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Purpose. Due to the excessive use of raw materials in diagnostic tools and equipment during the COVID-19 pandemic, there is a
dire need for cheaper and more effective methods in the healthcare system. With the development of artificial intelligence (AI)
methods in medical sciences as low-cost and safer diagnostic methods, researchers have turned their attention to the use of
imaging tools with AI that have fewer complications for patients and reduce the consumption of healthcare resources. Despite
its limitations, X-ray is suggested as the first-line diagnostic modality for detecting and screening COVID-19 cases. Method.
This systematic review assessed the current state of AI applications and the performance of algorithms in X-ray image analysis.
The search strategy yielded 322 results from four databases and google scholar, 60 of which met the inclusion criteria. The
performance statistics included the area under the receiver operating characteristics (AUC) curve, accuracy, sensitivity, and
specificity. Result. The average sensitivity and specificity of CXR equipped with AI algorithms for COVID-19 diagnosis were
>96% (83%-100%) and 92% (80%-100%), respectively. For common X-ray methods in COVID-19 detection, these values were
0.56 (95% CI 0.51-0.60) and 0.60 (95% CI 0.54-0.65), respectively. AI has substantially improved the diagnostic performance of
X-rays in COVID-19. Conclusion. X-rays equipped with AI can serve as a tool to screen the cases requiring CT scans. The use of
this tool does not waste time or impose extra costs, has minimal complications, and can thus decrease or remove unnecessary
CT slices and other healthcare resources.

1. Introduction

Upon the emergence of COVID-19, the World Health Orga-
nization (WHO) designated the outbreak as a global health
emergency and changed the disease state from an epidemic
to a pandemic. One year has elapsed since that date, and on
March 2, 2021, more than 120 million confirmed cases of
COVID-19 have been reported globally. Of these, more than
2.65 million cases died [1]. The symptoms of COVID-19 are
nonspecific; based on reports, in individuals and families
with asymptomatic infections, CT scans show pneumonia,
and the virus pathogenicity test is positive [2, 3]. To stop
the spread of COVID-19 and decrease its mortality rate, early

detection and effective screening of patients are urgent needs.
The gold standard detection method for testing COVID-19
patients is RT-PCR (Reverse Transcription-Polymerase
Chain Reaction) testing on respiratory specimens. This test
is the most common method for detecting COVID-19, but
it has disadvantages such as being manual, complicated,
laborious, and time-consuming, and its positive rate is only
63%. In addition, during the pandemic, the low sensitivity
of RT-PCR is not acceptable. As a result, infected people
may not be identified and promptly treated and, due to the
contagious nature of COVID-19, can spread the virus to
healthy people [4, 5]. These shortcomings have encouraged
healthcare specialists to present an alternative method with
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high efficiency for the detection and diagnosis of COVID-19.
Since the beginning of 2020, based on clinical and paraclini-
cal features of COVID-19, researchers have employed chest
radiology modalities as effective tools for detecting, quantify-
ing, and following-up COVID-19 cases. The indicators of
infection include abnormalities in the patients’ chest CT
and X-ray images [6, 7]. In COVID-19 diagnosis, CT scans
are more sensitive and specific than chest X-rays, and in
many cases, lung involvement and GGO (Ground Glass
Opocity) can be observed on CT scans even before the onset
of clinical symptoms and a positive PCR test. However, prob-
lems such as high cost and the risk of spreading the disease
when using the CT scan equipment may cause serious com-
plications for patients and the healthcare system. Based on
the American College of Radiology recommendation, CT
scans should not be used as a first-line diagnostic modality.
Since COVID-19 attacks the epithelial cells of the respiratory
tract, specialists often use X-ray images to check the strength
of the lungs and diagnose any kind of lung disease. Neverthe-
less, X-ray findings ranging from GGO to consolidations
overlap other types of pneumonia [6–8]. It seems that, as
the pandemic progresses, the medical community will often
rely on CXR (Chest X-ray) due to its widespread availability
and fewer infection control issues that currently limit the use
of CT. Therefore, many researchers have utilized the X-ray
modality to detect, diagnose, and classify COVID-19. How-
ever, the shortcomings of this imaging method have been
mentioned in several texts [9–11]. Accordingly, many
researchers turned to AI methods to address these deficien-
cies. Much effort has been made to develop AI-based medical
systems based on the advances of digital image processing,
pattern recognition, and computer vision. Such systems are
expected to overcome the operator dependency, increase
diagnosis efficiency rates, and reduce the need for medical
complementary modalities [12, 13].

The present systematic reviews are aimed at introducing
the latest technologies discussed in the COVID-19 literature
which focuses on AI technologies for detecting/diagnosing
the affected areas of the lungs. Instead of merely presenting
a brief summary of the included studies, different statistical
analyses by using graphs have been performed on various
aspects of the system discussed in the selected papers. We
present the following article in accordance with the PRISMA
reporting checklist.

2. Method

2.1. Search Criteria. This systematic review aimed to identify
various studies related to COVID-19 detection based on
radiological images and AI classifiers. Specifically, it sought
to answer the following research questions:

(1) To what extent can the use of AI algorithms improve
the common methods of COVID-19 diagnosis?

(2) Which AI method is the most effective in analyzing
COVID-19 X-ray images?

A systematic review was conducted to identify all the
published studies in which AI algorithms had been utilized

to detect/classify the X-ray images of suspected COVID-19
cases. Several electronic databases, including Scopus (http://
www.scopus.com), Elsevier ScienceDirect (http://www.
sciencedirect.com), PubMed (http://www.pubmed.ncbi.nlm.
nih.gov), and Web of Science (http://www.wosg.ir), were
searched from 2020 to January 2021. The following search
keywords were used: “COVID-19,” “X-ray,” “artificial intelli-
gence,” “machine learning,” “deep learning,” “detection,”
“classification,” “computer-aided diagnosis,” “computer-
aided detection,” and “computer-aided diagnosis.” The larg-
est possible number of publications was investigated; still,
some related studies may have been accidentally ignored.

