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Finding neurobiological markers for neurodevelopmental disorders, such as attention deficit and hyperactivity
disorder (ADHD), is a major objective of clinicians and neuroscientists. We examined if functional Magnetic
Resonance Imaging (fMRI) data from a few distinct visuospatial working memory (VSWM) tasks enables
accurately detecting caseswith ADHD.We tested 20 boys with ADHD combined type and 20 typically developed
(TD) boys in four VSWM tasks that differed in feedback availability (feedback, no-feedback) and reward size
(large, small). We used a multimodal analysis based on brain activity in 16 regions of interest, significantly
activated or deactivated in the four VSWM tasks (based on the entire participants3 sample). Dimensionality of
the data was reduced into 10 principal components that were used as the input variables to a logistic regression
classifier. fMRI data from the four VSWM tasks enabled a classification accuracy of 92.5%, with high predicted
ADHD probability values for most clinical cases, and low predicted ADHD probabilities for most TDs. This accura-
cy level was higher than those achieved by using the fMRI data of any single task, or the respective behavioral
data. This indicates that task-based fMRI data acquired while participants perform a few distinct VSWM tasks
enables improved detection of clinical cases.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Attention-deficit and hyperactivity-disorder (ADHD) affects 5–8% of
the worldwide childhood population, it has high comorbidity and it
shares symptoms with other behavioral and emotional disorders
(Boyle et al., 2011; Larson et al., 2011). ADHD prevalence rates vary
significantly between and within countries, and depend on the ascer-
tainment method and criteria utilized. Of particular concern is the
marked variability in diagnostic rates of ADHD in developed countries
(Getahun et al., 2013). This may reflect increased awareness of teachers
and parents to symptoms of ADHD in communities with a focus on
education and adequate health care. However, even within communi-
ties there is marked variability in rates of ADHD due to the subjective
nature of primarily descriptive (symptom-based) diagnostic procedures
(Asherson et al., 2012; Polanczyk et al., 2014; see also recent reports by
the US Center for Disease Control and Prevention). Such diagnostic
heterogeneity and its poor reliability have hampered efforts to
determine the pathophysiology of ADHD (Morgan et al., 2013).
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Attempts have been made to find neuroimaging-based biomarkers
of ADHD using structural Magnetic Resonance Imaging (Johnston
et al., 2014; Lim et al., 2013; Peng et al., 2013), resting-state functional
MRI (Hoekzema et al., 2014; Tomasi and Volkow, 2014), fMRI data
acquired during a single cognitive task (Hale et al., 2015; Hart et al.,
2014a; Hart et al., 2014b), or combinations of some of these techniques
(Anderson et al., 2014; ADHD-200 Consortium, 2012; Iannaccone et al.,
2015). These studies provide mixed insights regarding the possible
underlying neurocognitive deficit of ADHD, and they report moderate
classification accuracies (rarely exceeding 80%), insufficient for clinical
diagnosis.

ADHD is characterized by behavioral symptoms and multiple cogni-
tive deficits associated with context dependent abnormal patterns of
neural activity distributed across multiple brain regions. Consequently,
ADHD is unlikely to be characterized by localized structural brain abnor-
malities robust enough to be detected using available structural imaging
techniques. It is also unlikely that significant functional brain abnormal-
ities characterizing ADHD would be evident regardless of the mental
state of the test subject, during the scan (Castellanos and Proal, 2012;
Hammer et al., 2015).

Key characteristics of ADHD include poor working memory, greater
reliance on external feedback, and abnormal reward processing. These
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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are associated with altered patterns of activity in distinct brain net-
works: (i) attention and working memory, comprising the dorsolateral
prefrontal cortex, parietal cortex and temporal cortices (Burgess et al.,
2010; Ehlis et al., 2008; Vance et al., 2007); (ii) executive functions
and cognitive control (including feedback processing and response
selection), comprising the dorsal, medial and ventral frontal cortices
(Booth et al., 2005; Clark et al., 2007; Sonuga-Barke and Fairchild,
2012); and (iii) reward-processing, comprising the orbitofrontal cortex,
anterior cingulate cortex and basal ganglia (del Campo et al., 2013;
Plichta et al., 2009; Volkow et al., 2009). Notably, there are substantial
individual differences in reactions to reward and feedbackmanipulation
in ADHD (Demurie et al., 2011; Dovis et al., 2015; Hammer et al., 2015;
Plichta and Scheres, 2014; van der Schaaf et al., 2013).

