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Simple Summary: In the last decades, many researchers produced promising data concerning
genetics and tumor microenvironment of poorly differentiated thyroid cancer (PDTC) and anaplastic
thyroid cancer (ATC). They are trying to tear the veil covering these orphan cancers, suggesting new
therapeutic weapons as single or combined therapies.

Abstract: PDTC and ATC present median overall survival of 6 years and 6 months, respectively. In
spite of their rarity, patients with PDTC and ATC represent a significant clinical problem, because
of their poor survival and the substantial inefficacy of classical therapies. We reviewed the newest
findings about genetic features of PDTC and ATC, from mutations occurring in DNA to alterations in
RNA. Therefore, we describe their tumor microenvironments (both immune and not-immune) and
the interactions between tumor and neighboring cells. Finally, we recapitulate how this upcoming
evidence are changing the treatment of PDTC and ATC.

Keywords: anaplastic thyroid cancer; poorly thyroid cancer; genetic landscape; tumor microenviron-
ment; genetically guided therapy

1. Introduction

Thyroid cancer is the most common endocrine tumor and its incidence has been
raising up over the last 20 years, mostly due to the flowering diagnosis of micro thyroid
carcinomas [1]. Thyroid cancer is subcategorized into follicular and non-follicular derived
carcinoma (e.g., medullary thyroid carcinoma). Among the first, World Health Organi-
zation (WHO) identifies papillary thyroid carcinoma (PTC), follicular thyroid carcinoma
(FTC), poorly differentiated thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma
(ATC) [2].

Thyroid cancer 5 year-survival is variable among the different hystotypes. According
to a recent epidemiological study performed in Denmark by using a national cancer registry,
the 5 year-survival rates were 91.1% and 79.9% in PTC and FTC, respectively, 63.6% in
PDTC and 12.2% in ATC [3]. Unfortunately, PDTC and ATC median overall survival is
6 years and 6 months, respectively [4,5]. Although PDTC and ATC are rare, therapy for
patients affected by PDTC and ATC represents an unmet clinical need that should be
addressed, considering their poor survival. In addition, PDTC and ATC harbor diagnostic
pitfalls that make difficult their clinical management. Although PDTC was added in WHO
classification in 2004, its diagnostic criteria are not widely shared and many pathologists are
following criteria of Turin consensus conference [6] and others Memorial Sloan Kettering
Cancer Center ones [7]. Likewise, the wide spectrum of ATC hystotypes could challenge
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the differential diagnosis with other cancers (e.g., angiomatoid variant ATC with thyroid
angiosarcoma) [8] or even with benign lesions (e.g., acute thyroiditis) [9] (Figure 1).
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Figure 1. (A–C) Anaplastic thyroid carcinoma (ATC) (hematoxylin and eosin stain); (A) The presence
of extensive tumor necrosis is a typical aspect of ATC (see asterisk *) (original magnification ×10);
(B) The neoplastic cells show marked nuclear atypia with spindled and pleomorphic morphology,
associated to elevated mitotic rate, simulating high-grade pleomorphic sarcoma. In the insert, focal
immunostaining for cytokeratins supports the epithelial nature of ATC (original magnification ×20);
(C) At higher magnification, the pronounced nuclear atypia and an atypical mitosis (see arrow)
are shown (original magnification ×40). (D–F) Poorly differentiated thyroid carcinoma (PDTC)
(hematoxylin and eosin stain); (D) The typical example of PDTC is the so-called “insular carcinoma”.
In this field, the tumor shows a small focus of tumor necrosis (see asterisk *) (original magnification
×10); (E) The neoplasm exhibits a prevalent solid growth pattern (original magnification ×20); (F) At
higher magnification, the tumor cells appear small and uniform, the nuclei are generally rounded
and hyperchromatic, in absence of the typical aspects of papillary thyroid carcinoma (original
magnification ×40).

In the past, many treatments were proposed to answer this aforementioned need,
but with disappointing results [10]. Nowadays many clinicians are proposing genetically
guided treatments for PDTC and ATC, according to the new discoveries about their genetic
landscape [11,12].