2.2. Eligibility Criteria. The following are the eligibility
criteria:

(1) Being written in English

(2) Using AI techniques to detect GGO and consolida-
tion in COVID-19 patients

(3) Examining COVID-19 detection and diagnosis based
on X-ray images

(4) Using AI algorithms for X-ray image analysis

2.3. Data Extraction. Two authors (FA and MG) indepen-
dently extracted the data and, after modifying the Cochrane
standardized data extraction table based on the research
questions, used it to assess the risk of bias for each study.
The forms filled out by each author were compared, and
the differences were resolved through researching, analysis,
and discussion with the senior author as the final arbitrator.
For predictive models, the data were extracted from the
CHARMS checklist modified for the purpose of this study,
which also includes an assessment of the risk of deviation
[14]. This checklist is designed to evaluate all major predic-
tive modeling research, including ANN (Artificial Neural
Networks) and other types of ML (machine learning). After
duplicate removal, 269 studies were identified. Next, 66
potentially relevant studies were selected by title/abstract
screening, of which 60 remained after the full-text screening.
Figure 1 displays the PRISMA flowchart that summarizes the
study selection procedure [15]. Note that many articles
contained more than one AI algorithm, and they were all
counted when forming this diagram.

3. Result

For each article, the data were extracted regarding (i) the
country of the author team, (ii) the aim of the research, (iii)
data volume, (iv) feature engineering, (v) AI methods and
algorithms used, and (vi) efficiency.

Due to the wide range of AI algorithms, the studies had
different ideas for using these algorithms to analyze X-ray
images. Many of the studies were binary, meaning they dealt
with only two classes of COVID-19 patients and non-
COVID-19 patients. But some researchers have processed
data from more than two data classes using machine learning
concepts. Their data class included patients with COVID-19,
patients with various types of pneumonia, people suspected
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of having COVID-19 but without lung involvement and
completely healthy.

Based on the initial review of the relevant research, it was
found that the AI methods were based on two techniques.
The first technique is the application of traditional ML algo-
rithms, and the second methodology was the utilization of
DL algorithms for X-ray image analysis.

A number of studies utilized the classical concepts of ML
[16–20] and even compared the performance of these classi-
cal algorithms with DL (deep learning) algorithms for
COVID-19 diagnosis and classification [20, 21]. Many of
them employed hybrid methods and more than one algo-
rithm for processing and classifying the COVID-19 data;
however, in many of them, several models and architectures
were compared, and the model with the highest efficiency
was extracted from these comparisons [22–26]. In an over-
view of the studies, almost all of these studies used pretrained
networks. The use of these networks stems from a concept
called transitional learning.

3.1. Transfer Learning. A concept that has received atten-
tion in many studies is transfer learning, according to
which the knowledge extracted from large datasets is
extracted by deep learning methods and is then transferred
to a smaller but related dataset [27]. In the models
employed to detect and classify COVID-19 using X-rays,
the values of the efficient hyperparameters are transferred
from the processed state of the art to the current problem
[28, 29]. This is because large datasets are required to pro-
cess the X-ray images of COVID-19 with the deep learning
method, and such datasets do not exist. Therefore, pre-

trained models to apply the concept of transfer learning
are used [30–40].

Shibly et al. and Zhang et al. altered the structure of these
efficient pretrained architectures, which eventually led to bet-
ter results in COVID-19 classification and diagnosis. Many
researchers developed new models by developing pretrained
models, which led to excellent results [33, 41–43]. Further-
more, in some of these studies, the aggregation of several pre-
trained networks, models, and techniques is used to perform
high-quality feature extraction. By combining several well-
known and efficient models, these studies provide the best
performance of feature engineering [33, 44].

Based on the used X-ray datasets, several studies differen-
tiated the data into two classes of patients with COVID-19
and non-COVID-19 patients [21, 24, 25, 29, 36, 39, 40, 42,
45, 46]. In others, the database included more than two clas-
ses, e.g., viral pneumonia, bacterial pneumonia, and normal
and COVID-19 cases [17, 23, 30–35, 37, 39, 41, 43, 47–50].
Through the synthesis of the data, four domains of AI appli-
cations in X-ray analysis were identified:

3.2. AI Application Domain in COVID-19 Chest X-Ray Image
Analysis. Through data synthesis, four applications of artifi-
cial intelligence in the analysis of X-ray images of the chest
of people suspected of COVID-19 were identified. Detection
(diagnosis), classification, lesion visualization, and segmenta-
tion and detection are four categorizations that had been
used frequently in studies. Many studies have not distin-
guished semantic, lexical, and practical differences between
these terminologies. The categorization made in this four
areas is based solely on the terms used in the text of the study.
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Figure 1: PRISMA flow diagram depicting the selection process for inclusion and exclusion.
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The purpose of many studies was to combine several catego-
ries to achieve applied analysis.

3.2.1. Detection and Diagnosis. Upon examining the existing
texts and lexicons and seeking advice from radiologists and
epidemiologists, detection is defined as part of the real entity
that can be seen or whose existence can be proved or rejected.
In medical texts, detection is considered a prelude to diagno-
sis. Cases have been identified in many studies aiming at
identifying COVID-19 and its initial impact on lung tissue
in its early stages. In these studies, the main purpose is to
use early chest X-ray results to identify infection cases from
other suspicious or normal cases. Twenty-eight studies aim-
ing for detection used a spectrum of ML techniques for
COVID-19 identification by X-ray image analysis [21, 22,
25, 27–49]. Another term that is very similar in function
to detection is diagnosis. Although the two terms differ in
clinical application, they are used interchangeably in various
studies. Upon distinguishing these two terms from each
other, detection is considered distinguishing the cases
infected with COVID-19 and cases not infected with
COVID-19; this means that there is no information about
the class of non-COVID-19, and the group can have differ-
ent types of bacterial pneumonia, viruses, or other coronavi-
rus diseases, except for COVID-19. On the other hand,
diagnosis distinguishes COVID-19 from other infectious
lung diseases (e.g., different types of pneumonia) [17, 21,
24, 31, 34, 39, 40, 61, 62].

