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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons.
Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease
progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we
discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities
or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation
and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic
stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could
play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds,
and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox
regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.

1. Introduction

Cellular oxidation/reduction (redox) states regulate various
aspects of cellular function and maintain homeostasis [1].
Moderate levels of reactive oxygen species/reactive nitro-
gen species (ROS/RNS) function as signals to promote cell
proliferation, regulation, and survival [2], whereas increased
levels of ROS/RNS can induce cell death [1, 2]. Under normal
physiological conditions, cells maintain redox homeostasis
through generation of ROS which include free radical species
such as superoxide (O

2

−) hydroxyl radicals (OH−) and non-
radical species such as hydrogen peroxide (H

2
O
2
); and RNS,

which includes nitric oxide (NO), nitronium ion (NO
2

+),
nitrogen dioxide (NO

2

∙), and peroxynitrite (ONOO−) [3–
5]. RNS are by-products of nitric oxide synthase (NOS)
and NADPH oxidase [6]. Increased levels of NOS have
been observed in the motor neurons of amyotrophic lateral
sclerosis (ALS) patients suggesting a role of RNS in pathology
[7]. Higher levels of RNS can react with other free radicals
such as superoxide and undergo complex reactions to form
the strong oxidant ONOO− which causes cellular damage [8–
10].

Cells are equipped with antioxidant systems to eliminate
ROS/RNS and maintain redox homeostasis, which include
enzymatic antioxidants such as superoxide dismutase (SOD),
peroxidase, oxidase, catalase, and nonenzymatic oxidants
such as glutathione [3, 11]. Glutaredoxin and thioredoxin are
redox active molecules which undergo cysteine dependent
modifications, also making them preferential targets for
direct oxidation [12].

Redox regulation is a fundamental cellular process involv-
ing enzymes that maintain the appropriate environment for
metabolic activities and proper functioning of the cell [13].
Normally, redox homeostasis ensures that cells respond to
stressors such as oxidative or nitrative stress efficiently but
when it is disturbed, neurodegeneration and apoptosis can
occur [11, 14]. Neurons are particularly susceptible to degen-
eration via redox dysregulation as the high consumption of
oxygen by the brain results in a significant production of
ROS [15]. Disruption in redox regulation is implicated in
the pathogenesis of neurodegeneration disorders, including
ALS. Interestingly, several pathogenic mechanisms linked
to ALS involve redox-sensitive proteins, such as SOD1, and
proteins with active-site cysteine residues, including protein
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disulphide isomerase (PDI), thioredoxin, and glutathione
[16–20]. These proteins contain a thiol group which is
highly sensitive to changes in redox conditions [12, 21]. Even
slight modulations in redox state are capable of producing
neurotoxic species such as NO

2

+, NO
2

∙, and ONOO− [14],
suggesting that redox stress could be of importance in disease
[9].

2. Amyotrophic Lateral Sclerosis (ALS)

ALS, also known asCharcot’s or LouGehrig’s disease, is a fatal
neurodegenerative disorder that affects the upper and lower
motor neurons of the primary cortex, brainstem, and spinal
cord [22, 23]. The symptoms include muscle weakness and
muscle spasticity eventually resulting in paralysis [24] with
ALS patients generally dying from respiratory failure within
3–5 years of diagnosis. Approximately 2 per 100,000 people
worldwide are affected by ALS every year [22]. Riluzole is
the only FDA-approved drug currently available for ALS.
Riluzole has modest efficacy. It slows disease progression
and a dose of 100mg per day also improves limb function
and muscle strength although it increases life span by an
average of only 2-3 months [25, 26]. Therefore, a greater
understanding of the molecular mechanisms causing ALS is
important in order to develop better therapeutic solutions.