In the current review, as first, we summarize the upcoming findings about genetic
features of PDTC and ATC, from mutations occurring in DNA to alterations in RNA;
therefore, we describe their tumor microenvironments and the interactions between tumor
and other neighboring cells; finally, we recapitulate how this upcoming evidence are
changing the treatment of PDTC and ATC.

2. Genetics Features

Genomic instability is universally considered as a driver of carcinogenesis, support-
ing the generation of all hallmarks of cancer (i.e., resistance to cell death, promotion of
proliferative signaling, escape from growth suppressors, invasion and metastasis capacity,
activation of replicative immortality, evasion of immune destruction, deregulation cellular
energetics and neo-angiogenesis) [13,14]. Across several neoplasia, thyroid cancer presents
lower genomic instability, expressed as the number of mutations per tumor, compared to
other adult neoplasia (e.g., endometrial and colorectal cancers) [15]; this evidence has also
been confirmed in metastatic cases [16]. However, thyroid cancer shows a heterogenous
mutational burden across its histotypes: ATC presents an increased number of genetic
alterations per tumor (median 4, range 0–29) compared to PTC and FTC [17]; likewise,
according to data from Tissue Cancer Genome Atlas (TCGA), PDTC mutational burden is
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higher than PTC, even if lower than ATC [18,19]. Genomic instability in PDTC and ATC
embraces both somatic driver mutations and gene fusions.

2.1. Somatic Driver Mutations

Vogelstein et al. considered a driver mutation as a genomic variant that directly or
indirectly induces a selective growth advantage [20]. As shown in Table 1, ATC and PDTC
harbor many driver mutations, occurring mainly in both MAPK and PI3K-AKT pathways.

BRAF and RAS genes (HRAS, KRAS, and NRAS) are main members of MAPK path-
way. Both of them occur in more than 25% of ATCs, according to catalogue of somatic
mutations in cancer (COSMIC) database [21], while 15.38–33.33% and 6.8–41.2% of PDTCs
harbor BRAF and RAS mutations, respectively (Table 1) [18,22–24]. Interestingly, although
BRAF and RAS mutations are present in a relevant percentage of both ATC and PDTC
cases, they seem to play different roles. In ATC, neither BRAF or RAS mutations seem
to be sufficient to induce neoplastic cell anaplasia. McFadden et al. produced a thyroid-
specific CreER transgenic mouse in order to specifically induce BRAFV600E mutation in
thyroid cells; although this mutation induces PTC foci, it was capable to promote ATC
tumorigenesis only in the presence of p53 mutation [25]. Likewise, KRASG12D mutation
developed anaplastic foci with complete deregulation of normal thyroid follicular morphol-
ogy in mice model only in association with a homozygous mutation of TSH receptor [26].
However, BRAF-RAS signaling retains a crucial role in ATC cells and its inhibition by
siRNA anti-BRAF produces growth arrest in ATC cell lines [27], even stronger in combina-
tion with MEK inhibition [25]. Otherwise, the mechanisms seem to be different in PDTC:
Vitagliano et al. were able to promote progression of FTC foci into PDTC in mouse model
by NRASG61K mutation [28].

Table 1. ATC and PDTC genetic landscape: somatic mutations.

Cellular Function Gene
Mutation Rate (%)

ATC
[21,29]

PDTC
[18,22–24]

Intracellular
signaling

MAPK pathway

BRAF 27.63 15.38–33.33
NRAS 19.25 4.35–30.77
NF1 5.56 0

KRAS 4.92 0–5.31
HRAS 4.51 2.45–4.88

PI3K-AKT
pathway

PIK3CA 11.24 2.38–19.51
PTEN 9.27 0–4.35
NF2 5.10 0
IRS1 3.64 -
AKT1 - 0-8.70

WNT pathway
AXIN1 4.51 -

CTNNB1 3.88 0–2.44
APC 3.05 17.39

Cell cycle regulation

TERT promoter 75 21.95–40.48
TP53 45.67 8.33–43.48
ATM 4.91 7.14–13.04
RB1 4.36 1.19–4.35

CDKN2A 4.01 -

Chromatin remolding

KMT2D 4.42 -
CREBBP 4.17 -
ARID2 3.93 -

ARID1A 3.69 -
DNMT3A 3.38 -
KMT2A 3.36 -

DNA damage response MDC1 3.18 -
MSH2 3.05 -

Protein metabolism
EIF1AX 9.24 4.88–10.71
CALR 4.85 -

RBM10 3.38 -
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In addition to mutations of MAPK pathway, next generation analysis showed that
ATC harbors higher prevalence of mutations in PI3K-AKT pathway compared to other
histotypes [30]: according to COSMIC database, PI3KCA and PTEN were found mutated
in 11.24% and 9.27%, respectively (Table 1) [21]. Likewise, also PDTC harbors frequently
PIK3CA or AKT1 mutations (2.38–19.51% and 0–8.70%, respectively) (Table 1) [18,22–24].