3.2.2. Classification. Image classification is one of the earliest
fields where ML has made a significant contribution to med-
ical image analysis. Since the introduction and development
of ML methods, numerous studies have adopted them for
disease classification. In the field of radiological image analy-
sis, considerable research has been conducted in the past
years with the aim of classification. The main purpose of
research aiming at classifying COVID-19 is to differentiate
it from other diseases such as pneumonia by introducing an
ML-based classification. In these studies, classification is per-
formed to diagnose and detect COVID-19. In the literature,
there are 27 studies for classification purposes, and
COVID-19 infections are classified from other types of pneu-
monia and lung diseases. In such research, GGO and consol-
idation regions are classified from other suspected regions
[18, 20, 55–59].

3.2.3. Lesion Visualization. Object classification usually
focuses on classifying a small, previously determined part of
a medical image into two or more classes (e.g., nodule classi-
fication in lung X-ray). For many of these tasks, local infor-
mation about the appearance of the lesion and global
contextual information about the location of the lesion is
required for accurate classification. To diagnose and classify
COVID-19, many studies have extracted and displayed lung
regions via radiographic images and used AI technology for
this purpose. In these studies which mainly use the attention
technique, the infected lungs are approximately shown. Some
researchers who employed the X-ray technology to diagnose
COVID-19 performed object detection, where the object was

a lesion caused by COVID-19, showing the visual processing
of the affected area of the lung. The difference between this
and the segmentation method is that segmentation cannot
transparently show the boundary of the lesion, and it roughly
separates these areas from the texture. Attention map and
heat map techniques were also employed to visualize CXR
images so that the GGO region could be easily displayed
using these technologies [23, 31, 37, 39, 44, 47, 54, 66, 67].

3.2.4. Segmentation and Detection. Lung segmentation and
COVID-19 disease are the removal of irrelevant regions on
the image of lung tissue or the removal of normal areas of
the lung, which play an important role in diagnosing diseases
and displaying abnormal parts. Some studies have used other
techniques, such as bounding boxes, to display and diagnose
a healthy lung from an infected lung. Numerous studies have
shown that segmentation, as one of the steps before COVID-
19 classification, increases efficiency in disease detection.
Watershed as a most popular segmentation technique is a
transformation performed on grayscale images, used to seg-
ment different areas on the basis of geological watersheds to
separate adjacent watersheds. It is like a topographic map,
where the brightness of each point represents its height,
and then find the line through the top of the ridge. In medical
image segmentation, the watershed algorithm provides a
complete division to separate meaningful feature regions
for diagnosis [22, 60–65].

Researchers have analyzed radiographic images to
achieve one of these goals. The extent to which these goals
have been attained in the literature is presented in Figure 2.

Since the 1950s, computer scientists have made efforts in
the field of ML; however, in recent years, there has been a rev-
olution in AI leading to the emergence of DL. As a subset of
ML, DL is an end-to-end procedure whereby feature extrac-
tion is performed completely automatically [66].

In these methods, the building blocks of convolutional
neural networks (including convolution and pooling layers)
process the values corresponding to pixels. In this way, fea-
tures can be automatically extracted. Then, the features are
classified by feeding them into a layer containing one or more
classifiers. These methods extract important features while
ignoring secondary features. A review of research demon-
strates that, to extract and process radiological image features
for COVID-19 detection, many studies have adopted DL
methods and algorithms and their latest models. Since
researchers are dealing with radiological images in the diag-
nosis of COVID-19, and the volume of image data is very
large; DL methods, especially CNN algorithms, yield better
results. Based on the review of research on the COVID-19
diagnosis since its inception, many studies have utilized var-
ious DL algorithms to extract the features of radiological
images. In all of these studies, DL methods have been
employed to extract the features, and these features have been
automatically extracted by CNN algorithms.

In terms of effectiveness, one of the main characteristics
of deep neural networks is the architecture they adopt. Some
deep neural network architectures demonstrate an extraordi-
nary ability to perform multiple functions for multiple data
types. Various studies have been conducted on COVID-19
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with different DL architectures, in which the diagnosis rate
when detecting COVID-19 is compared by using several
types of architectures (El Asnaoui & Chawki, 2020). The
prevalent CNN architectures used in these studies can be
seen in Figure 3. The CNN architectures have shown high
performance in COVID-19 diagnosis based on CXR, and
their performance differed based on the types of architecture
and the predetermined model. Figure 3 illustrates the rate of
use of these architectures. In the reviewed articles, the
VGGNet architecture has played the greatest role. Neverthe-
less, some studies with different VGG16 architectures have
achieved the best results in COVID-19 detection and diag-
nosis, while other studies have utilized other VGG19 ver-
sions to maximize the efficiency of analyzing radiological
images for COVID-19 diagnosis. Newer and more developed

architectures are found to be more effective in diagnosing
COVID-19.

The list of the included articles and the most relevant
characteristics and findings are presented in Table 1, includ-
ing detection, diagnostic, and classification studies, in which
in several studies the lesion visualization are presented in
their research.

4. Discussion

This study reviewed the role of AI techniques in analyzing
CXR images of COVID-19 suspected cases and described
the employed algorithms by critically reviewing their perfor-
mances. This systematic review presented 60 articles pub-
lished on AI to improve the results of radiographic image
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Figure 3: Rate of CNN pretrained structures in analyzing X-ray images.
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Figure 2: X-ray image analysis objectives.
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Table 1: Original research studies that applied AI methods to analysis X-ray images of suspected to COVID-19 which met inclusion criteria.