Approximately 90% of ALS cases have no genetic asso-
ciation and are known as sporadic ALS (SALS). However
mutations in genes such as copper/zinc superoxide dis-
mutase (SOD1), fused in sarcoma (FUS) and TAR DNA
binding protein (TARDBP), have also been described in SALS
patients; also environmental causes such as smoking and
viral infection are linked to ALS [24, 27–31]. Studies have
shown higher prevalence of ALS in people with a history
of trauma [32] and involvement in physical activities such
as soccer has also been observed in ALS patients [33, 34];
however the exact aetiology is unknown. The remaining 10%
of ALS cases, known as familial ALS (FALS), are linked
to mutations in specific genes [35] including SOD1, TDP-
43, FUS, vesicle associated membrane protein-B (VAPB),
optineurin, alsin, and ubiquilin-2 [18, 36–43]. Recently a
noncoding mutation in C9ORF72 was shown to cause the
greatest proportion of FALS cases [44]. SOD1 causes 15–
20% of all FALS cases and was the first described and hence
most widely researched gene linked to ALS [18]. Transgenic
mice overexpressing ALS-associated mutant SOD1 proteins
have been used extensively as diseasemodels [45–47]. Similar
to other protein disorders, the pathological hallmark of
ALS is the presence of intracellular protein inclusions [48].
Misfolded wild-type and mutant forms of SOD1, FUS, and
TDP-43 [41, 49, 50] are present on the inclusions found in
affected tissues of ALS patients [41, 51–53]. SALS and FALS
have similar symptoms and are clinically and pathologically
indistinguishable.

Wild-type SOD1 is a highly stable homodimeric protein,
explained in part by the presence of an intrasubunit disul-
phide bond between cysteine 57 and cysteine 146 [54]. It
contains both copper and zinc ions which are essential for
the catalytic activity and stability, respectively [55]. Reduction

of the disulphide bond results in dissociation of the dimer
and the resulting protein is highly unstable and prone to
aggregation [56, 57].

Dysfunction in multiple cellular mechanisms is linked
to ALS pathology reviewed recently by Cozzolino and
coworkers [58]. Many of these events are linked to redox
regulation including oxidative stress, protein misfolding and
aggregation, excitotoxicity, lipid peroxidation and cholesterol
esterification, mitochondrial dysfunction, impaired axonal
transport and neurofilament aggregation, autophagy, and ER
stress [46, 59–68]. However, there is a complex interplay
between these processes and the exact aetiology of the disease
is unclear. It is debatable whether redox dysregulation is a
primary effect or a secondary consequence of other patholo-
gies and the association of redox regulation and cysteine rich
redox regulated proteins with these mechanisms is unclear.
This paper discusses the main redox linked mechanisms
which are involved in ALS and their association with redox
or cysteine dependent proteins.

3. Possible Redox Regulated Cellular
Mechanisms Involved in ALS

3.1. Oxidative Stress. Oxidative stress arises when the levels
of ROS/RNS exceed the amounts required for normal redox
signalling. While oxidative stress has been implicated as a
pathological mechanism in ALS the exact role of ROS/RNS
in disease processes is unclear [9, 69]. ROS causes permanent
oxidative damage to major cellular components such as
proteins, DNA, lipids, and cell membranes [70–72]. ROS has
been detected in the spinal cord and cerebrospinal fluid (CSF)
of SALS patients [17]. Increased levels of H

2
O
2
and oxidative

damage to protein andDNAhave also been observed in SOD1
transgenicmice [73]. Defects in the Rac/Nox pathway leading
to redox dysregulation are also linked to SOD1G93A mice [74].
Furthermore dysregulation of redox regulated-tumour pro-
tein 1, ubiquitin carboxyl-terminal hydrolase isoenzyme L1,
and 𝛼B crystallin has been observed in transgenic SOD1G93A
mice [75].

Altered redox homeostasis regulates gene expression of
transcriptional factors such as nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-𝜅B), activator protein
1 (AP-1), and hypoxia inducible factor 1𝛼 (HIF-1𝛼) [76].
These transcriptional factors help inmaintaining homeostasis
by regulating gene expression. They have a redox regulated
cysteine residue at their DNA binding site [76] which can
be affected due to thiol oxidation and could be influenced
by ROS [77]. A direct relation between the transcription
factors and redox regulation in ALS is unknown; nevertheless
dysregulation in the levels of NF-𝜅B and HIF-1𝛼 has been
observed in SALS patients, and activation of AP-1 in mutant
SOD1 expressing cells, suggesting potential involvement of
redox regulation in ALS pathology [78, 79].