Interestingly, in ATC series provided by Liu et al., the 81.3% of samples presented
genetic alterations affecting both MAPK and PI3K-AKT pathways [31]. Accordingly, in
mouse model, the presence of mutations occurring in both pathways induced ATC foci,
confirming the synergistic interactions between these pathways [32]. On one hand, MAPK
pathway has a crucial role in cell proliferation and survival, and, on the other hand,
upregulated PI3K-AKT pathway has been related to tumor aggressiveness [33].

Beyond mutations occurring at members of MAPK and PI3K-AKT pathways, many
variants have been reported in cell cycle regulators. Many reports showed that mutations
occurring in p53 and TERT promoter (pTERT) are highly prevalent in ATC, occurring even
simultaneously [17,18,21] (Table 1). Likewise, PDTC presents both mutations, even if less
frequently than ATC [18,34]. Intriguingly, in the presence of an impaired cell-cycle check-
point pathway (e.g., p53), the occurrence of a concomitant mutation in telomerase activity
(e.g., pTERT) could induce an indefinite cell proliferation [35]. In addition, the interplays
between the duet BRAF-pTERT have recently been described by Tan and colleagues [36].
In particular, in case of mutation of both of them, cancer cells suppress apoptosis mainly
thank to pTERT activity, while in case of mutation occurring only on BRAF gene, apoptosis
activity seems to be not significantly affected [36]. Accordingly, the inhibition of TERT
activity could represent an Achilles heel, as recently shown in-vitro and in-vivo model by
Bu et al. In these models, BIBR1532 (a TERT inhibitor) significantly inhibited tumor growth
as well as cell invasion, migration and angiogenesis [37].

If regulation of cell cycle has a crucial role in oncogenesis, also protein metabolism
control has been deeply involved in tumorigenesis [14,38]. Not surprisingly, both PDTC
and ATC harbor EIF1AX mutations in about 10% of cases (Table 1) [18,22–24]. EIF1AX
is a member of 43S preinitiation complexes, responsible of translation initiation, and its
mutation has recently been involved in preinitiation complex stabilization and, further,
in deregulating protein synthesis [39,40]. Interestingly, EIF1AX mutations are mutually
exclusive with other drivers in PTC [19], while they co-occur with RAS mutations in ATC
and PDTC [18]. Recently, Krishnamoorthy et al. showed a positive feedback relationship
between RAS and EIF1AX proteins, which reinforces c-MYC gene expression [40].

2.2. Gene Fusions

Fusion genes are common driver mutations described in both hematopoietic and solid
tumors [41]. They usually involve a driver gene, which expresses a receptor tyrosine kinase
(e.g., RET) or its downstream kinase (e.g., BRAF), and a partner gene (e.g., NCOA4). If
in physiologic state most of these kinases require the ligand to induce their dimerization,
these rearrangements are capable to induce a ligand-independent dimerization and a
deregulated kinase activity [42]. In the past, all the tumorigenic effects were considered
as consequence of a non-controlled expression of the driver gene; however, new evidence
suggests that also the partner gene may play a crucial oncogenic role [43].

Although fusion genes have been extensively described in thyroid cancer, their preva-
lence is lower compared to other solid tumors [41]. PDTC harbors gene fusions in 10–14%
of cases while ATC in 3–5% [44] (Table 2). Interestingly, when present, fusions usually
involve the same few oncogenes. RET fusions are the most common, mainly CCDC6-RET
(RET/PTC1) and NCOA4-RET (RET/PTC3), while NTRK, ALK and BRAF fusions are quite
rare (Table 2) [44]. Recently, Nikitski et al. developed a mouse model of STRN-ALK fusion
gene that was capable of inducing PTC, PDTC and ATC foci [45]. This model revealed the
presence of two clusters of PDTC with specific cell morphology, immunohistochemical
characteristics and different levels of expression of thyroid differentiation markers [45].
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Table 2. ATC and PDTC genetic landscape: gene fusions.