Accordingly, we hypothesized that using fMRI data from an
ensemble of visuospatial working memory (VSWM) tasks that differ
in the motivational context (determined by the availability of reward
and feedback) would increase the odds that abnormal patterns
of brain activity would be reliably detected in a larger proportion of
ADHD cases. We expected this to enable more accurate detection of
ADHD cases than the accuracies obtained by using fMRI data acquired
from any single VSWM task, or the accuracy based on the participant3s
respective behavioral performance.

Given the central role of VSWM in ADHD, we compared fMRI data
from four distinct VSWM tasks in boys with ADHD and typically
developed (TD) boys. Tasks differed in the availability of trial-by-trial
feedback (feedback versus no-feedback) and the participant3s expecta-
tion for significant monetary reward (large versus small). All tasks
required tracking the spatial location of letters while ignoring the
letters3 identity, and executing timely responses. The manipulation of
feedback and reward provided different motivational contexts, each
requiring somewhat distinct executive skills found to be impaired in
children with ADHD.

We used amultimodal analysis based on relatively few brain regions
of interest, discovered using an independent univariate analysis
(Hammer et al., 2015; Morris et al., 2012; Mulligan et al., 2011; Thoma
and Henson, 2011). Using a sparse principal component analysis, we
further reduced the number of variables that were provided as input
to the classifier. This substantially limited the odds of discovering an
overfitted ADHD classification model, and simplified the interpretation
of the discovered model. We used a logistic regression (LR) classifier,
which directly models the class conditional probabilities for each case
(i.e., calculating the predicted probability that a given child has ADHD)
by attempting to find a model allowing a decisive classification of as
many cases as possible. This attribute is important in clinical settings
where we aim to find amodel that allows classificationwith confidence
(Nouretdinov et al., 2011).
2. Materials and methods

2.1. Participants

Twenty boys with a diagnosis of ADHD combined-type (mean age in
years = 10.42 ± SD = 0.80) and 20 typically developed (TD) boys
(10.96 ± 0.91) participated in the experiment. Participants gave their
informed consent (and parental consent) in accordance with the poli-
cies of the Institutional Review Board (IRB) at Northwestern University.
At the time of the fMRI scanning session, ADHD youth were weaned off
stimulant medication for at least 24 h (12 participants used prescribed
stimulants on a regular basis during the time they participated in this
study). ADHD diagnoses were based on exceeding the clinical cut offs
on the ADHD rating scale (DuPaul et al., 1998) and the semi-
structured diagnostic interview, the Kiddie Schedule for Affective Disor-
ders and Schizophrenia for School Aged Children: Present and Lifetime
(K-SADS-PL) version (Kaufman et al., 1997). A psychologist specializing
in ADHD reviewed all diagnoses. Mean total ADHD score was higher in
the ADHD group than in the TD group (Supplemental Table 1).

Participantswere excluded if they had been diagnosedwith a neuro-
logical disorder or were treated medically for a comorbid psychiatric
disorder. All participants were right-handed native English speakers
with normal or corrected to normal vision. Mean full-scale IQ scores
were within normal range in both groups, however the average IQ in
the ADHD group was lower than the average IQ in the TD group (Sup-
plemental Table 1), which is not uncommon in ADHD studies
(e.g., Hart et al., 2014a).

2.2. Visuospatial working memory 2-back tasks

Participants performed four VSWM 2-back tasks while being
scanned in an fMRI scanner. Each task was 48 trials long. Before and
after each 2-back task the participant performed a fixation task where
he was asked to press a key whenever the fixation-cross changed its
color (which happened in 4/12 of the trials). Brain activity from the fix-
ation tasks was used as baseline. E-Prime ® 2.0 (Psychology Software
Tools, INC.) was used for stimuli presentation and for recording
participants3 responses (formore details about the experimental design,
see Hammer et al., 2015).

The two independent factors in the study were reward size (large-
reward versus small-reward) and presence of trial-by-trial feedback
(no-feedback versus feedback). In an earlier practice session, and at
the beginning of the scanning session, each participant was instructed
that the reward for each correct decision in the large-reward task was
10 times larger than in the small-reward task. In the trial-by-trial
feedback task, each key-press was followed by either a green square
(indicating a correct decision) or a red square (indicating an incorrect
decision) presented in the center of the screen. In the no-feedback
task, the participant was informed about his overall performance only
after concluding the task (Fig. 1). Order of the four tasks was
counterbalanced across participants.