SOD1 and its antioxidant properties have been studied
extensively from the perspective of redox regulation in ALS
[80, 81]. SOD1 catalyses the conversion of superoxide into
hydrogen peroxide and oxygen and it undergoes cyclic
reduction and oxidation of its copper ions [82]. Initially, it
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was proposed that ALSmutations in SOD1 result in the loss of
its ability to act as an antioxidant, but further research showed
that disease is not associated with its enzymatic activity
[83]. However, mutations in SOD1 could produce ONOO−
or OH− and lower its ability to catalyse superoxide [84] by
reacting with nitric oxide [85]. These intermediate products
are highly unstable and have been detected with other amino
acids such as tyrosine. Nitrated proteins and high levels
of nitrotyrosine have been detected in the CSF of both
SALS and FALS patients suggesting that posttranslational
modification via free radical production is present in ALS
[17, 86–88]. Oxidised wild-type SOD1 in the lymphoblasts
of SALS patients associates with mitochondrial Bcl-2 which
causes mitochondrial damage [89]. Oxidative damage is an
important phenomenon; however, treatment with antioxi-
dants has not been very successful [90].

3.2. Protein Aggregation andMisfolding. Redox dysregulation
may not only increase the production of ROS/RNS but also
affect protein conformation and structure. Posttranslational
modification of SOD1 such as oxidation has an adverse
effect on the conformational arrangement of SOD1 [91].
Glutathionylation, a posttranslational modification of the 111
cysteine residue, causes destabilisation of SOD1 structure
[92]. Wild-type SOD1 has been shown in inclusions of SALS
patients suggesting its involvement in causing neurotoxicity
[93]. Evidence suggests that oxidised wild-type SOD1 has
the ability to misfold and form aggregates and gain similar
conformation as the mutant and has toxic functions in vitro
[89, 94]. SOD1 depleted zinc and copper have altered redox
activity and are more prone to oxidation [95].

An oxidising environment also causes abnormal disul-
phide linkages and protein aggregation in ALS [80, 96].
SOD1 containing aberrant disulphide bonds involves the
normally unpaired cysteine residues cysteine 6 and cysteine
111 in the spinal cord of ALS transgenic mice models [96].
Studies show that mutant TDP-43 aggregation is caused
due to increased disulphide bonds [97]. Similarly oxidative
stress causes aberrant disulphide cross-linking and subcel-
lular localisation of TDP-43 [97] as well as accumulation of
FUS into the cytoplasm [98]. Mutant SOD1 readily forms
monomers, oligomers, or inclusions which are insoluble [55].
It is unclear how conformational changes cause misfolding
but one possible explanation could be the modification and
alteration of protein structure by ROS through oxidisation of
the thiol group, forming aberrant disulphide bonds.

3.3. Glutamate Excitotoxicity. The levels of glutamate present
inmammalian CNS aremuch higher than those of other neu-
rotransmitters (5–10mmol/kg) indicating the importance of
glutamate in neuronal function [99]. However, excitotoxicity
occurs when the levels of glutamate are increased in neurons,
resulting in increased calcium intake and neuronal injury
[100, 101]. Motor neurons are particularly susceptible to high
levels of glutamate [102]. Glutamate uptake from the synapse
is controlled by glutamate transporters astroglial GLAST,
GLT1, and neuronal EAAC1 which possess a redox regulated
cysteine residue [103]. N-methyl-D aspartic acid (NMDA)

glutamate receptors are also redox regulated suggesting that
redox dysfunction may further affect glutamate regulation.
Increased levels of intracellular glutamate and decreased
uptake of glutamate from the synapse have been observed
in ALS patients [104, 105]. Indeed, Rothstein and coworkers
showed an absence of GLT1 transporter in ALS patients
[106]. ROS can reduce the uptake of glutamate in mammals
[107]; however, increased calcium levels in the mitochondria
due to dysfunctional glutamate regulation can result in
overproduction of ROS and cause oxidative stress [108]. The
question remains whether oxidative stress causes glutamate
dysregulation or vice versa.

