (Figures 5A–5C). Trivalent sa-RNA vaccina-
tion induced anti-H1N1 (Figure 5A) and H3N2 (Figure 5B) IgG re-
sponses, but only B responses weremore inconsistent, with a response
in 2 out of 5 animals (Figure 5C), whereas protein vaccination
induced antibody responses against all three components. 4 weeks af-
ter boost, mice were infected with H1N1 virus, both the single H1 and
trivalent RNA vaccines conferred a significant protection from weight
loss, from day 4 after infection (Figure 5D). 7 days later, the Cal’09
RNA and trivalent RNA groups from the same study were challenged
with X31: new naive controls were used as the initial naive group had
not regained weight after the H1N1 challenge and the protein immu-
nisation did not contain an X31 component. The trivalent RNA-
immunized animals lost significantly less weight than the Naive or
Cal’09-immunized mice (Figure 5E). The Cal’09 group was also
partially protected. From this, we can therefore conclude that
combining sa-RNA from 3 different HA does not reduce protection
against H1N1 or H3N2 challenge compared to immunization with
sa-RNA alone.

A Single Dose of sa-RNA or DNA Vaccine Protects against H1N1

Influenza

To determine whether sa-RNA vaccine could elicit “single-shot”
immunity, mice received a single shot of Cal’09 H1N1HAPEI formu-
lated sa-RNA. sa-RNA was compared to other nucleic acid vaccina-
tions: a single 1.5 mg DNA encoding the same gene formulated in
Figure 2. In Vivo Imaging of Luciferase Encoded by

mRNA and Self-Amplifying RNA

BALB/c mice were intramuscularly injected with 4 mg sa-

RNA (2 mg per leg) or synthetic mRNA encoding luciferase

genes in PBS. At various time points after inoculation,

expression was visualized using an IVIS spectrum in vivo

imaging system after intraperitoneal injection of D-lucif-

erin. One representative image is shown per time point

(A). Luciferase levels from n = 6 animals were quantified as

relative light units (B). Points represent means ± SEM.

Molecular Therapy Vol. 26 No 2 February 2018 449

http://www.moleculartherapy.org


Figure 3. Formulating sa-RNAwith PEI Significantly Increases the Antibody

Response

BALB/cmice were immunized twice, on days 0 and 21, with 1.25 mg PEI-formulated

sa-RNA encoding HA or sa-RNA encoding HA alone. Sera was collected at days 19

(A) and 54 (B) and analyzed for influenza virus neutralization. Responses were

compared to animals immunized with buffer alone. Points represent individual an-

imals, and lines represent mean of n = 8 animals.
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the same way as the sa-RNA or 1.5 mg “naked”DNA followed by elec-
troporation as a positive control.15 4 weeks after immunization, mice
were infected with H1N1 influenza. Both DNA vaccines and the sa-
RNA reduced weight loss after influenza Cal’09 H1N1 infection
(p < 0.05) (Figure 6A). Further, when viral load was measured at
day 7 post-infection, both DNA vaccines and the sa-RNA signifi-
cantly reduced viral load, <7,000 copies M gene per 1 mg lung RNA
compared with a mean load of 2.02 ± 0.27 � 105 copies/mg in naive
mice (p < 0.001) (Figure 6B). Prior to infection, anti-H1N1 IgG levels
were measured in the serum (Figure 6C). The sa-RNA and DNA/elec-
tro vaccines induced similar amounts of specific IgG (2.03 ± 0.54 and
1.59 ± 0.86 mg/mL, respectively), whereas no other group showed a
significant increase above unvaccinated control levels. The sa-RNA
vaccine elicited a skew toward IgG2a (mean ratio 904.7) (Figure 6D).
Interestingly, the DNA/electroporation-vaccinated group (but not the
450 Molecular Therapy Vol. 26 No 2 February 2018
DNA/PEI group) also showed a skew toward IgG2a, with mean
370.7:1. Influenza-specific CD8 responses were detectable after all
vaccinations, but only formulated DNA induced significantly more
H1-specific CD8 cells than the naive group (Figure 6E). Thus, a single
shot of sa-RNA or DNA encoding HA protects against H1N1 influ-
enza disease, affording protection against weight loss and a significant
reduction in viral load.