2.3. MRI and fMRI data acquisition

Imaging datawere acquired on a 3.0 Tesla Siemens Tim Trio scanner
using a 12-channel head coil. Gradient echo localizer images were
acquired to determine the placement of the functional slices. A suscep-
tibility weighted single-shot EPI (echo planar imaging) method with
BOLD (blood oxygenation level-dependent) was used for functional
image acquisition with the following scan parameters: TR = 2000 ms,
TE = 20 ms, flip angle = 80°, matrix size = 128 × 120, field of
view = 220 × 206.3 mm, slice thickness = 3 mm (0.48 mm gap), and
number of slices = 32 (an effective functional voxel size of
2 × 2 × 4 mm). A total of 145 images (TRs) were recorded for each
scan. Slices were acquired in an interleaved manner. A high resolution,
T1 weighted 3D image was also acquired with the following parame-
ters: TR = 2300 ms, TE = 3.36 ms, flip angle = 9° matrix size =
256 × 256, field of view = 256 mm, slice thickness = 1 mm, and
number of slices = 160. The acquisition of the anatomical scan took
approximately 9 min. Prior to the scanning session children were
trained in a mock scanner. This enabled confirming that the participant
is capable of keeping his head still for the duration of the scanning
session. To minimize head movements in the scanner, gaps between
the participant3s head and the head-coil were filled withmemory foam.

2.4. Image preprocessing

Data analysis was performed using MathWorks® Matlab, SPM8
(Statistical ParametricMapping,Wellcome Trust Centre for Neuroimag-
ing, London, UK), and IBM® SPSS. Preprocessing involved: (i) slice
timing; (ii) realignment of all functional images to the 24th image.
(iii) Co-registration of the functional and anatomical images; (iv) Nor-
malization of the T1 image to the MNI305 template image, which is



Fig. 1. (A) An illustration of several trials in a 2-back task with large-reward and trial-by-
trial feedback. The participants made their decision using the two keys of a response box.
The four possible responses were: (i) hit — correctly responding that the location of the
current letter was identical to the 2-back letter; (ii) correct rejection (CR) — correctly
responding that the location of the current letter was different from the 2-back letter;
(iii) false alarm (FA) — incorrectly responding that the location of the current letter was
identical to the 2-back letter; and (iv) miss — incorrectly responding that the location of
the current letter was different from the 2-back letter when it was actually the same.
(B) A single trial in a small-reward (symbolized to the participants by a picture of coins)
no-feedback task. The target letter was presented for 1200 ms. Letter presentation was
followed by 800 ms presentation of the Reward-Size symbol only. (C) A single trial in a
large-reward (symbolized by a picture of dollar bills) trial-by-trial feedback task. Letter
presentation was followed by 200 ms presentation of the Reward-Size symbol, which
was followed by the presentation of feedback for 600 ms (e.g., a green square indicating
a correct response).
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most commonly used also for analyzing fMRI data of pediatric popula-
tions (e.g., Burgund et al., 2002; Ghosh et al., 2010; Peters et al., 2014;
Zhang et al., 2015). Linear and non-linear normalization parameters
were then applied to the functional images. (v) 4 × 4 × 8 mm full
width half maximum (FWHM) Gaussian kernel smoothing. (vi) We
confirmed that movement was kept below 4 mm (in any of the x, y, or
z dimensions) within a scan using the ArtRepair software. Images (up
to 9 per scan) were realigned in ArtRepair, using interpolated values
from the two adjacent non-outlier images. Participants with extensive
headmovements were rescanned (or excluded). For subsequent gener-
al linear model (GLM) analyses, the excluded noisy images were
deweighted. As reported in Supplemental Table 2, the two groups did
not differ in patterns of headmovements, and the replacement of outlier
images primarily enabled reducing the signal to noise ratio in the fMRI
data of both groups. In order to further reduce within scan variability
in neural activity, only trials inwhich the participant responded correct-
ly (hit and correct rejection) were modeled, with onset time-locked to
the beginning of each trial (Calhoun et al., 2005; Demir et al., 2014;
Hammer et al., 2015; Puschmann et al., 2013). This had only a small
quantitative impact on the reported findings. (vii) A high pass filter
with a cut-off of 256 s was applied.