3.4. Lipid Peroxidation and Cholesterol Esterification. The
ER is also the main site of lipid and sterol synthesis [109].
Lipids are major targets of oxidative stress, resulting in lipid
peroxidation via a chain-reaction process [11]. Sphingolipids
are localised in the plasma membrane and ER membranes
and, with cholesterol, are processed into domains known
as lipid rafts [68]. Lipid rafts can form macroplatforms
for redox signalling, providing critical mediation for cel-
lular functioning [110]. Lipid peroxidation and cholesterol
esterification have been implicated in the pathogenesis of
ALS [68, 69, 111]. Excitotoxicity and oxidative stress alter
sphingolipid metabolism resulting in the accumulation of
long-chain ceramides, sphingomyelin, and cholesterol esters
in the spinal cords of ALS patients and Cu/Zn SOD1 mice.
This occurs at the early presymptomatic stage of disease in the
SOD1mice [68] thus implicating aberrant lipidmetabolism in
the pathophysiology of ALS. Further evidence of lipid dysreg-
ulation in ALS comes from studies which reported that ALS
patients demonstrated a tendency towards hyperlipidemia.
Additionally, correlational studies have shown that ALS
patients with the highest low density lipoprotein (LDL)/ high
density lipoprotein (HDL) ratio have a significant increase
in survival time and respiratory function [112, 113]. Fur-
thermore, recently, an interaction between SOD1 aggregates
with lipid was found to alter lipid membrane permeability
[114].

Lipid peroxidation products such as 4-hydroxynonenal
have been detected at higher levels in ALS patients spinal
cord than controls, and this has been linked to modification
of astrocytic glutamate transporter EAAT2 and excitotoxicity
[111]. Excitotoxicity was also linked to upregulation of sterol
regulatory binding element 1 (SREBP1) in the spinal cords
of FALS and SALS patients, and SOD1G93A transgenic mice
suggesting cholesterol depletion [115]. Furthermore, the link
between ALS and statins, a class of drug which inhibit 3-
hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reduc-
tase, may suggest that suppressing cholesterol synthesis
increases the incidence [116, 117], progression, and severity
of ALS [118], although this has been questioned [119]. Lipid
raft alteration has also been linked to the pathogenesis of
ALS. Endogenous, wild-type and mutant SOD1G93A proteins
were recruited into lipid rafts isolated from spinal cords of
transgenic SOD1mice [120]. Hence, together the data suggest
that oxidative stress may alter sphingolipid and cholesterol
metabolism and deregulate lipid raft redox signalling leading
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to the accumulation of toxic ceramides and cholesterol esters
which may ultimately result in motor neuron death [68].

3.5. Mitochondrial Dysfunction. Mitochondria are impor-
tant players in redox regulation and oxidative stress has
the potential to cause mitochondrial dysfunction [70, 121].
Indeed, damaged mitochondria are observed in the spinal
cord cells of SALS patients [122–124]. The mitochondrial
genome is particularly susceptible to oxidative damage [125],
hence any increase in cellular ROS would potentially per-
turb mitochondrial functions. Mitochondria participate in
neuronal apoptotic signalling pathways through the release
of mitochondrial proteins including cytochrome c into the
cytoplasm [126]. There is substantial evidence that molecular
components of mitochondrial apoptosis play a role in neu-
rodegeneration in both SOD1 rodents and in mutant SOD1
overexpressed in cell culture [127]. The enzymatic activity
of cytochrome c oxidase (COX) in mitochondria is also
reduced in the spinal cord cells of SALS patients [122–124,
128, 129]. Mitochondria have been well studied in relation to
ALS pathogenesis. Degenerating or abnormal mitochondria
have been described in mouse models [62, 130], cultured
neuronal cellular models [131, 132], and ALS patients [133,
134], although how nonfunctioning mitochondria relate to
ALS is unclear. Possible explanations include inhibition of
axonal transport, dysregulation of calcium buffering [135], or
activation of mitochondrial-dependent apoptosis [128, 136].
Recent studies have shown that overexpression of TDP-43
causes mitochondrial dysfunction and induces mitophagy in
cell culture [137].The presence of ROS and impairment of the
mitochondrial respiratory chain have also been observed in
TDP-43 models [138, 139].

Mutant SOD1 has also been implicated in mitochondrial
respiratory complex impairment [140] and a shift in the redox
state of mitochondria towards oxidation [141]. How SOD1
functions in the mitochondria is still not clear, although
some data suggests that SOD1 is crucial for maintenance
of the mitochondrial redox state [142, 143] and that ALS
mutations affect the localisation or function of SOD1 in
mitochondria [135]. However, mutant misfolded SOD1 has
been found localised with various compartments of the
mitochondria [144]. Significantly, any pathological changes
in regulation of the electron transport chain would result in
more oxidative stress [145] triggering further cellular redox
dysregulation, leading to a potential vicious cycle of damage
and degeneration.