Gene Fusions

Mutation Rate
[16,18,29,44,46]

ATC PDTC

PAX8-PPARγ Fusions 0 3/84

NTRK fusions
NTRK1-IRF2BP2 1/126 0
NTRK2-CRNDE 1/126 0

ETV6-NTRK3 0 1/60

RET fusions

CCDC6-RET 2/126 3/84, 2/60
NCOA4-RET Case report 2/84, 1/23
PDCD10-RET 0 1/60

TFG-RET 0 1/60

ALK fusions
STRN-ALK Case report 1/23
EML4-ALK 0 2/84

BRAF fusions
KIAA1549-BRAF Case report 0

SCRIB-BRAF 0 1/60

Other fusions NUT-BRD4 1/33 0

Although rare, gene fusions could represent precious targets for targeted therapies.
Moreover, any histotype of thyroid cancers with gene fusions has recently been proposed
as a discrete group with specific histologic characteristics such as multinodular growth and
extensive fibrotic features. For this reason, they have been named “kinase fusion-related
thyroid carcinomas” [46].

2.3. Copy Number Variations

In oncology, copy number variations (CNVs) are well characterized as prognostic
factors for recurrence and death [47]. This evidence has been confirmed also in advanced
thyroid cancer [18]. If they are quite rare in differentiated thyroid cancer (less than 10%) [19],
in PDTC and ATC they are widespread, especially in cancers without known driver
mutation (losses of 1p, 8p, 13q, 15q, 17p, 22q, and gains of 1q and 20q) [18]. Interestingly,
they seem to be hystotipes-specific: 8p and 17p losses and 20q gains are more frequent in
ATC while loss of 1p was substantially more recurring in PDTCs [18]. Moreover, CNVs
correlate with gene context where occur: 1p, 13q, and 15q losses were enriched in PDTCs
without known driver mutation while loss of 22q was associated with RAS-mutated
PDTCs [18]. In ATC, beyond large chromosomal variations, Pozdeyev et al. reported more
restricted CNVs such as losses of CDKN2A and CDKN2B or amplification of KIT, PDGFRA
and KDR, further confirmed by other authors [17,24].

Finally, since CNVs have recently been related to resistance to target therapies in
thyroid cancer [48], it would be very interesting to ascertain if some of them (e.g., PDGFRA
amplification) could induce resistance to target therapy (e.g., multikinase inhibitors, MKIs)
in ATC and PDTC.

2.4. RNA Alterations

It is universally recognized that messenger RNA (mRNA) synthesis and translation
are deeply modified in cancer; however, new evidence shows that all kinds of RNA are uni-
versally impaired [49]. In normal condition, cells produce different types of RNAs: mRNA,
ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), long non-coding
(lncRNA) and circular RNA (circRNA). Accordingly, neoplastic cells could deregulate all
kinds of RNAs that could promote the cells growth and invasiveness [49].

In particular, miRNA are usually 20–23 nucleotides in length that can bind multiple
mRNA, regulating their catabolism and further their translation [50]. 127 and 18 dif-
ferent miRNAs have been characterized in ATC and PDTC, respectively. Among them,
69 miRNAs resulted decreased and 54 increased in ATC, while 10 resulted decreased and
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8 increased in PDTC. If their role in PDTC is not fully elucidated and they might be used as
an ancillary diagnostic tool and prognostic marker [51], they have been fully characterized
in ATC. According to literature data, we grouped them into 3 main roles: regulation of
growth tumor, invasiveness and resistance to therapy (Figure 2). We found that 9 miRNA
were related to tumor growth [52–61], 14 to tumor growth and invasiveness [62–69], 28 to
invasiveness [67,70–76], and 66 to therapies resistance (62 to anti-BRAF treatment, 3 to
chemotherapy and 1 to radiotherapy) [77–81]. Additionally, 10 miRNAs were considered
as an ancillary diagnostic tool [82,83] (Figure 2).
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Beyond miRNA, growing evidence is showing the role of lncRNAs in cancer. lncRNA
are RNAs longer than 200 nucleotides that do not encode proteins but regulate gene
expression, splicing and nucleation of subnuclear domains [49]; moreover, lncRNAs may
have cytoplasmic functions, such as miRNA sponging, interaction with signaling proteins,
and further modulation of mRNA translation [49]. In ATC, lncRNAs may regulate tumor
growth [84,85], invasiveness [86], and both tumor growth and invasiveness [87–91]; they
can also regulate cancer sensitivity to treatments [92]. In particular, lncRNA PTCSC3
was described at low levels both in ATC tissue and cell lines and it was demonstrated
that its upregulation inhibited the resistance to doxorubicin by suppressing stem cell
proprieties [92].