2.5. MRI quality control and head movements estimate

Structural and functional brain imageswere inspected and found not
to have significant image artifacts. We confirmed that for each
participant maximal head displacement (the distance between the
two most distant fMRI images within a scan) in all translational
axes was no larger than the size of a voxel (i.e., 4 mm). There were
no significant between-groups differences in any head translation
or rotation axes, all p N 0.25 (Supplemental Table 2). We also
confirmed that it is unlikely that head movements underlie the
ADHD classification results we got based on the brain activity data
(Supplemental Fig. 1).
2.6. Feature detection and dimensionality reduction based on the entire
participants3 sample

Feature detectionwas based on a univariateGLManalysis, intended to
identify functional brain regions of interest (fROIs) that showed signifi-
cant activation or deactivation in all four VSWM tasks, contrasted with
all the fixation tasks, using the brain activity data of the ADHD boys and
TD boys combined (total of 40 participants; see Chu et al., 2012; Friston,
2012 for discussions regarding optimal sample size). We found eight
fROIs showing significant activation (VSWM N fixation) and eight fROIs
showing significant deactivation (fixation N VSWM). We used a voxel
threshold of p b 0.01 (family wise error [FWE] corrected), and voxel clus-
ter threshold of pb 0.01 (minimumcluster size of 50 voxels; FWE),where
each cluster had a single significant peak at pb 0.05 (FWE). An anatomical
gray-matter mask (using the Talairach Daemon brain atlas gray-matter
mask, with dilate = 3), and a sphere mask with a radius of 15 mm
from each fROI peak voxel, constrained the fROI volume. These 16 ROIs
likely reflect the VSWM network in a broad childhood population, in
varying contexts (Fig. 2A).

For each participant we calculated the difference in mean Beta
values between each of the four VSWM 2-back tasks and the mean of
all fixation tasks in each of the 16 fROIs (2-back–fixation; fixation−2-
back). Overall, given four VSWM tasks and 16 fROIs, the initial number
of features, characterizing each participant, was 64 (see Supplemental
Fig. 2 for activation profiles).

Given the relatively large initial number of features, and the high
correlations between some of the features (see Supplemental Fig. 3 for
the correlation matrix), we reduced the dimensionality of the data by
using a sparse principal component analysis (SPCA). This resulted
with a relatively small number of orthogonal principal components
(PCs), which together explained most of the variability in the data,
recalculated based only on the few features with the highest loadings
(Berthet and Rigollet, 2013; Ritchie et al., 2015; Zou et al., 2006). This
procedure has three major advantages: (i) SPCA enabled reducing the
number of variables fed to the classifier to a number substantially small-
er than the number of participants; (ii) recalculating the PCs based only
on features with the highest loadings enabled excluding lower weight
features that were likely to add mostly noise; and (iii) having each PC
being affected by relatively few features, where each feature affects at
most one PC, enabled better determining the underlying neurocognitive
mechanisms represented by each PC.

We used sparse loading selection based on thresholding of the
rotated loadings (loading threshold N 0.6; absolute weights N 0.1).
Loading rotation was based on the Varimax rotation method (Lu and
Zhang, 2012; Ma, 2013; Qi and Luo, 2015; Sjöstrand et al., 2006). The
use of this threshold resulted with 39 features (out of 64) affecting the
first 10 PCs (PCs with eigenvalues N2), where each feature affected a
single PC (Fig. 2B). The first 10 PCs explained approximately 70% of
the variability evident in the original 64 features. Each of the remaining
PCs explained less than 3% of the variability in the data. Interestingly, we
found each one of the first 10 PCs to reflect brain activity from several
ROIs from the same VSWM task, but not brain activity in a specific ROI
in several tasks. The exception was PC-2, which was based on the
left and right middle frontal gyri in the two VSWM tasks without
feedback. This supports our hypothesis that functional brain-imaging
data from several distinct tasks is likely to add information useful for
classification.



Fig. 2. Feature detection and dimensionality reduction. (A) Activated (orange) and deactivated fROIs (purple), in the VSWM tasks as contrasted with the fixation tasks. (B) The first 10
principal components3 sparse loadings. The notation r-MeFG+ and r-MeFG− denote the activated and deactivated (respectively) right MeFG fROIs (see Supplemental Fig. 2). The exper-
imental conditions are listed in brackets (LnF = large-reward, no-feedback; LF = large-reward, feedback; SnF = small-reward, no-feedback; SF = small-reward, feedback).