3.6. Impaired Axonal Transport. Axonal transport is a key
mechanism required for cellular viability in neuronal cells.
Most proteins required in the axon and in synaptic terminals
must be transported along the axon after synthesis in the cell
body. Similarly RNA and organelles also need to be trans-
ported over long distances, and these transport processes
require molecular motors, such as kinesins, dyneins, and
myosins that operate along the cellular cytoskeleton. Dys-
function of axonal transport has now been well documented
in ALS [61]. Whilst many of these studies implicate dynein
in this process [146], several also highlight the importance

of kinesin in ALS, particularly kinesin heavy chains KIF5A
and KIF1B𝛽, which transport mitochondria, synaptic vesi-
cles, and macromolecular complexes. Interestingly, a recent
study demonstrated that oxidised wild-type SOD1 immuno-
purified from SALS patient tissues inhibited kinesin-based
axonal transport in amanner similar tomutant SOD1 in FALS
providing evidence for common pathogenic mechanisms in
both SALS and FALS [94].

Neurofilaments (NF) accumulation in motor neurons
is another histopathological hallmark of ALS [147, 148].
Also, transgenic mice that overexpress NF subunits in motor
neurons develop a motor neuron disease with impaired
axonal flow, as axonal defects cause delay in transportation
of components required for the maintenance of axon [149].
However, ONOO− formed during oxidative stress from
nitrooxide and superoxide can affect NF assembly and cause
NF accumulation in motor neurons [8]. Chou and coworkers
showed NF aggregations are associated with SOD1 and nitric
oxide synthase activities leading to nitrotyrosine formation
on NF [150]. Nitrotyrosine can inhibit phosphorylation of
heavy or light NF subunits and may alter axonal transport
and trigger motor neuron death [150]. Taken together, these
findings suggest a relation between redox regulation and
axonal transport dysfunctions in ALS.

3.7. Autophagy. Autophagy is a normal homeostatic mecha-
nism to dispose large protein aggregates, damaged organelles,
and long-lived proteins. Autophagic stress results when the
number of autophagosomes increases relative to the pro-
portion of degradable proteins. The presence of high levels
of superoxide and hydrogen peroxide species can induce
autophagy in vitro [151], but consequently, autophagy can
further induce oxidative or nitrative stress thus creating a
vicious cycle [152]. Dysregulated redox activity also influ-
ences autophagy. Cathepsin, a class of proteases which have
highly regulated thiol groups [152] and other key regulatory
autophagic complexes such as Beclin 1 and Rubicon, also
have the presence of cysteine residues [152]. The presence of
cysteine residues suggests that they are redox regulated and
likely to be affected by ROS. ATG 4, another protease, is a
target of oxidation by hydrogen peroxide. However, direct
association of these with ALS has not yet been identified.
Altered autophagic levels have been observed in SOD1G93A
mice and sporadic and familial patients but whether the
increased levels are protective or not is still questionable [153–
156].

3.8. ER Stress and Protein Disulphide Isomerase (PDI) in ALS.
The ER is redox regulated and another important location
for the production of ROS. It plays key roles in protein and
lipid synthesis and protein folding. Proteinmisfolding within
the ER triggers ER stress which induces the unfolded protein
response (UPR) a distinct signalling pathway which aims to
relieve stress [157]. While initially protective, prolonged UPR
causes apoptosis [158, 159]. Recent studies suggest that ER
stress is an early and important pathogenic mechanism in
ALS [66, 158, 160]. ER stress is induced in animal models
of SOD1, in cells expressing mutant FUS and in patients
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Figure 1: Schematic diagram showing domain structure of PDI.
Thioredoxin-like 𝑎 domain (orange) and 𝑎󸀠 domain (purple) pos-
sessing the catalyticmotif, catalytically inactive 𝑏 domain (blue), and
𝑏
󸀠 domain (red). Green represents the linker region 𝑥 which allows
flexibility between domains.TheC terminal domain is shown in grey
followed by the ER retrieval signal KDEL.