Finally, circRNAs are usually consequence of back-splicing events, producing in a
covalently closed circRNA molecule instead of linear ones. Although circRNAs have
usually been detected at low levels in normal and in cancer cells, some of them are at higher
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concentration and have functional roles: miRNA sponging and proteins stabilization [49].
In ATC, a recent study showed that circRNA may produce resistance to chemotherapy.
In particular, Liu et al. showed that circRNA EIF6 could sponge miR-144-3p to promote
autophagy and cisplatin-resistance [93].

3. Tumor Microenvironment

Tumor microenvironment (TME) is the dynamic milieu that harbors tumor cells [94].
It comprises blood vessels, extracellular matrix (ECM), non-neoplastic cells, and signaling
molecules [95]. Neoplastic cells interact with other TME members in order to regulate
self-growth, invasiveness and resistance to therapy [94]. In thyroid, many reports showed
that TME may promote tumor growth, metastatic power, and resistance to therapy, both in
differentiated and anaplastic thyroid cancer [96–98].

In TME we should distinguish not immune and immune related cells. Among the
former, cancer associated fibroblasts play a relevant role in both ATC and PDTC [99,100].
In ATC, tumor cells present paracrine communication with fibroblast: ATC cells activate
fibroblasts by reprogramming their metabolism, phenotype and secretome, and then acti-
vated fibroblasts reinforce thyroid cancer progression, by enhancing tumor invasion and
proliferation [100]. Likewise, interactions between PDTC cells and cancer associated fibrob-
lasts may potentiate tumor progression, by collagen remodeling [99]. Analog interplays
have been recently demonstrated between ATC and endothelial cells, partially rescued by
sorafenib [94].

Giannini et al. provided significant evidence about immune TME in ATC and
PDTC [101]. ATC TME was enriched of tumor infiltrating leukocytes (both macrophage
and lymphocytes) and characterized by hot or altered–immunosuppressed phenotype,
since a relevant part of CD8+ lymphocytes presented exhausted features. Accordingly,
Caillou et al. showed that tumor-associated macrophages build up a dense network in
whom cancer cells reside [102,103] and their presence is associated with a worse prognosis
in ATC [104]. Cameselle-García and colleagues elucidated that ATC tumors are enriched of
tumor infiltrating lymphocytes (mainly CD8+ cytotoxic T cells), which mainly reside in the
interface between tumor ant thyroid tissue [105]. Otherwise, PDTC harbored less tumor
infiltrating leukocytes compared to ATC, and presented a cold immune contexture in 65%
of cases [101]. In these immune contexts, PD/PD-L1 pathway (programmed cell death
protein-1/programmed cell death ligand-1) plays a crucial role in ATC and less frequently
also in PDTC [97,105,106]. If in physiologic conditions, PD/PD-L1 pathway regulates T
cell immune suppression, in neoplastic milieu it is exploited by cancer cells in order to
avoid immune attack, by inducing T-cell exhaustion [107]. In ATC, PD/PD-L1 proteins
expression was shown to be regulated by BRAF mutation and is was associated to a worst
prognosis [106,108]. Accordingly, Brauner et al. demonstrated that dual inhibition of
BRAF and PD/PD-L1 pathways induced a powerful shrinkage of ATC tumor in orthotopic
immune-competent mouse model [108].