Authors &
country

Aim of study Dataset description
Feature

engineering
AI method Model (structure)

Diagnostic
performance

Saiz and
Barandiaran
(Spain) [45]

Detection

1600 image (204 COVID-19,
205 normal, 204 pneumonia
for training, 100 COVID-19
images, 444 normal, 443
pneumonia images for

testing)

Automatic
CNN using

TL1
Vgg-16 and SDD2

Accuracy: 94.92%
Sensitivity: 94.92%
Specificity: 92%

Apostolopoulos
et al. (Greece)
[55]

Automatic
detection

2870 image (224 COVID-19,
714 bacterial and viral

pneumonias and 504 normal
cases)

Automatic
CNN using

TL
Mobilenet V2

Accuracy: 96.78%
Sensitivity: 98.66%
Specificity: 96.46%

Khan et al.
(India) [44]

Detection and
diagnosis

1251 images from four classes
(310 normal, 330 bacterial

pneumonia, 327 viral
pneumonia, 284 COVID-19)

Automatic
Deep

learning
(Coronet)

Xception Accuracy: 89.6%

Toğaçar et al.
(Turkey) [39]

Detection
458 images (295 COVID-19,

98 pneumonia, and 65
normal)

Automatic
Deep

learning
and SVM

Squeezenet
Classification rate:

99.27%

Vaid et al.
(Canada) [46]

Detection
108 images (34 COVID-19

and 75 normal)
Automatic

Deep
learning
(CNN)

VGG19 Accuracy: 96.3%

Rajaraman and
Antani (USA)
[27]

Detection
Four public datasets (detail

was not mentioned)
Not

mentioned

Deep
learning
(CNN)

Vgg-16
Sensitivity: 97.11%
Specificity: 86.49%
Accuracy: 93.08%

Yousri et al.
(Egypt) [67]

Diagnosis

2 databases (216 COVID-19,
1675 non-COVID-19 in first
dataset, and 219 COVID-19
and 1341 negative cases)

Frmems3
Deep

learning via
KNN

Mobilenet

Accuracy of first
dataset: 96.09%

Accuracy of second
dataset: 98.09%

Apostolopoulos
et al. (Greece)
[28]

Detection 455 (detail not mentioned) Automatic
Deep

learning
(CNN)

Mobilenet V2
Sensitivity: 97.36%
Specificity: 99.42%
Accuracy: 99.18%

Brunese et al.
(Italy) [68]

Detection
(differentiate)

6,523 (250 COVID-19, 2753
pulmonary diseases, 3520

normal)
Automatic

Deep
learning
(CNN)

Vgg-16 Accuracy: 97%

Pereira et al.
(Brazil) [69]

Diagnosis
(classification)

1144 (1000 normal, 90
COVID-19, 10 MERS, 11
SARS, 10 Varicella, 12
Streptococcus, and 11

Pneumocystis)

Automatic
Different
algorithms

Inception-V3 F1 score: 89%

Ozturk et al.
(Turkey) [48]

Automated
detection

86 images (63 COVID-19, 6
Streptococcus, 11 SARS, 4
ARDS, 2 pneumocystis)

Automatic
Deep

learning
(CNN)

Darknet

Binary case accuracy:
98.08%

Multiclass case
accuracy: 87.02%

Ucar et al.
(Turkey) [23]

Diagnosis
5949 images (1583 normal,
4290 pneumonia, and 76

COVID-19)
Automatic CNN

Deep Bayes-
SqueezeNet

Accuracy for overall
class: 98.3%

Mahmud et al.
(Bangladesh)
[29]

Detection

6161 images (1583 normal,
1493 non-COVID-19 viral
pneumonia, 2780 bacterial

pneumonia, and 305
COVID-19 cases)

Not
mentioned

Deep
learning
(CNN)

Convxnet
Accuracy of multiclass:

90.2%

Waheed et al.
(India) [30]

Classification
1124 images (403 COVID-19

and 721 normal cases)
Automatic

Gan
(COVID
Gan)

Acgan4, Vgg16
Accuracy: 95%
Sensitivity: 90%
Specificity: 97%

El Asnaoui et al.
(Moroco) [70]

Automatic
detection

6087 (2780 bacterial
pneumonia, 1493 COVID-19,

1583 normal)
Automatic CNN

Inception_
ResNet_v2

Acuracy: 92.18%
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Table 1: Continued.

Authors &
country

Aim of study Dataset description
Feature

engineering
AI method Model (structure)

Diagnostic
performance

Sethy et al.
(India) [6]

Detection
381 (127 COVID-19, 127

pneumonia, and 127 normal)
Automatic

CNN and
SVM

Resnet50 Sensitivity: 95.33%

Das et al. (India)
[51]

Screening
(diagnosis)

6839 images (162 COVID-19,
5863 pneumonia, 814 TB5)

Automatic CNN
Truncated

Inception Net
Sensitivity: 88%
Specificity: 100%

Martínez et al.
(Columbia) [31]

Automatic
detection

240 images (120 COVID-19
and 120 normal)

Automatic CNN Nasnet6 Accuracy: 97%

Yi et al. (USA)
[71]

Classification
(detection)

88 images (detail not
mentioned)

Not
mentioned

Deep
learning

Not mentioned Sensitivity: 89%

Loey et al.
(Egypt) [72]

Detection
(classification)

306 images (69 COVID-19,
79 normal, 79 bacterial
pneumonia, and 79 viral

pneumonia)

Automatic

Deep
transfer
learning
and GAN

AlexNet
GoogleNet
ResNet

AlexNet testing
accuracy: 85.2%
GoogleNet testing
accuracy: 100

Panwar et al.
(India) [73]

Detection
337 images (192 COVID-19
and 145 non-COVID-19

pneumonia)
Automatic

Deep
learning
(Ncovnet)

Vgg16
Sensitivity: 97.62%
Specificity: 78.57%
Accuracy: 88.10%

Horry et al.
(Australia) [37]