Fig. 3. ADHD classification accuracy as the predicted probability being an ADHD case.
Color-labels represent the clinician3s diagnosis for each case (ADHDs are red squares,
and TDs are blue circles). The classifier decision boundary is at PP = 0.5. The
0.33 b PP b 0.67 range represents an ‘ambiguity zone’ where classification decisions are
made with lower confidence. Bottom — the respective weights (B coefficient) of each PC
in the ADHD classification model. The weights of insignificant PCs are set to zero.
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2.7. Logistic regression (LR) classification algorithm

For the learning of the ADHD classification model, we used a logistic
regression (LR) classifier. The LR directly models the class conditional
probabilities for each case, attempting to decisively classify as many
cases as possible. A standard “jackknife” leave-one-out cross validation
(Zion Golumbic et al., 2013; Ponce-Alvarez et al., 2012) was used for
findingwhich of the 10 PCs significantly contributed to classification ac-
curacy. In each cross validation iteration the LR classifier was trained
based on the fMRI data of 39 participants, and then the goodness of fit
of the learned model was evaluated based on the correlation between
the clinician diagnosis of the left-out participant (ADHD or TD) and
the LR classifier predicted ADHD probability for this participant. This
procedure was repeated for all participants. The predictive power
from all iterations was averaged to determine which of the 10 PCs are
with statistically significant predictive power, and for estimating the
predictive power of the final model. The reporting of a classification
model based only on significant PCs has two advantages: (i) such a
model is less likely to be overfitted or biased due to being based on
too many predictors (PCs), and thus it provides a more conservative es-
timate of the classification accuracies that can be achievedwith the data
at hand and (ii) it further reduces the number of brain regions bywhich
the two groups of interest (i.e., ADHD vs. TDs) differ, enabling a more
parsimonious characterization of the differences in neurocognitive
mechanisms between the two groups (see Supplemental Fig. 5 for an
illustration of the data processing pipeline).

3. Results

3.1. ADHD classification using the fMRI data from the four tasks

Running the LR with the leave-one-out cross validation showed a
statistically significant contribution for ADHD classification accuracies
for only four PCs (PC-2, p b 0.02; PC-3, p b 0.04; PC-4, p b 0.04; PC-8,
p b 0.02). Excluding each one of these four PCs from the classification
model substantially impaired the classification accuracies, whereas
adding any of the other six PCs did not increase the classification
accuracies. The classification accuracy of the model based on the four
statistically significant PCs was 92.5%, with 95% sensitivity and 90%
specificity. Importantly, most of the classification decisions had high
predicted probability values (PP N 0.67) assigned to most ADHD boys
(75%), and low values (PP b 0.33) assigned to most TD boys (80%;
Fig. 3), indicating a model with an excellent fit (omnibus test for
model fit, χ2(4) = 28.52, p b 0.0001). This accuracy level is not statisti-
cally different from perfect accuracy reflecting the clinician3s diagnosis
(100%), p = 0.12 (one-tailed Fisher exact test; testing the hypothesis
“LR classification is the same as the clinician diagnosis”).

A permutation test shows that the classification accuracies of the
above-described ADHD classification model are unlikely to be discov-
ered by chance. In each permutation, labels of half the cases from each
group were switched with the opposite group. The mean accuracy of
15 distinct permutations (62.0%) was significantly lower than that of
the ADHD model (92.5%), p = 0.000 (exact test); t(14) = 14.97,
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p b 0.0001 (one-tailed, one-sample t-test). Even the highest observed
accuracy of a permuted-labels model was close to being significantly
lower (15%) than that of the ADHD model, p = 0.06 (one-tailed Fisher
exact test; testing the hypothesis “ADHD model is better than the best
permuted model”). The mean correct decisive classification accuracies
(with PP b0.33 or PP N0.67) in the 15 permutations were 24.5%, versus
77.5% of the ADHD model, p = 0.000 (exact test), t(14) = 13.59,
p b 0.0001 (one-tailed, one-sample t-test; see also Supplemental Fig. 4).

3.2. ADHD classification based on each single VSWM task

Notably, the four significant PCs encompassed in the ADHD model
are based on fMRI data from all four VSWM tasks: PC-2 is based on
the two tasks without feedback; PC-3 is based on the small-reward
with feedback task; PC-4 is based on the large-reward with feedback
task; and PC-8 is based on the small-reward with feedback task
(Fig. 2). In the following analysis, we further investigated the utility of
using fMRI data from multiple VSWM tasks as compared with using
fMRI data from a single task. Here we used the threshold of eigenvalue
larger than one (keeping PCs that together explained more than 70%
of the variance in the data).