4. Contemporary Treatment in ATC and PDTC

Traditionally, treatments against ATC and PDTC globally provided disappointing
results [12,109]. ATC presents very low median overall survival [109,110]. Although
PDTC presents higher 5-year survival (62%) compared to ATC [111], disease control in
patients with metastatic PDTC is still poor (59%) and 85% of their disease specific deaths
is related to the presence of distant metastasis [12]. In both of them, surgery represents a
cornerstone of multimodal treatment; nonetheless, systemic treatment is necessary in case
of diffuse disease. Systemic treatment comprises chemotherapy (in case of ATC, elsewhere
reviewed [112]), anti-angiogenic therapy, immunotherapy and genetically guided therapy
(Figure 3). Since their individual use provided encouraging but insufficient results, they
have recently been proposed in multimodal approach.
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4.1. Antiangiogenic Therapy

As previously shown, neo-angiogenesis is a main hallmark of cancer, sustaining its
limitless growth [113]. Accordingly, neoplastic cells regulate neo-angiogenesis in order to
guarantee their progression in ATC as well as in PDTC [114,115]. Many anti-angiogenic
drugs have been employed to inhibit ATC and PDTC growth. Year by year, sorafenib,
lenvatinib, cabozantinib, pazopanib, gefitinib and imatinib have been used with fluctuat-
ing results.

Sorafenib was the first anti-angiogenic drug proposed for ATC treatment. It was
employed in two different phase-2 trials [116,117]; in both of them, disease control (partial
response and stable disease) was reached in about 40% of patients but the median overall
survival was still lower than 5 months [116,117]. Similarly, sorafenib seemed not to produce
exciting results in PDTC [118]. From 2009 to 2011, 40 patients with PDTC were randomly
allocated to sorafenib and placebo arms in a randomized, double-blind, multicentric,
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phase-3 trial (DECISION trial). Although not statistically significant, the sub analysis on
PDTC showed a consistent improvement of PFS in patients treated with sorafenib as in
all the other histotypes [119]. As reported in DECISION trial, sorafenib toxicity is mainly
characterized by grade 1 and grade 2 adverse events such as hand–foot skin reaction,
diarrhoea, alopecia, rash/desquamation, fatigue, weight loss, and hypertension [119].

Lenvatinib had very promising results in in-vitro and in-vivo models of ATC that
were partially confirmed in clinical settings [120]. Takahashi et al. performed a phase II
clinical trial, showing an overall survival of 10.6 months (95% CI: 3.8–19.8) and disease
control in 16 out of 17 patients [121]. However, different results were given by a recent
post-marketing observational study which reviewed 124 patients affected by ATC and
treated with lenvatinib [122]. It showed a disease control in 76.2% (66.89–83.96%) of
patients; however, this response seemed to be only transient, because the time-to-treatment
failure was 74.5 (57.0–108.0) days, and the median overall survival was still poor (3.4,
95% CI 2.66–4.33 months) [122]. At the same time, baseline clinical conditions of enrolled
patients were poor (ECOG > 1) in more than 70% and this could partially explain these
disappointing findings. Further studies should be employed in order to verify lenvatinib
efficacy in ATC patients with better clinical conditions. Otherwise, lenvatinib produced
interesting results for PDTC patients. In SELECT trial, which explored lenvatinib efficacy
in patients with radioiodine-refractory thyroid cancer, 28 patients harboring PDTC were
enrolled. In this selected population, lenvatinib confirmed its efficacy compared to placebo
(HR 0.21, 0.08–0.56) [123]. Accordingly, a retrospective multicentric analysis of real-world
data confirmed these encouraging results [124]. In this analysis of clinical practice in Austria
enrolling 43 patients, the overall survival seemed to be not modified by tumor subtype
(differentiated vs. poorly differentiated/anaplastic TC), whereas a maintenance dosage
higher than 14 mg was associated with better prognosis [124]. About toxicity, in spite
of high proportion of adverse events with grade ≥ III in SELECT trial (75.9%), Austrian,
Italian, and French real-world data reported lower rates of adverse events of grade ≥ III
(44%, 22.3% and 48%, respectively) [123–126]. Fatigue, hypertension, diarrhea, decreased
weight, stomatitis, and anorexia are the most common reported adverse events [125,126].