[20, 161]. Oxidative stress driven by changes in fatty acid
composition, mitochondrial function, and/or proteosome
activity leads to oxidative stress and contributes to ER stress
in SALS patients [162, 163]. PDI is an ER chaperone which
is induced during UPR and has been implicated in several
neurodegenerative disorders including ALS [164–166].

PDI is a member of an extended family of foldases
and chaperones which are responsible for the formation
and isomerisation of protein disulphide bonds [167]. The
PDI family comprises 21 members which have structural
similarities but different functions [168] and all have a
similar active site to thioredoxin [169]. Thioredoxin is an
intracellular protein which regulates redox conditions and
which is effective against oxidative stress [170]. PDI is most
abundant in the ER but it is also found in other subcellular
locations such as the nucleus and extracellular matrix [171]
and it constitutes 0.8% of the total cellular protein [172].
The yeast PDI crystal structure was recently solved [173]
which suggests that 𝑎 and 𝑎󸀠 domains are responsible for
the formation of disulphide bonds (Figure 1). These domains
contain a redox active CGHCmotif which isomerases protein
disulphide bonds and is involved in redox regulation [173].
PDI also contains 𝑏 and 𝑏󸀠 domains which are responsible
for substrate binding [174, 175]. Misfolded proteins attach to
the hydrophobic region of an inverted U shape structure [173,
176]. The C-terminal region also aids in polypeptide binding
and contributes chaperone activity [177]. Compared to other
familymembers, PDI has broad substrate specificities and can
interact with glycosylated as well as nonglycosylated proteins
[178].

4. PDI and Redox Regulation

PDI forms protein disulphide bonds by the oxidation of
thiols within the PDI active site cysteine residues [179, 180].
When PDI is in an oxidised state it transfers a disulphide to
the substrates thereby oxidising the substrate and becoming
reduced itself. Conversely, substrates which need disulphide
bond rearrangement are reduced by PDI in the reduced state
thus oxidising PDI in the process [168, 181]. This continual
cycling regulates redox conditions within the ER. A thiol
containing tripeptide protein and glutathione also maintains
ER redox homeostasis by similar shuffling between oxidized
and reduced cysteine residues. Glutathione is also required
for the isomerisation and rearrangement of disulphide bonds
[182]. The redox potential of PDI (−110mV) is lower than

other family members [183] due to intervening residues
present between the reactive cysteines thus facilitating disul-
phide bonds [183]. ERO1 oxidises PDI also aiding disulphide
bond formations [184], but PDI is also oxidised through
peroxiredoxin 4, vitamin K, glutathione peroxidase, and
quiescin sulfhydryl oxidase [181]. During ER stress high
levels of ERO1 have been observed which accelerates protein
oxidation suggesting interplay between oxidative stress and
ER stress. The transfer of electrons from the thiol group
of PDI to ERO1 results in the production of excess ROS,
decreasing the levels of glutathione available for reduction
and increasing ERO1 thus altering the redox conditions [185,
186]. Hence, imbalance in the redox state of the ERmay result
in dysregulation of thiol containing proteins and triggers.

4.1. The Role of PDI in ALS. Due to its function in preventing
protein misfolding, PDI is important in protein quality con-
trol [166]; also deletion of PDI is embryonically lethal [187].
Hence, regulated expression of PDI is critical for normal
cellular function.There is now growing evidence for a role of
PDI in ALS. PDI levels are upregulated in transgenic models
of ALS and spinal cord tissues of ALS patients [66, 158].
Overexpression of PDI is also protective againstmutant SOD1
mediated aggregation and reduces cell death in vitro [20]. PDI
coimmunoprecipitates with both SOD1 and FUS [158, 161]; it
also colocalises with SOD1, TDP-43, and FUS in ALS patients
suggesting a physical interaction exists between PDI and
other key misfolded proteins in ALS [66, 161, 188]. Similarly,
PDI also colocalises with TDP-43 in ALS tissues and with
VAPB inclusions in a Drosophila melanogaster model of
ALS [188, 189]. A small mimic of the active site of PDI,
dithiol (±)-trans-1,2-bis (mercaptoacetamido) cyclohexane
(BMC), is also protective in cell culture and it reduces mutant
SOD1 aggregation in a dose dependent manner [20]. Further
evidences for a role for disulphide interchange activity in ALS
comes from studies showing that another PDI familymember
ERp57 is also upregulated in transgenic SOD1 mice and ALS
patients [66]. Furthermore, thioredoxin is also upregulated in
the erythrocytes of FALS patients [19].