DISCUSSION
In this study we have demonstrated that sa-RNA vaccines protect
against influenza A or B infection when administered singly or
in trivalent combination. Compared to non-amplifying synthetic
mRNA vaccines, sa-RNA vaccines induced protection with a
64-fold lower dose, which may result from prolonged and increased
transgene expression. Previous studies have demonstrated the efficacy
of high-dose mRNA vaccines4 and of sa-RNA vaccines against
H7N916 and H1N111 influenza. To our knowledge, this is the first
study to compare non-amplifying and sa-RNA vaccines expressing
the same antigen head to head, it is also the first study to look at a
trivalent sa-RNA vaccine for influenza.

We show here that 64-fold less sa-RNA is required to achieve the same
level of protection than non-amplifying synthetic -mRNA. On a per-
gene basis the dose delivered is even smaller for the sa-RNA group as
the sa-RNA construct is larger than the mRNA, 9,300 compared to
2,200 nt. The difference in dose required for protection is important
for translation into clinical practice as a significant scale up of the
total dose is needed for equivalence in human studies.2 Two factors
contribute to this increased response per dose, both linked to the repli-
cation of the RNA in the host cell: expression and immunogenicity.
Based on the luciferase data, expression of antigen from sa-RNA is
longer and greater than expression from mRNA (Figure 2). There is
also a differential expression profile, with delayed response for the sa-
RNA, whether this would change if a larger mRNA dose were used is
not clear; other studies have seen longer profiles of luciferase expression
after sa-RNA delivery.17 The antigen production in sa-RNA-trans-
fected cells is based on the principle of viral replication and therefore
results in high antigen expression in transfected cells leading to cellular
exhaustion and ultimately cell death of transfected cells. Additionally,
due to the prolonged provision of significant amounts of vaccine anti-
gens released from lytic transfected cells provides an ideal constellation
for continued B cell stimulation and antibody production. Moreover,
sa-RNA as compared to non-amplifying RNA provides additional
immune stimuli, e.g., because of generation of double-stranded RNA
intermediates and cytopathic effect in transfected cells. In-vitro-tran-
scribed RNA is recognized by the host cells by a number of pattern
recognition receptors, RNA-dependent protein kinase (PKR),18 Toll-
like receptors (TLR),19 and 20-50-oligoadenylate synthetase (OAS),20

which will lead to local inflammation. Further studies to separate the
relative roles of expression and immunogenicity are of interest in deter-
mining the optimum strategy for an RNA vaccine.

One of the aims of the study was to determine whether combining
antigens in an RNA vaccine would affect the efficacy of the vaccine.



Figure 4. Self-Amplifying RNA Vaccines Are Protective against Seasonal H1N1 and B Influenza Disease and Reduce Viral Load in a Prime-Boost Regime

BALB/c mice were i.m. immunized intramuscularly in a prime boost regime with a 3-week interval (indicated by arrows) with 1.5 or 0.5 mg Cal’09 H1N1 HA sa-RNA (A–F), Flu

B-Mass (G–I), or X31 H3N2 (J–L). Responses were compared to 1.5 mg HIV gp140 sa-RNA (negative control) or 1.8 mg licensed protein flu vaccine (A–I) or naive animals (J–L).

(A) H1N1-specific IgG was measured after vaccination. At 7 weeks, mice were infected intranasally with Cal’09 H1N1 influenza. Weight change was monitored daily (B), and

influenzaM gene copy number wasmeasured in the lung (C). H1N1-specific total IgG (D) and the ratio of specific IgG2a:IgG1 wasmeasured in serum 4 days after infection (E).