More recently, cabozantinib has been explored as a salvage therapy for patients with
radioiodine-refractory thyroid cancer already treated with MKIs. In this trial, 7 patients
with PDTC were enrolled to receive cabozantinib and all of them presented clinical benefit
(3 PR and 4 SD) [127]. Other antiangiogenic agents (pazopanib, gefitinib and imatinib)
were employed for ATC therapy but they did not produce encouraging results [128–130].

4.2. Genetically Guided Therapy

Many reports showed that ATC has a singular genomic and transcriptomic landscape
(ATC-like) [131]. In this singular genomic landscape, BRAF-MEK pathway was proposed
as a potential target.

After the exciting results of BRAF inhibition in BRAF-mutated melanoma [132], a
multicenter prospective “basket” trial, encompassing tumors with BRAF mutation, enrolled
7 patients affected by ATC for treatment with vemurafenib: 2 of them experienced a
durable partial response (more than 11 months) [133]. In order to produce a stronger
inhibition of BRAF-MEK pathway, dual inhibition of BRAF and MEK with dabrafenib and
trametinib was proposed. Accordingly, in in-vitro ATC model, combined therapy induced
greater growth inhibition than single agents [134]. Likewise, dabrafenib-trametinib therapy
produced about 80% of 12-months progression free survival and overall survival in phase
II clinical trial enrolling 16 patients [135]. Moreover, 1 patient experienced a complete
response, 10 partial response, 3 stable disease and only 1 disease progression. In this trial,
fatigue (44%), pyrexia (31%), and nausea (31%), were the most common adverse events,
although the 50% of enrolled patients reported an adverse event with grade ≥ III [135].
This trial permitted the approval of this combination by FDA for treatment of BRAFV600E

mutated ATC.
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As previously reported, PI3K/Akt/mTOR has a crucial role in ATC cells and also anti-
mTOR inhibitors have been proposed with conflicting results. Everolimus was used to treat
one patient with ATC harboring a mutation of Tuberous Sclerosis 2 protein (TSC2), mem-
ber of PI3K/AKT/mTOR pathway, obtaining an extraordinary 18-month response [136].
However, these promising results were not confirmed in other studies [137,138].

New perspectives have recently been opened for patients with ATC or PDTC har-
boring RET fusion genes, since highly selective RET inhibitors, such as selpercatinib and
pralsetinib, are currently under investigation [139,140]. In 2020, a phase 1–2 clinical trial
enrolled patients with thyroid cancer harboring an activating RET alteration for treatment
with selpercatinib (LIBRETTO-001). In this trial, one patient with ATC and 3 with PDTC
were enrolled. Interestingly, the patient with ATC reached PR as best response as well as 2
out of 3 patients with PDTC, while the other one with PDTC obtained SD [139]. Further-
more, selpercatinib presents a more tolerable toxicity profile with a rate of adverse events
≥ III of only 30% compared to other targeted therapies and the most common reported
adverse events were hypertension, increased alanine or aspartate aminotransferase level,
hyponatremia and diarrhea. Likewise, Cabanillas et al. have recently presented data about
the use of larotrectinib, a NTRK fusion gene inhibitor, in 7 patients with ATC. Intriguingly,
3 out of 7 reached PR and SD, while 3 patients experienced PD [141]. Grade ≥ III adverse
events occurred in 46% of patients, although only 7% of patients presented ones that were
considered related to larotrectinib [141]. Recently, an excellent response was documented
with crizotinib in one patient with ATC, harboring ALK-RET fusion gene [142].

Other agents such as HDAC inhibitors have been used but with disappointing results
(NCT03002623 trial).

4.3. Immunotherapy

Immunotherapy is inducing a deep change in anticancer therapy, regulating im-
mune cells attack against neoplastic cells. Interestingly, many reports showed that ATC
presents higher PD-L1+ cells compared to DTC, proposing PD/PD-L1 pathway as tar-
getable [101,143], and, as shown above, preclinical data produced interesting result in
mouse model [108]. Accordingly, PD-1 antibodies (e.g., pembrolizumab and spartal-
izumab), after promising data about their use in BRAF-mutated melanoma [144], have
been used as single agents in patients affected by ATC [145].