The upregulation of these thiol containing proteins in
ALS suggests a cellular defensive mechanism is triggered
in disease as a defence against oxidative stress. However,
there is evidence that normal protective function of PDI is
inhibited in disease [20]. Modifications of active site thiol
groups through direct oxidation, S-glutathiolation and S-
nitrosylation, can lead to inactivation of the normal enzy-
matic activity of PDI [13, 190, 191]. PDI was recently shown
to be S-nitrosylated in ALS [20, 192] as in other neurodegen-
erative disorders such as Parkinson’s and Alzheimer’s disease.
[191]. S-nitrosylation occurs when there is an increased pro-
duction of RNS during oxidative stress resulting in addition
of a nitrogen monoxide group to the thiol side of PDI
[20, 164]. Experiments performed by Chen and coworkers
suggested that in the presence of S-nitrosylated PDI, the
formation of mutant SOD1 aggregates increases in vitro [192].
It is also likely that inactivation of PDI could lead to activation
of the UPR as observed in other neurodegenerative disorders
[191]. The loss of PDI functional activity can directly lead to
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PDI dysfunction Oxidative stress

Figure 2: Redox dysfunction and its relationship to other patholo-
gies in ALS. Alteration in the enzymatic activity of PDI due to
redox dysregulation and oxidative stress can further increase the
load of misfolded proteins, ER stress, oxidative stress, autophagy,
mitochondrial dysfunction, and axonal impairment leading to
neuronal cell death.

apoptosis, or indirectly to a range of cellular abnormalities
such as oxidative stress and protein misfolding, which again
lead to cell death [164, 166]. Hence the redox regulation
of PDI is a crucial component in the maintenance of a
balanced redox environment, and inhibition of its enzymatic
activity will lead to important consequences for the cell
(Figure 2).

Neurons are highly susceptible to redox dysregulation
due to their high metabolic requirements, large size, and
lower ability to maintain the balance between antioxidants
and ROS [15]. In disease states such as ALS, oxidative
stress, and altered enzymatic activity of PDI, which normally
reduces ROS and the burden of misfolded protein, can cause
serious damage to the neuron. Since multiple mechanisms
are involved in neurodegeneration, any imbalance in redox
regulation can lead to an imbalance in the production of
free radical species, which consequently cause mitochondrial
damage and excitotoxicity, thus elevating the levels of free
radicals [193]. Furthermore, an excess of free radicals can
also lead to DNA damage and may also result in aggregation
of NF [194] and structural destabilization of other proteins,
thus inducing ER stress and apoptosis. Since ALS is a slow
progressive disorder it could be hypothesised that these cyclic
events, due to loss of functional activity of PDI,may gradually
lead to neuronal degradation. In such a scenario, the redox
regulatory function of PDI may therefore have an important
protective effect.

5. Conclusion

Redox regulation is an important mechanism of homeostasis
in eukaryotic cells, especially neuronal cells where oxygen

levels are high [15]. Many cellular processes rely on it, includ-
ing proper functioning of the mitochondria and ER, calcium
regulation, axonal transport, regulated autophagy, and pro-
tein folding. Links between redox dysregulation and ALS
are becoming well documented in the literature, although
the directionality of these links and their underlying cause
are still quite unknown. One possible key player in redox reg-
ulation in ALS is PDI, whose role in ALS pathogenesis is the
topic of much new research. As the critical protein involved
in thiol reduction, any dysregulation of PDI activity can lead
to oxidative stress and redox dysregulation. Due to its activity,
PDI itself also contains an active site thiol group suggesting
that it can also be affected by oxidative stress, leading to an
escalating cycle that perpetuates redox dysregulation. How
PDI becomes nonfunctional in the first place is still unclear,
although somepapers point to S-nitrosylation as having a role
[20]. Regardless of its exact role, any mechanism to improve
the catalytic activity of PDI should have a reductive effect on
oxidative stress levels in neurons. It is therefore tempting to
speculate about PDI as a possible therapeutic target in the
treatment of ALS.
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