(F) H1-specific CD8+ T cells were measured in lung tissue on day 7 of infection. (G) For Flu B-Mass-immunized animals, specific IgG was measured by ELISA. (H) At 7 weeks,

mice were infected i.n. with B/Florida/06 influenza, and weight change was monitored daily. (I) Influenza B NS gene copy number was measured in the lung. (J) For H3N2-

immunized animals, specific IgG was measured by ELISA. (K) At 7 weeks, mice were infected i.n. with X31 H3N2 influenza, and weight change was monitored daily.

(L) Influenza AMgene copy number wasmeasured in the lung. Lines and points represent mean of nR 4mice. *p < 0.05, **p < 0.01, ***p < 0.001 between 1.5 mg flu RNA and

negative control; +p < 0.05, ++p < 0.01, +++p < 0.001 between 0.5 mg flu RNA and negative control; and ##p < 0.01, ###p < 0.001 between protein vaccine and negative

control.
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There were two possible causes of interference: inflammation and
antigenic sin. It was possible that delivering more RNA would in-
crease inflammation and shut down cellular translation machinery
via type I interferon (IFN) and PKR.21 However, we did not see any
negative effects of increasing dose, either of the sa-RNA or the syn-
thetic mRNA, though it may be that we hadn’t reached the threshold
above which the RNA is inhibitory. The other method of interference,
antigenic sin, is when expression of structurally similar antigens
simultaneously leads to reduced responses to one of them. Sequential
DNA vaccination with two different H1 HA antigens has been shown
to reduce response to the second antigen,22 and was independent of
the order in which the mice were exposed to the antigen. Combining
two influenza A antigens had no effect on the H1 or H3 response, and
trivalent immunized mice were protected against sequentially chal-
lenges with H1N1 and H3N2 influenza virus. While the H1N1
response was greater in the trivalent formulation and the H3N2
response was equivalent, the B response was reduced compared to
the monovalent immunization. Further work on the dose of the indi-
vidual antigens for the optimum response in combination is required.
The dose of protein vaccine used gave higher levels of antibody
response than RNA but it is difficult to compare such different plat-
forms by dose. Ultimately, both types of vaccination were protective,
suggesting there is threshold level of antibody and cellular response
that can protect against infection and that both protein and RNA
vaccination are above this threshold.

The sa-RNA vaccines were also compared to DNA, delivered with
electroporation or formulated with PEI. It was of interest because
Molecular Therapy Vol. 26 No 2 February 2018 451
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Figure 5. Self-Amplifying RNA Vaccines Are Immunogenic and Protective against H1N1 in Trivalent Combination

BALB/c mice were primed i.m. with 1.5 mg each of Cal’09 H1N1, B-Mass, X31 H3N2 HA sa-RNA, 1.5 mg Cal’09 H1N1 sa-RNA alone, or 1.8 mg licensed protein flu vaccine,

followed by a homologous boost 3 weeks later. H1N1 (A), H3N2 (B), or Flu B (C) specific antibody was measured by ELISA in sera 7 days after infection. (D) At 7 weeks, mice

were infected i.n. with Cal’09 H1N1 influenza, and weight change was monitored daily. (E) 7 days later, the Cal’09 RNA and trivalent RNA groups from the same study were

challenged with X31 H3N2 influenza, and responses were compared to new naive controls. (A)–(C) points represent individual animals and lines represent mean. (D) and (E)

points represent themean of n = 5 animals ± SEM. ***p < 0.001 between trivalent sa-RNA and naive; ###p < 0.001 betweenmonovalent sa-RNA and naive; and xxx between