Detection
(classification)

60798 images (115 COVID,
322 pneumonia, 60361

normal)
Automatic CNN VGG19

X-ray precision: 86%
Ultrasound precision:

100%
CT precision: 84%

Turkoglu
(Turkey) [33]

Detection
(classification)

6092 images (219 COVID-19,
1583 normal, and 4290

pneumonia)

Relief feature
selection

SVM Alexnet Accuracy: 99.18%

Heidari et al.
(USA) [74]

Detection
classification

8474 images (415 COVID-19,
2880 normal, and 5179

pneumonias)
Automatic

Transfer
learning-

based CNN
VGG16

Accuracy: 94.5%
Sensitivity: 98.4%
Specificity: 98.0%

Tabik et al.
(Spain) [75]

Classification
Normal-PCR+: 76, mild: 100,
moderate: 171, severe: 79

Automatic
Deep

learning
(CNN)

Resnet-50

Accuracy: 97:72% ±
0:95%, 86:90% ± 3:20%,
and 61:80% ± 5:49% in
severe, moderate, and

mild COVID-19
severity levels

Murugan and
Goel (India)
[22]

Classification
2700 images (900 images for
each class; COVID, normal,

pneumonia)
Automatic

Extreme
learning
machine
classifier
(ELM)

Resnet-50
Accuracy: 94.07
Sensitivity: 98.15
Specificity: 91.48

Ohata et al.
(Brazil) [24]

Classification
Two dataset (194 COVID and
194 normal in each dataset)

Automatic

SVM-linear
kernel

(Dataset1)-
MLP

(Dataset2)

Mobilenet
`(Dataset1)
Densenet201
(Dataset2)

Dataset1 F1 score: 98.5
Dataset2 F1 score: 95.6

Mohammadi
et al. (Iran) [25]

Detection
545 images (181 COVID-19

and 364 normal)
Automatic

Deep
transfer
learning
CNN

(VGG)-16, VGG-
19, Mobilenet,

and
Inceptionresnetv2

Acc of all model > 90%
MobilenetAcc: 99.1%
VGG16 AUC: 0.92%
VGG19 AUC: 0.91%
Mobilenet AUC: 0.99%
Inceptionresnetv2:

0.97%

Narayan et al.
(India) [38]

Detection
86 images (63 COVID-19, 6
Streptococcus, 11 SARS, 4
ARDS, 2 pneumocystis)

Automatic
Deep
transfer

Inception
(Xception)

Accuracy: 0.97%
F-measure: 0.96%

Fan et al.
(China) [76]

Detection
188 images (94 COVID-19

and 94 normal)
Automatic

Transfer
learning
CNN

Alexnet,
Mobilenetv2,
Shufflenet,

Squeezenet, and
Xception

Mobilenet average
accuracy, recall,

precision, and F-score:
97%, 96.5%, 97.5%, and

97%, respectively
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Table 1: Continued.

Authors &
country

Aim of study Dataset description
Feature

engineering
AI method Model (structure)

Diagnostic
performance

Albadr et al.
(Malaysia) [16]

Detection
188 images (two class
including normal and
COVID-19 cases)

Histogram of
oriented
gradients
(HOG)

Optimized
genetic

algorithm-
extreme
learning
machine

Not mentioned

Accuracy: 100.00%
Recall: 100.00%

F-measure (100.00%)
and G-mean (100.00%)

Hussain et al.
(Bangladesh)
[56]

Detection
classification

7390 images (2843 COVID-
19, 3108 normal, pneumonias
1439) for 2 class, 3 class, and

4 class datasets

Automatic CNN Not mentioned

Classification accuracy
For 2 class: 99.1%
For 3 class: 94.2%
For 4 class: 91.2%

Zhang et al.
(China) [43]

Detection
5860 images (1585 normal
and 4275 pneumonia)

Automatic

Transfer
learning
Deep

residual
network

Resnet-34 Accuracy: 91%

Khuzani et al.
(USA) [18]

Classification
420 images (140 normal, 140

COVID-19, and 140
pneumonia)

Texture, FFT,
wavelet,
GLCM7,
GLDM8

MLP Not mentioned
Sensitivity: 100%
Precision: 96%

Moujahid et al.
(Morocco) [59]

Classification
5856 images (1583 normal

and4273 pneumonia)
Automatic CNN VGG19

Precision: 96%
Recal: 99%

F1 score: 98%
Accuracy: 96.58%

Afshar et al.
(Canada) [52]

Classification 13,975 COVIDx dataset Automatic
Capsule
networks

Capsnets

Accuracy: 95.7%
Sensitivity: 90%
Specificity: 95.8%

AUC: 97%

Dorr et al.
(Argentina) [34]

Classification
302 images (102 COVID-19,
100 pneumonia, 100 normal)

Automatic CNN Densenet 121
Validation AUC: 0.96
External test AUC: 83%

Shorfuzzaman
and Masud
(Saudi Arabia)
[77]

Classification
678 (226 COVID-19, 226

pneumonia and 226 normal)
Automatic

Deep
Siamese
Network

VGG-
16ResNet50-V2
MobileNet,
Xception,

DenseNet121

ResNet50-V2: 98.06
MobileNet accuracy:

97.83%

Panahi et al.
(Iran) [41]

Detection
940 images (435 COVID-19
and 505 non-COVID-19)

Automatic CNN Not mentioned
Accuracy: 96%
F1-score: 96%
AUC: 0.95%

Jain et al.
(Germany) [35]

Classification
detection

1215 (315 normal, 350 viral
pneumonia, 300 bacterial
pneumonia, and 250

COVID-19)

Automatic
Transfer
learning
with CNN

Resnet 50
Resnet-101

Accuracy: 98.93%
Sensitivity: 98.93%
Specificity: 98.66%
F1-score: 98.15%

Shibly et al.
(Bangladesh)
[54]