Pembrolizumab induced a durable response (16 months) in one patient with un-
resectable ATC: after its second cycle the patient referred a significant improvement of
dysphagia and after 3 cycle a complete response was almost reached [146]. However, after a
severe toxicity related to pembrolizumab (grade 4 colitis), it was suspended and the patient
died 8 months later, after the appearance of cerebral metastasis [146]. On the other hand, it
seemed to do not produce the same result when co-administrated with chemoradiotherapy.
Chintakuntlawar et al. treated 3 patients with pembrolizumab and chemoradiotherapy, but,
in spite of a prompt an early tumor response, all patients passed away <6 months [147].

Spartalizumab toxicity and efficacy were evaluated in a phase I/II trial enrolling
42 patients with locally advanced and/or metastatic anaplastic thyroid carcinoma [148].
The overall response rate was 19% in the whole cohort, while it was higher in patients
defined as PD-L1–positive (29%), and even better in the subset of patients with PD-L1
expression > 50% (35%). In this last subset of patients, the 1-year survival rate reached
52.1% [148]. About toxicity profile, the most frequent adverse events were diarrhea,
pruritus, fatigue, and pyrexia and grade ≥ III adverse events related to treatment were
observed in 10% of patients [148].

4.4. Multimodal Therapy

Considering the promising data about single regimens, many clinicians proposed a multi-
modal therapy against ATC in order to reduce therapy resistance. Moreover, driver mutations
such as BRAF were proposed as master regulators of immune TME in thyroid cancer [114,149].
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Multimodal therapy against immune TME and main mutated pathways could induce a deep
inhibition of ATC growth and progression, evading resistance mechanisms.

In 2018, Cabanillas et al. showed one case of locally aggressive unresectable ATC
treated with neo-adjuvant therapy composed by dabrafenib, trametinib and pembrolizumab
(DTP) [150]. Interestingly, the patient had a relevant response, allowing a complete surgical
resection followed by postoperative chemoradiation. Likewise, other 4 clinical cases have
recently been reported about DTP use as neoadjuvant therapy in ATC, with unexpected
high PFS (19.5, 95% CI: 13.75–24.5, months) [151].

Immunotherapy has been proposed also in adjuvant therapy with dabrafenib and
trametinib or lenvatinib. Iyer et al. [152] used pembrolizumab as salvage therapy in
5 patients treated with dabrafenib and trametinib, 1 with trametinib, and 6 with lenvatinib.
Although 2 patients experienced PD, 5 patients had PR and 5 had SD and, from the
start of targeted therapies, the median OS was 10.4 months (95% CI = 6.02, 14.83, range
5.4–40 months) [152]. In this series, fatigue, anemia and hypertension were the most
common AEs associated with this combination and drug-induced rash and altered mental
status (likely related to PD) induced drug interruption [152]. Similarly, Dierks et al. showed
interesting results about lenvatinib and pembrolizumab combined treatment both in ATC
and PDTC: 5/6 patients with ATC reached CR/PR and 2/2 with PDTC obtained PR [153].
Similarly, nivolumab (anti-PD1 antibody) was added to vemurafenib in patients affected by
metastatic ATC, obtaining a prolonged response (more than 20 months) [154]. According
to these results, new clinical trials are ongoing (e.g., NCT03181100).

In 2017, 6 patients with PDTC and 2 with ATC were enrolled to receive sorafenib and
temsirolimus (mTOR inhibitor) in a non-randomized clinical trial. In one hand, results in
patients with PDTC were encouraging and 4 patients reached PR and 2 SD; on the other
hand, one patient with ATC had PR and the other one had PD [155]. Furthermore, 14% of
enrolled patients discontinued the treatment for toxicity and most common adverse events
grade ≥ 3 were hyperglycemia, fatigue, anemia, and oral mucositis [155].

5. Conclusions

PDTC and ATC are rare but, unfortunately, they are lethal although a relevant different
5-year survival rate (5 years vs. 6 months). Nowadays, we know many elements of their
genetic landscape and tumor microenvironment. This knowledge helped the scientific
community to identify therapies which specifically target these cancers. Some of them
(e.g., DTP) has recently reached the clinical practice and could be prescribed for BRAFV600E

mutated ATC. However, their therapeutic benefit is still scarce and many other studies are
necessary to answer these unmet clinical needs.
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