monovalent and trivalent RNA (E).
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while it induced lower antibody responses, formulated DNA without
electroporation was still protective. This protection may have resulted
from the H1-specific T cell induction, which was significantly greater
after the DNA vaccination; we have shown that DNA vaccine induced
CD8 T cells are protective,23 and we have previously observed that the
route of DNA immunization can change the nature of the immune
response while not changing the level of protection.15 DNA vaccines,
have been highly effective in small animal models, but this pre-clinical
success has not translated into clinical success.2 One approach that
has improved DNA vaccination efficacy in clinical settings is the
use of electroporation24 and electroporation can also significantly
enhance the antibody response to sa-RNA-expressing influenza hem-
agglutinin.25 While it has been shown to be tolerable in clinical trial
settings, immunization with electroporation is more painful than im-
munization without it.24,26 It also requires trained operatives to
deliver, a power source and specialist equipment to deliver, which
means that while of value as an investigative tool, it is unlikely to
be translated into broader clinical practice. In contrast, mRNA vac-
cines have been already shown to be successfully applied to larger an-
imals and entered clinical trials without requiring electroporation for
delivery.10,27 The sa-RNA combines ideal immunological and bio-
pharmaceutical properties and are therefore an attractive alternative.
The data presented here supports the further development of sa-RNA
for preventative vaccine usage.

MATERIALS AND METHODS
RNA Synthesis by In Vitro Transcription

T7 in vitro transcription is based on protocols provided by the
MEGAscript T7 Transcription Kit (Thermo Fisher, formerly
Ambion). The general procedure starting with linear DNA template
containing the T7 promoter, and particularly with respect to co-tran-
scriptional capping with the synthetic cap analog beta-S-ARCA(D1)
(used in 4:1 ratio regarding guanosine triphosphate [GTP]), is carried
out similarly to as described before.5 Based on previous work, e.g.,
Pokrovskaya and Gurevich,28 high-yielding processes qualified for
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our particular systemswere developed; here, protocols have beenmodi-
fied and optimized with respect to long sa-RNA with up to 10,000 nt.

Intramuscular Injections and In Vivo Bioluminescence Imaging

Mice were anesthetized by inhalation anesthesia (isoflurane 2.5%)
(Abbott, Ludwigshafen, Germany). Subsequently, 20 mL of pre-mixed
RNAs in RNase-free PBS (Life Technologies, Darmstadt, Germany)
was injected i.m. to the tibialis posterior. Following intraperitoneal
(i.p.) injection of 100 mg/kg body weight D-luciferin (PerkinElmer,
Rodgau, Germany), inhalation anesthesia (isoflurane 2.5%) was intro-
duced, and, during maintenance, serial images of the animals were
taken at the indicated time points using an IVI Spectrum imaging
system (PerkinElmer). Photons emitted were collected for 1 min.
Bioluminescence intensity from the muscle region of interest was
quantified using Living Image software (PerkinElmer).

VNT

To determine the level of neutralizing antibodies against HA in the
serum of animals, VNTs were performed in accordance with the
Manual for the Laboratory Diagnosis and Virological Surveillance
of Influenza (WHO Global influenza Surveillance Network). A serial
dilution of serum samples starting with 1:10 was incubated for 2 hr
with 100 TCID50 of infectious influenza virus. The final serum dilu-
tion of this assay was 1:1,280 and thereby also the upper detection
limit. The serum-virus mix was then applied to confluent Madin-
Darby canine kidney (MDCK) monolayer in 96-well plates and
incubated for another 3 days. 50 mL of supernatant was thereafter
incubated with 50 mL of 0.5% chicken red blood cells (Lohmann
Tierzucht, Cuxhaven, Germany), and red blood cell agglutination
was evaluated. The VNT titer was recorded as the inverse of the lowest
dilution that inhibited agglutination (VNT/50 mL).