Detection

232 images (283 COVID-19,
9501 non-COVID

pneumonia, and 9466
normal)

Automatic CNN VGG-16
Accuracy: 97.36%
Sensitivity: 97.65%
Precision: 99.28%

Gupta et al.
(India) [57]

Classification
3047 images (361 COVID-19,

1345 pneumonia, 1341
normal)

Automatic
Transfer
learning
CNN

Resnet101,
Xception,

Inceptionv3,
Mobilenet,
Nasnet

Accuracy: 99.08%
Recall: 0.99%
F1 score: 0.99

Phankokkruad
(Thailand) [78]

Classification
274 COVID-19 cases, 380
viral pneumonia, and 380

normal cases
Automatic

Transfer
learning
CNN

Xception
VGG16

Inception-Resnet

Xception accuracy:
97.19%

VGG16 accuracy:
95.42%

Inception-Resnet
accuracy: 93.87%
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Table 1: Continued.

Authors &
country

Aim of study Dataset description
Feature

engineering
AI method Model (structure)

Diagnostic
performance

Jain et al. (India)
[36]

Classification

6432 (in training phase, 1345
are normal, 490 are COVID,
and 3632 is pneumonia; in
the validation phase, 238

samples of a normal case, 86
COVID, and 641 of

pneumonia)

Automatic
Transfer
learning
CNN

Inception V3,
Xception, Resnext

Xception reaches the
highest

Accuracy: 97.97%

Tartaglione
et al. (Italy) [79]

Classification
Segmentation

4 datasets (COVID-Chest
XRay: 287, CORDA: 447,
ChestXRay: 5857 RSNA:

26684)

Automatic
segmentation
using U-Net

CNN

ResNet-18
ResNet-50
COVID-Net
DenseNet-121

AUC ResNet-18: [0.59,
1]%

AUC ResNet-50: [0.61,
0.9]%

AUC COVID-Net:
[0.55, 0.85]%

AUC DenseNet-121:
[0.53, 0.9]%

Saha et al.
(Bangladesh)
[26]

Detection
4600 images (2300 COVID-
19, 2300 non-COVID-19)

CNN

RF9,
SVM10,
DT11,

ADAboost

VGG16
Accuracy: 98.91%
Recall: 97.82%

F1-score: 98.89%

Mostafiz et al.
(Bangladesh)
[22]

Detection

4809 images (790 COVID-19,
1215 viral pneumonia, 1304
bacterial pneumonia, and

1500 normal)

Hybrid model
DWT12 CNN

RF
mRMR13 with

RFE14
Overall accuracy of
more than 98.5%

Abraham and
Nair (India)
[80]

Detection
(CAD)

950 (453 COVID-19 and 497
non-COVID-19)

Multi-CNN
with CFS15

Deep
learning

CNN and
Bayesnet classifier

Accuracy: 97.44%
AUC: 91.16%

Deng et al.
(China) [81]

Detection
(classification)

Two datasets, 6624 images
(1980 normal and 4644

pneumonia)
Automatic

SVM
CNN

Resnet-50,
Inceptionresnet-
v2, Xception,
Vggnet-16

First dataset accuracy:
84%

Second dataset
accuracy: 75%

Varela-Santos
and Melin
(Mexico) [20]

Classification
593 (detail of the data is not

mentioned)

Texture
features

(GLCM16)

Neural
network
Deep

learning

FFNN, feature-
based FFNN,

CNN

The results were
calculated based on
different datasets and
different methods based
on AUC and accuracy

Chandra et al.
(India) [82]

Detection
2088 images (696 normal, 696

pneumonia, and 696
COVID-19)

Automatic CNN

Ensemble
majority voting
(SVM, DT, KNN,

ANN, NB)

Phase-I accuracy: 98%
Phase-II accuracy:

91.3%

Islam et al.
(Bangladesh)
[40]

Detection
4575 (1525 pneumonia, 1525
normal, and 1525 COVID-19

cases)

Automatic
using CNN
network

LSTM17 Ordinary network
Accuracy: 99.4%
Specificity: 99.2%
Sensitivity: 99.3%

Minaee et al.
(USA) [83]

Detection
5000 images (combination of
different datasets was used)

Automatic
Transfer
learning

Resnet18,
Resnet50,
Squeezenet,
Densenet-121

Sensitivity: 98% ± 3%
Specificity: 90%

(Models have a similar
performance)

Ismael and
Şengür (Iraq)
[21]

Classification
561 images (361 COVID-19

and 200 normal)
CNN

SVM
(kernel:
linear,

quadratic,
cubic

Gaussian)

Resnet18,
Resnet50,
Resnet101,

VGG16, VGG19

ResNet50 + SVM:
95.7%

Wavelet transform:
96%

Shearlet transform:
99.28%

Wang et al.
(China) [53]

Classification
1102 images (565 normal, 537

COVID-19)
Automatic

Decision
tree,

random
forest,

VGG16,
Inceptionv3,
Resnet50,

Xception + SVM
accuracy: 99.33%
Xception + SVM
sensitivity: 99.27%
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analysis and lead to a more accurate diagnose, locate the
affected lung area (GGO), and enhance the visual image of
the lung of suspected COVID-19 cases.

4.1. A Review of the Shortcomings of These Studies. Despite
the effectiveness of artificial intelligence methods in detecting
COVID-19 using X-ray images, these methods have draw-
backs and shortcomings that researchers have used tech-
niques to escape these defects. Disadvantages of these
methods include lack of balance datasets and lack of suffi-
cient data for machine learning-based research.