ADHD classification accuracies based on the fMRI data from each
single task (Fig. 4; Table 1) were significantly lower than the classifica-
tion accuracy of themodel based on all four tasks (Fig. 3). The exception
was the classification accuracy based on the fMRI data from the
small-reward with feedback task, which was 80%. However, here the
correct decisive classification accuracy (with PP b0.33 or PP N0.67)
based on the fMRI data from the small-reward with feedback VSWM
task was 60%, which is significantly lower (17.5%) than the four-task
classification accuracy, p b 0.05 (one-tailed Fisher exact test).

3.3. ADHD classification based on behavioral data

Feeding the LR classifier with the behavioral data from all four tasks
resulted in an overall accuracy level of 75% (70% sensitivity; 80% speci-
ficity; omnibus test for model fit, χ2(4) = 12.37, p b 0.01). This overall
accuracy level is significantly lower (17.5%) than the accuracy based
Fig. 4. Classification based on fMRI data from each single VSWM task. (A) Large-reward, no-feed
back. Classification accuracies based on the fMRI data from each single VSWM task were si
comparison).
on the fMRI data from the four tasks, p b 0.04 (one-tailed Fisher exact
test; testing the hypothesis “fMRI model is better than the behavioral
model”). Moreover, here only 57.5% of the classification decisions
were both accurate and decisive, with high predicted probability values
of being a boy with ADHD (PP N 0.67) assigned to only 50% of the ADHD
boys, and low values (PP b 0.33) assigned to only 65% of the TD boys
(Fig. 5B). This accuracy level is significantly lower (20%) than the deci-
sive classification accuracy based on the four significant PCs (based on
four tasks), p b 0.04 (one-tailed Fisher exact test).

Performance levels in the four tasks were highly correlated, where a
boy that exhibited low performance in one task likely exhibited low
performance in the other tasks. Moreover, we found high correlations
between the behavioral performances in the four VSWM tasks and
PC-2 (Fig. 5C). That is, the brain activity represented by PC-2 (right
and left MFG, tasks without feedback) explains much of the observed
variability in the behavioral data. On the other hand, the behavioral
performances had low correlations with PC-3, PC-4 and PC-8, hence
the additional diagnostic information provided by these PCs to the
classification model. Feeding the LR classifier with both the behavioral
and fMRI data (10 PCs) resulted in exactly the same model as when
feeding it with only the fMRI data.

4. Discussion

4.1. Summary

We show that using a logistic regression (LR) classifier, which
received as input brain imaging data that was acquired while children
perform four distinct VSWM tasks, enabled an ADHD classification
accuracy of 92.5% (Fig. 3). Classification accuracies that were based on
the fMRI data from all four tasks were significantly higher than those
obtained using the fMRI data from any single task. We found that the
brain regions in which boys with ADHD exhibited altered pattern of
brain activity differed from one task to the other. The corresponding
behavioral data from the four VSWM tasks enabled an classification
accuracy level of 75% (Fig. 5), which is significantly lower than those
obtained using the fMRI data from the four tasks.
back. (B) Large-reward, feedback. (C) Small-reward, no-feedback. (D) Small-reward, feed-
gnificantly lower than those obtained using the data from all four tasks (see Fig. 3 for



Table 1
Classification accuracies based on the fMRI from each individual VSWM task. Left to right column: Overall classification accuracy, sensitivity, specificity, omnibus test for model fit (and
model significance), and the difference (in percentage) between the accuracy of themodel based on a single task compared with the model based on the four tasks (significance is based
on one-tailed Fisher exact test).

Overall Sensitivity Specificity Omnibus test Difference

Large-reward
No-feedback

65% 65% 65% χ2(1) = 13.70
p b 0.001

27.5%
p b 0.003

Large-reward
Feedback

57.5% 65% 50% χ2(1) = 2.98
p = 0.084

35%
p b 0.0003

Small-reward
No-feedback

70% 65% 75% χ2(1) = 7.96
p b 0.005

22.5%
p b 0.01

Small-reward
Feedback

80% 80% 80% χ2(2) = 19.23
p b 0.001

12.5%
p = 0.11
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Participants who were misclassified based on the data from one
VSWM task were not necessarily misclassified when using the data
from other VSWM tasks (Fig. 4). When the LR classifier was fed with
the PCs calculated based on the four VSWM tasks together, we observed
a substantial improvement in the classification accuracy (Fig. 3). This is
consistent with the underlying theorem of ensemble-based classifica-
tion (Rokach, 2010; Klöppel et al., 2012). As expected based on this
theorem, classifying participants by using several measurements for
each participant (e.g., fMRI data from few distinct VSWM tasks),
where each measurement enables a better than chance classification
accuracy, and where there is a substantial degree of independency be-
tween the measurements (e.g., distinct cognitive tasks), enabled higher
classification accuracies compared to accuracies achieved by using the
data from each single measurement.
4.2. Theoretical contribution