HAI Assay

To determine the serum level of anti-HA antibodies that inhibit
hemagglutination in mice, sera were collected and HAI assay was



Figure 6. A Single Dose of Self-Amplifying RNA Vaccine Gives Equivalent Protection to Electroporated DNA and Greater Protection than mRNA Encoding

the Same Gene

(A) BALB/c mice were primed i.m. with 1.5 mg Cal’09 H1N1 as DNA or self-amplifying RNA. RNAwas delivered as a formulation; DNAwas delivered as a formulation or naked

with electroporation. 4 weeks later, mice were infected i.n. with Cal’09 H1N1 influenza, and weight change was monitored daily. (B) M gene copy number was measured in

lungs 7 days after infection. 4 days post-infection, H1N1-specific total IgG was measured in serum (C), and the ratio of specific IgG2a:IgG1 determined (D). (E) 7 days post-

infection, proportions of flu-specific CD8+ T cells were measured in lung tissue by pentamer staining. (A) points represent the mean of n = 5 animals ± SEM. (B)–(E) points

represent individual animals, and lines represent mean. *p < 0.05; **p < 0.001, and ***p < 0.001 indicate significance measured by one-way ANOVA.
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performed following the Manual for the laboratory diagnosis and
virological surveillance of influenza (WHO Global influenza Surveil-
lance Network). Briefly, serum samples were treated overnight with
receptor destroying enzyme II “Seiken” in a 1:5 ratio (RDE [II], Denka
Seiken, Japan) followed by heat inactivation for 30 min at 56�C. Sera
were used in duplicates and serial dilutions (1:2) were performed
before adding 4 hemagglutinating units (HAUs) of H1N1/PR8 virus.
After 60 min incubation at room temperature, 50 mL of 0.5% red
blood cells (Lohmann Tierzucht) were added and the mixture incu-
bated for 30 min at room temperature before evaluation of agglutina-
tion. The HAI titer was recorded as the inverse of the lowest dilution
that inhibited agglutination (HAI/50 mL).

Mouse Immunization and Infection

6- to 8-week-old female BALB/c mice were obtained from Harlan UK
(Exelby, UK) or Janvier (Genest Saint Isle, France) and kept in specific
pathogen-free (SPF) conditions in accordance with the German ani-
mal welfare law and United Kingdom’s Home Office guidelines. All
work was approved by the Animal Welfare and Ethical Review Board
(AWERB) at Imperial College London or by the local animal welfare
committee of Rhineland-Palatinate (reference number G-13-8-063).
For the inactivated virus control group, mice were immunized with
10 mg per 20 mL H1N1/PR8 virus (Charles River, Wilmington, MA,
USA), and for licensed protein vaccine groups, mice were immunized
i.m. via the anterior tibialis with 20 mL Begripal 2014/15 (Novartis
Vaccines) containing 0.6 mg HA from each of B/Massachusetts/
2/2012, A/Texas/50/2012 (H3N2)-like, and A/California/7/2009
(H1N1) pdm09-like viruses. For synthetic RNA vaccination, mice
were injected i.m. with 20 mL non-formulated mRNA, non-formu-
lated, or formulated sa-RNA. For DNA vaccination, mice received
1.5 mg formulated DNA or naked DNA with electroporation i.m.
Where used, two lots of 5 pulses of 150 V with switched polarity
Molecular Therapy Vol. 26 No 2 February 2018 453
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between pulses were delivered using a CUY21 EDIT system (BEX,
Japan). For infections, mice were either anesthetized with ketamin-
rompun before infected intranasally (i.n.) with 30 mL containing
2.4 � 104 PFU (10x MLD50) of H1N1/PR8 or anesthetized using iso-
flurane followed by i.n. application with 3� 104 PFU A/California/7/
2009 (H1N1) influenza.