4.1.1. X-Ray Dataset Limitation. Due to the emergence of
COVID-19 disease and the lack of bulk and suitable datasets
for the applications of artificial intelligence, the researchers

resorted to published datasets. But these datasets had varia-
tions in image angles, a limited number of images from dif-
ferent classes, and sometimes low-quality X-ray images. On
the other hand, most artificial intelligence methods that input
images, such as deep neural networks, depend on the size and
number of images, and the larger the number of images and
the size of the dataset, the better the results in image analysis.
Numerous studies have shown that a small number of images
lead to poor generalization and over fitting. Therefore, to
solve this problem, many studies have used the data augmen-
tation technique. The augmentation technique artificially
inflates the training dataset size by either data warping or
oversampling. Data augmentations transform existing
images such that their label is preserved. This encompasses
augmentations such as geometric and color transformations,

Table 1: Continued.

Authors &
country

Aim of study Dataset description
Feature

engineering
AI method Model (structure)

Diagnostic
performance

Adaboost,
bagging,
SVM

Densenet121,
Xception

Xception + SVM
specificity: 99.38%

Hussain et al.
(Pakistan) [84]

Classification

558 images (130 COVID-19,
145 viral pneumonia, 145

bacterial pneumonia, and 138
normal)

GLCM18

MFEM19

XGB-L20,
XGB-
Tree21,
CART22,
KNN23,
NB24

GLCM25 Accuracy for pairwise
data class: 96.3%, 100%

Rahaman et al.
(China) [85]

Classification
860 images (260 COVID-19,

300 healthy, and 300
pneumonia cases)

Automatic
Transfer
learning
CNN

VGG series,
Xception,

ResnetvResnetv2,
Inception,
Densenet,
Mobilenet

Accuracy: 89.3%
Average recall: 89%

Average F1 score: 90%

Gomes et al.
(Brazil) [19]

Classification

6039 images (453 COVID-19,
1490 viral pneumonia, 2783
bacterial pneumonia, and

1583 normal)

Haralick,
Zernike
moments

MLP, SVM,
RF

Bayesian
networks
NB RT26

Not mentioned

Average accuracy:
89.78%

Average sensitivity:
89.79%

Average specificity:
99.63%

Ozturk et al.
(Turkey) [86]

Classification
1127 images (127 COVID-19,

500 normal, and 500
pneumonia)

Hand craft
(GLCM,

LBGLCM27,
GLRLM28,
and SFTA29)

Classical
machine
learning
approach

SVM
Accuracy: 86.54%
Sensitivity: 83.15%
Specificity: 96.96%

Altan and
Karasu (Turkey)
[87]

Diagnosis
7980 images (2660 normal,
2660 COVID-19, and 2660

viral pneumonia)

Coefficients
with CSSA30

optimization
method

Classical
machine
learning
approach

Swarm algorithm
and deep learning

Accuracy: 99.69%
Sensitivity: 99.41%
Specificity: 99.81%

Tuncer et al.
(Turkey) [88]

Detection
321 images (234 normal and

87 COVID-19)

ResExLBP31

for FE32

IRF33 for FS34

Classical
machine
learning
approach

SVM Accuracy: 100%

1Transfer learning. 2Single shot detector. 3Fractional Multichannel Exponent Moments (FrMEMs). 4Auxiliary Classifier Generative Adversarial Network.
5Tuberculosis. 6Neural Architecture Search Network. 7Gray-level cooccurrence matrix. 8Gray-level difference method. 9Random forest. 10Support vector
machine. 11Decision tree. 12Discrete wavelet transform. 13Minimum redundancy and maximum relevance. 14Recursive feature elimination. 15Correlation-
based feature selection. 16Gray-level cooccurrence matrix (GLCM). 17Long short-term memory. 18Grey-level cooccurrence matrix. 19Morphological feature-
extracting method. 20XG boosting linear. 21XG boosting tree. 22Classification and regression tree. 23K-nearest neighbor. 24Naïve Bayes. 25Grey-level
cooccurrence matrix. 26Random tree. 27local binary gray-level cooccurrence matrix. 28Gray level run length matrix. 29Segmentation-based fractal texture
analysis. 30Chaotic salp swarm algorithm. 31Residual exemplar local binary pattern. 32Feature extraction. 33Iterative relief. 34Feature selection.
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random erasing, adversarial training, and neural style trans-
fer. Oversampling augmentations create synthetic instances
and add them to the training set. The augmentation tech-
nique artificially inflates the training dataset size by either
data warping or oversampling. Data augmentations trans-
form existing images such that their label is preserved. This
encompasses augmentations such as geometric and color
transformations, random erasing, adversarial training, and
neural style transfer. Oversampling augmentations create
synthetic instances and add them to the training set. Due
to the limited data on COVID-19, almost all studies have
used the data augmentation technique [25, 30, 31, 43, 45,
64, 89–91].

4.1.2. Imbalance X-Ray Datasets. In many studies, while deal-
ing with real datasets, they face the fundamental problem of
nonclass balance distribution. Classifiers usually solve the
problem to minimize global errors. These classifiers are more
likely to consider majority classes when dealing with unbal-
anced datasets. Therefore, finding the wrong patterns will
lead to incorrect labels. In the case of medical data and dis-
eases, this imbalance is enormous. Studies have shown that
this imbalance of data is the predominant problem in the
emerging disease of COVID-19, which has occurred in
almost all studies. Examining the datasets used in the studies,
it can be seen that the data were unbalanced and included a
smaller number of cases. And this reduced the sensitivity in
diagnosing cases. Also, in studies that had a higher ratio of
noninfected cases to infected cases, it led to a decrease in
the specificity rate in diagnosing noninfected cases. In the
real world, it is known that the number of cases of pneumo-
nia and pulmonary disease is higher than the number of
cases of COVID-19 and imbalance dataset COVID-19 X-
ray images cause problems for research validation.