Our findings are with important theoretical contribution, providing
additional support to the idea that the manifestation of neurocognitive
abnormalities in ADHD is context dependent (Dovis et al., 2013;
Hammer et al., 2015). Specifically, in the absence of trial-by-trial feed-
back, altered activity patterns characterizing ADHD were most evident
in the bilateral middle frontal gyri (MFG), specifically the right-MFG
(see PC-2 weight in Fig. 3; see feature weights in Fig. 2B). The MFG is
believed to play an executive role in the visuospatial working memory
network, and a primary role in volitional (top-down) allocation of
attention (Burgess et al., 2010; Ehlis et al., 2008; Vance et al., 2007).
We found that in VSWM tasks without feedback, boys with ADHD
exhibited lower levels of activity in the MFG as compared with TD
boys. This may indicate poor VSWM and poor capacity in allocating
attention to target stimuli in children with ADHD, manifested when
feedback is absent (see Cortese et al., 2012; Fassbender et al., 2011 for
related findings).
Fig. 5. Behavioral data. (A) Performance distributions in the four experimental tasks. LnF = lar
SF= small-reward, feedback (see also Supplemental Table 3). (B) Classification based on the be
the behavioral performances in the four tasks (see online higher resolution version of this figu
The fMRI data from the small-rewardwith feedback VSWM task also
had a considerable contribution to ADHD classification (PC-8 and PC-3;
Fig. 3; Fig. 4B). Here, boys with ADHD exhibited altered brain activity in
a network (PC-8) that primarily included the bilateral orbitofrontal
cortex (bi-OFC) and the left fusiform gyrus (left-FFG). The OFC has
been reported to play two primary roles that have potential relevance
to the current task: Together with the inferior frontal gyrus, the anterior
insula, the superior temporal cortex and the temporoparietal junction,
the OFC is part of the ventral attention network, acting as a bottom-up
saliency detection system determining subjective and context-
dependent susceptibility to unexpected salient stimuli (Corbetta et al.,
2008; Vossel et al., 2014; Weissman and Prado, 2012). The OFC was
also found to be involved in the processing of reward-related informa-
tion (Schoenbaum and Roesch, 2005; Pauli et al., 2012). It is suggested
that the OFC is involved in monitoring which recent actions were
rewarded, and predicting which future actions are most likely to be
rewarded (Kahnt et al., 2010). The left-FFG was found to be involved in
letter identification and reading (McCandliss et al., 2003; Dehaene and
Cohen, 2011;McNorgan et al., 2013). Herewe found greater deactivation
in these two brain regions in TD boys, as compared to boys with ADHD,
primarily in the small-reward with feedback VSWM task. This may indi-
cate that boys with ADHD fail in suppressing task irrelevant information
(letter identity in a task that requires monitoring the spatial location of
letters, and visual feedback indicating insignificant reward).

The features with significant loadings on PC-3 (small-reward with
feedback) were the two fROIs in the right medial/superior prefrontal
gyrus (right-MeFG- and right-MeFG+, Fig. 2B), the left-MFG, the
right superior temporal gyrus (right-STG), the right anterior insula
(right-AntIns), and the right supramarginal gyrus. These brain regions
are involved in feedback processing (Ferdinand and Opitz, 2014),
bottom-up attention and in sensory integration (Prado et al., 2011;
Weissman and Prado, 2012). The loadings on PC-3 (and PC-8), indicate
that in the small-reward with feedback condition children with ADHD
are likely to exhibit altered suppression of irrelevant visual features
ge-reward, no-feedback; LF = large-reward, feedback; SnF = small-reward, no-feedback;
havioral data from all four VSWM tasks. (C) Correlations between the 10 PCs, and between
re).
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(FFG), altered visuospatial processing (precuneus), altered sensory
integration (STG and supramarginal), altered bottom-up attention con-
trol (OFC), altered feedback processing and top-down attention control
(MeFG andMFG), and altered synchronization between bottom-up and
top-down attention control (AntIns).