Influenza

H1N1 influenza virus A/Puerto Rico/9/1934 was a kind gift from
Veronika von Messling (Paul-Ehrlich Institute, Langen, Germany)
and thereafter grown in-house on MDCK cells in fetal calf serum
(FCS)-free minimum essential media (MEM) (ThermoFisher Scien-
tific Life Technologies, Darmstadt, Germany). H1N1 influenza
(strain A/England/195/2009), isolated by Public Health England
in the United Kingdom, April 2009,29 and influenza (strain B/Flor-
ida/4/06) isolated in the United States in 2006, were grown in
MDCK cells, in serum-free DMEM supplemented with 1 mg/mL
trypsin. The virus was harvested 3 days after inoculation and stored
at �80�C. Viral titer was determined by plaque assay as previously
described.30

Semiquantitative Antigen-Specific ELISA

Antibodies specific to influenza H1N1 were measured in sera using a
standardized ELISA. MaxiSorp 96-well plates (Nunc) were coated
with 1 mg/mL H1N1 surface protein or a combination of anti-murine
lambda and kappa-light-chain-specific antibodies (AbDSerotec, Ox-
ford, UK) and incubated overnight at 4�C. Plates were blocked with
1% BSA in PBS. Bound IgG was detected using horseradish peroxi-
dase (HRP)-conjugated goat anti-mouse IgG (AbD Serotec). Alterna-
tively, IgG1 or IgG2a were detected using subtype-specific secondary
antibodies. A dilution series of recombinant murine immunoglobulin
was used as a standard to quantify specific antibodies. 3,3’,5,5’-Tetra-
methylbenzidine (TMB) with H2SO4 as stop solution was used to
detect the response, and optical densities were read at 450 nm.

Tissue and Cell Recovery and Isolation

At specified time points post-immunization, blood samples were
taken by tail-vein bleed, and sera were isolated after clotting by centri-
fugation. Mice were culled using 100 mL intraperitoneal pentobarbi-
tone (20-mg dose; Pentoject, Animalcare, UK), and tissues were
collected as previously described.31 Blood was collected from carotid
vessels, and sera were isolated after clotting by centrifugation. Lungs
were removed and homogenized by passage through 100-mm cell
strainers and then centrifuged at 200 � g for 5 min. Supernatants
were removed, and the cell pellet treated with red blood cell lysis
buffer (ACK; 0.15 M ammonium chloride, 1 M potassium hydrogen
carbonate, and 0.01 mM EDTA [pH 7.2]) before centrifugation at
200 � g for 5 min. The remaining cells were resuspended in RPMI
1640 medium with 10% fetal calf serum, and viable cell numbers
were determined by trypan blue exclusion.

Influenza Viral Load

Viral load in vivo was assessed by Trizol extraction of RNA from
frozen lung tissue disrupted in a TissueLyzer (QIAGEN, Manchester,
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UK). RNA was converted into cDNA, and qRT-PCR was carried out
using bulk viral RNA for the influenza M gene and mRNA using
a 0.1-mM forward primer (50-AAGACAAGACCAATYCTGTCA
CCTCT-30), a 0.1-mM reverse primer (50-TCTACGYTGCAGTCCYC
GCT-30), and a 0.2-mM probe (50-FAM-TYACGCTCACCGTGCC
CAGTG-TAMRA-30) on a Stratagene Mx3005p (Agilent Technolo-
gies, Santa Clara, CA, USA). M-specific RNA copy number was deter-
mined using an influenza M gene standard plasmid.

Flow Cytometry

Cells were stained with Fixable Violet Dead Cell Stain (Life Tech-
nologies, UK), washed, suspended in Fc block (Anti-CD16/32, BD)
in PBS-1% BSA, and then stained with the following surface
antibodies: influenza A H1 HA533-541 IYSTVASSL Pentamer R-PE
(Proimmune, Oxford, UK), CD3-FITC (BD, Oxford UK), CD4-
PE/Cy7 (BioLegend, CA, USA), and CD8-APC-H7 (BD). Analysis
was performed on an LSRFortessa Flow Cytometer (BD). Fluores-
cence minus one (FMO) controls were used for surface stains.

Statistical Analysis

Calculations described in the figure legends were performed using
Prism (v.6) (GraphPad Software, La Jolla, CA, USA).
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