In order to solve the problem of unbalanced classification
datasets, several methods have been proposed in the litera-
ture, and data-level solutions are the most famous and com-
monly used technology. The main goal of these techniques is
to rebalance the class distribution by resampling the dataset
to reduce the impact of class imbalance, that is, preprocessing
the dataset before the training phase. One of the methods to
solve the problem of data imbalance is the resampling
method. Resampling methods can be subdivided into two
categories: oversampling and undersampling. Both are used
to adjust the class distribution of the dataset, that is, the ratio
between different classes in the dataset. In the undersampling

method, in order to balance the distribution of samples, some
instances are deleted from the majority class. In the oversam-
pling technique, some instances of the minority class are cop-
ied or synthesized to balance the distribution of the classes.
There are several methods for resampling. Table 2 shows
some of these methods.

4.2. Radiologist vs. Artificial Intelligence in X-Ray Image
Analysis. In the context of a global pandemic, infections
may spread widely in the community. So far, studies have
only evaluated the imaging of confirmed infections. Lack of
CT scan devices in some geographical locations, the time-
consuming tests of these devices, and the side effects due to
their high dose are all factors motivating the presentation of
alternative tests such as CXR. Despite the extensive use of
CXR for other abnormalities, its specificity and sensitivity
in the diagnosis of COVID-19, and how imaging features
correlate with severity, are still unknown. Not much research
has been conducted on the efficiency of the X-ray modality
for COVID-19 detection. It is believed that this lack of accep-
tance is due to the nature and the low resolution of the
images. In this imaging method, the radiology dose is very
low; the radiation dose in CXR is 30-70 times lower, and
naturally, the image quality is not acceptable compared to
CT scans [96–99].

In a study conducted in 2020 by examining the electronic
health record of patients with COVID-19, by comparing the
diagnostic performance metrics of the two modalities of CT
scan and X-ray, the efficiency of these common radiological
methods in diagnosing cases of COVID-19 was calculated.
The study showed that the sensitivity of the CXR method
in diagnosing cases with COVID-19 was 0.56%. In the pres-
ent review study, by examining all the researches of the
research community that used artificial intelligence methods
with the aim of diagnosing and identifying COVID-19 dis-
ease, their performance was extracted with three criteria of
Sensetivity, specificity, and Accuracy. Table 3 shows the per-
formance rate obtained from the analysis of CXR images with
artificial intelligence versus manual methods and by an
expert in radiography and CT scans. The findings indicated
that the sensitivity of the CXR method in diagnosing
COVID-19 cases was 0.56%. In the present systematic
review, by examining all the studies utilizing AI methods
for COVID-19 diagnosis and identification, their perfor-
mance was extracted with three criteria of sensitivity, speci-
ficity, and accuracy. Table 3 shows the performance rate

Table 2: Most of the most well-known methods of resembling.

Method Objective Main

SMOTE [92] Oversampling Creates synthetic samples by combining the existing ones

ADASYN [93] Oversampling Creates synthetic samples for the minority class adaptively

SMOTE-B1/B2 [94] Oversampling Creates synthetic samples considering the borderline between the classes

TomekLinks [95] Undersampling Removes samples which are the nearest neighbors but have different labels

ENN/RENN [95] Undersampling Removes samples in which its label differs from the most of its nearest neighbors

AllKNN [95] Undersampling Removes samples in which a kNN algorithm misclassifies them

SMOTE+TL [95] Hybrid Applies SMOTE and TomekLink algorithms
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obtained from the analysis of CXR images with AI in
COVID-19 cases versus other detection methods used by
specialists in X-ray, CT scans, and PCR.

The efficiency metrics of all 60 studies were extracted and
surveyed. Based on the comparison of common methods for
COVID-19 diagnosis such as lung CT, RT-PCR, and X-ray
equipped with AI algorithms, it can be concluded that AI is
a strong and acceptable method for improving the detection
coefficient and reducing diagnostic error in X-ray images.
Using these algorithms, the visual defects of X-ray images
can be overcome, and a high degree of detection of the
GGO in the lung can be achieved. Furthermore, by using
AI algorithms such as CNN, the exact patterns of lung
involvement caused by COVID-19 can be classified from
other forms of pneumonia. Since X-ray images are image-
oriented and AI algorithms deal with pixel values, the use
of DL methods such as CNN in extracting image features
leads to better results in extracting the involved areas. Based
on the review of 60 studies, more than 97% of them employed
various DL algorithms to extract the features of X-ray images.

5. Conclusions

The control of a pandemic depends on the speed of conta-
gion, which, in turn, largely depends on the ability and speed
for reliably identifying the infected patients (a low false-
positive rate). Local authorities in every country are currently
facing the problem of reducing transmission, limiting the
excessive use of medical facilities, and the number of virus-
related deaths. In the pandemic, the main problem is that
nasal swabs are only performed on people who show symp-
toms. Therefore, people currently infected with COVID-19
who are asymptomatic cannot be detected unless there are
special circumstances [31, 105]. As a result, researchers
looked for a cheaper, more affordable method with fewer side
effects and found the answer in the use of X-rays. Still, this
method was riddled with visual problems, so AI specialists
provided computers with the ability to analyze X-ray images
via learning-based solutions. AI provides an accurate and fast
interpretation of complex data in large amounts and over-
comes possible human error and/or bias. This progressively
developing method can learn and gain experience and will
continue to increase its success in accurate decision-making

in the future. A wider application of AI in medical and infec-
tious disease detection improves medical imaging interpreta-
tion, avoids wasting healthcare resources, and ultimately
enhances the quality of patient care and outcome. The
researchers suggest that a model based on deep learning algo-
rithms should be implemented and developed in radiography
(X-ray). In the entry of this model, all people are suspected of
having COVID-19. If the proposed model confirms COVID-
19 using X-ray images of the suspect, the physician will be
advised to refer the patient for a CT scan or molecular test
for further examination. During the COVID-19 pandemic,
due to the great availability of radiographic devices, the X-
ray method equipped with AI can be available in all health-
care centers to perform continuous and periodic testing of
the entire community. This wide coverage will bring about
a faster diagnosis and decrease the use of healthcare
resources.
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