The fMRI data from the large-reward with feedback VSWM task had
the smallest contribution to ADHD classification (57.5% accuracy, with
only a trend toward a significant model fit; Fig. 4B). Altered activity in
ADHD in this VSWM task was evident in PC-4 (Fig. 3), which included
the right inferior parietal lobe (right-IPL), the right-AntIns, the
right-MeFG (the activated right-MeFG fROI; see Fig. 2) and the right
precuneus. These fROIs partially overlap (right-AntIns and right-
MeFG) with those included in PC-3 (small-reward with feedback).
This implies that the right-AntIns and right-MeFG are associated with
altered feedback processing in ADHD (regardless of reward expecta-
tion). This is consistent with earlier findings showing that the
right-AntIns and the right-MeFG (together with the anterior cingulate)
mediate between the central executive network and brain regions
involved in risk/gain prediction, where response selection is required
(Menon and Udin, 2010; Preuschoff et al., 2008; Späti et al., 2014;
Taylor et al., 2009). Early studies showed that children with ADHD
exhibit poor cognitive control associated with lower levels of neural
activity in the anterior insula, as compared with TDs (Cubillo et al.,
2010; Morein-Zamir et al., 2014).

4.3. Limitations and future research

We show that using fMRI data from four distinct VSWM tasks
enabled substantially better classification accuracies than the use of
fMRI data from a single VSWMtask. Nevertheless, the current investiga-
tion was limited to the manipulation of feedback and reward in VSWM
tasks, where many characteristics of the four tasks were identical. It is
possible that an even better ADHD classification can be achieved by
using other, perhaps more demanding cognitive tasks that require
other cognitive skills impaired in ADHD (e.g., tasks with specifically
greater response inhibition demands; Booth et al., 2005; Rubia et al.,
2005). Moreover, the duration of each VSWM task we used here was
48 trials long (~100 s). It is possible that these tasks can be shortened
(e.g., reduced to 32, or even fewer trials) without compromising
classification accuracies. As part of the development of a practical
diagnosis tool, future investigations should aim to identify an optimized
ensemble of cognitive tasks that would yield the highest classification
accuracies in the shortest scanning time possible. This would enable
reducing scanning costs and potential discomfort to the scanned
subjects. Future investigation may also involve looking for an ensemble
of tasks that enable differentiation between children with ADHD
from other clinical populations, with shared symptoms. The use of
multi-task-based fMRI data may also enable earlier diagnosis of ADHD,
prior to the onset of clear behavioral symptoms, which in turn may
enable earlier intervention.

In order to be of practical clinical use, task-based fMRI diagnosis re-
quires the scanned participants to accurately perform a cognitive task
while keeping still throughout a relatively long scan. Thus, a multi-
task-based fMRI diagnosis session may not be practical for very young
children or individuals with severe cognitive deficits. However, mild
ADHD and moderate ADHD are much more common and represents
more of a diagnostic dilemma for clinicians. In contrast, severe or very
early onset ADHDwould likely have amore distinct etiology. Future de-
velopments should ideally involve an integrative use of multi-task-
based fMRI, resting-state fMRI and structural imaging. This would likely
enable an effective diagnosis of most clinical cases, and the detection of
the onset of some clinical condition in early childhood. Ideally, future
imaging-based diagnostic tools may enable finer differentiation of
ADHD subgroups, assisting clinicians in customizing intervention.

It is likely that similarly high (or even higher) classification
accuracies can be achieved by using other machine-learning based
classification methods. Future studies should specifically explore
machine-learning methods based on whole brain data, from multiple
tasks, which automatically detect brain regions in which the targeted
clinical population exhibits abnormal patterns of brain activity
(e.g., Ryali et al., 2010).

4.4. Conclusions

We show that fMRI data acquired while participants perform a few
distinct cognitive tasks enables substantial improvement in the detec-
tion of ADHD cases, as comparedwith the use of fMRI data from a single
task (or corresponding behavioral data). Showing that fMRI data en-
ables better classification accuracies than the corresponding behavioral
data suggests that even ADHD cases that exhibited normal-like VSWM
performance were likely to be characterized by substantially altered
pattern of brain activation. This provides a proof-of-concept that
scanning subjects while they perform an ensemble of distinct cognitive
tasks is likely to payoff, enabling greater accuracies and higher confi-
dence diagnosis of clinical cases. We suggest that this approach can be
used for diagnosing other clinical populations, and possibly also for dis-
sociating between distinct clinical populations who share behavioral
symptoms. This would require using cognitive tasks that target the
neurocognitive deficits characterizing the clinical condition of interest,
or a battery of tasks that may enable dissociating between distinct
neurocognitive abnormalities.
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