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Abstract: One of the critical challenges in deploying the cleaning robots is the completion of covering
the entire area. Current tiling robots for area coverage have fixed forms and are limited to cleaning
only certain areas. The reconfigurable system is the creative answer to such an optimal coverage
problem. The tiling robot’s goal enables the complete coverage of the entire area by reconfigur-
ing to different shapes according to the area’s needs. In the particular sequencing of navigation,
it is essential to have a structure that allows the robot to extend the coverage range while saving
energy usage during navigation. This implies that the robot is able to cover larger areas entirely
with the least required actions. This paper presents a complete path planning (CPP) for hTetran,
a polyabolo tiled robot, based on a TSP-based reinforcement learning optimization. This structure
simultaneously produces robot shapes and sequential trajectories whilst maximizing the reward of
the trained reinforcement learning (RL) model within the predefined polyabolo-based tileset. To this
end, a reinforcement learning-based travel sales problem (TSP) with proximal policy optimization
(PPO) algorithm was trained using the complementary learning computation of the TSP sequencing.
The reconstructive results of the proposed RL-TSP-based CPP for hTetran were compared in terms of
energy and time spent with the conventional tiled hypothetical models that incorporate TSP solved
through an evolutionary based ant colony optimization (ACO) approach. The CPP demonstrates an
ability to generate an ideal Pareto optima trajectory that enhances the robot’s navigation inside the
real environment with the least energy and time spent in the company of conventional techniques.

Keywords: reconfigurable system; tiling robotic; reinforcement learning TSP, complete path planning;
energy-aware reward function

1. Introduction

Cleaning by covering the workspace has been fundamental for a friendly ecosystem
but a tedious workload for humans. Over the long haul, automated cleaning devices are
gradually being invented. Designing autonomous mobile robots is the fundamental concept
of complex intelligent navigation systems. [1]. The author in [2] addresses all the pertinent
topics of the electronic hardware and software of the mobile robot design, emphasizing the
more complex problems. Recently, with the development of advanced robotic technologies
such as precision mechanics, artificial intelligence, a significant number of cleaning systems
have routinely implemented cleaning tasks in indoor and public spaces. Specifically, there
are numerous floor cleaning robots operating in indoor environments in the market, but
they are all in the fixed morphology of circle, space, and oval, and struggle to cover the
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complex indoor environments. Moreover, most cleaning systems in the market provide
manual or semi-auto modes that only work effectively under constrained environments. It
has been seen that there are many degrees for robotizing cleaning undertakings in-home
establishments. The business of cleaning gadgets for homes has been on the rapid ascent in
recent years. Even though they are financially profitable, their immobilization keeps them
from accomplishing the most significant cleaning limitations.

Reconfigurable robot platforms can be categorized into three major classes [3]: intra-
reconfigurable; inter-reconfigurable; and nested reconfigurable robots. The development of
reconfigurability in robotics has received increasing attention, and platforms with a wide
variety of reconfigurable mechanics have been deployed [4].

The reconfigurable tiling robot’s fundamental objective is to augment the working
areas’ constraints that limit the fixed form robots. Their capacity to change morphology
causes them to accomplish their objectives of covering the workspace completely. There are
various reconfigurable tiled robots created by specialists from the academic to industrial
environment to perform the cleaning of different environments [5]. The robots referenced
herein can change into various shapes. The novel reconfigurable tiling robot [6] can
change into seven shapes, and the other robots [7,8] can change into three shapes. In
the current paper, hTettran, a polyabolo-inspired self-reconfigurable tilling robot, was
utilized to validate our reinforcement learning (RL) path planning a proposed algorithm.
Reconfigurability gives the robot the benefit of moving around deterrents and can likewise
access the spaces that are difficult to clean.

The complete path planning (CPP) approaches were executed on many static form
robots, one of which was referenced in [9]. The authors designed a total cover course
arranging and directing a technique for versatile mechanical robots to clean the enor-
mous zones. The authors in [10] introduced a technique for novel reconfigurable robots
deploying in the de-mining, cleaning, and painting applications. They actualized the
cell decomposition to simplify a specific known territory into various cells based on the
complexities of sub-regions. In the paper [11], the creators introduced an altered form of
the A* path planning techniques in which the proposed rendition makes appropriate robot
footprints expecting the e-morphology generation of the tiling robot focusing on covering
the narrow constraint spaces [6]. A few scientists have been attempting to conduct various
area coverage applications with adaptive CPP by automated vehicles that can be utilized
in different fields and terrain [12,13].

RL has been connected in different areas to induce the ideal arrangement consequently
in the ship hull surface cleaning works [14]. Changxi et al. [15] has proposed utilizing RL
as CPP to indirectly self-investigate the workspace in uneven terrain. Kenzo et al. [16]
utilized the RL model with design preknowledge-based reward function to plan bipedal
robots’ movement in football arrangement. Farad et al. [17] has made a way to yield the
optimal capability under the constraint conditions of coverage of the complex environment
through the RL. The idea of utilizing Q-learning with the obstacle aware to generate the
shortest track from the source to destination in a grid-based divided sub-region was been
proposed in Aleksandr et al. [18], Amit et al. [19] and Soong et al. [20]. David et al. amplifies
this strategy to different robot specialists [21]. Yuan et al. [22] utilized the RNN gated
recurrent unit (GRU) framework to plan an ideal way from the source to the destination
straightforwardly.

A common part of the CPP approach was the simplification of specific territories/maps
into cells. Numerous traditional strategies have been proposed for map simplification
purposes by decomposing. The fundamental system divides the complicated map into
more modest locales called sub-zones or plots [23]. The conventional technique is to parti-
tion a given territory by basic shapes like isolated triangles, trapezoid, grid-cell utilizing
Morse capacities, 3D information [24,25]. Analysts have applied various methodologies
to decode the maps, as referenced previously. The recent paper utilizes network-based
deterioration introduced by the author in [26]. Numerous techniques allow us to partition
the workspace utilizing various learning-based methodologies, for example, tree scaling,
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energy acknowledgement calculations [27,28], AI-based deep learning [29] and grid-cell-
based guide deterioration [30]. These approaches are lightweight in computational intricacy
to make a decomposition map for effective CPP.

The overall proposed technique of the CPP for the proposed tiling robot platform
called hTetrran consists of these steps: Initially, a tiled set is created depending on the
available shapes of the robot to fit in the free space cells and constraints area of workspaces.
In the case of the hTetran platform robot, this tileset is made depending on the polyabolo
polyomino hypothesis with various theories along with their confirmation of complete
coverage of the given workspace. After generating the tileset, the proposed hTetrran
platform can navigate to different workspace locations while reconfiguring the defined
shape to avoid obstacles. Therefore, calculations assuming the appropriate robot shape
can ensure that each free space inside the defined workspace is covered by a proposed
robot footprint. The progress here is that the usual tiled hypothetical calculation produces
non-ideal puzzles. This means that the robot needs to accept the given forms roughly. For
precise rendering, there may be examples in which the robot can clean a particular area
by none reconfiguring is required at all. The tiled hypothesis could then suggest the robot
to perform multiple configurations at each point repeatedly. This type of organization
affects the robot’s energy use. The navigation sequence modelled as an NP problem of the
travel salesman problem will link the generated tiles together in an appropriate direction.
This can be done through calculations arranged conventionally, such as zigzag, spiral,
and random search. However, their exhibit depends entirely on the workspace conditions
and takes a considerable execution time. The motivation of optimal navigation sequence
minimizes the required actions, hence reducing the energy usage and operation time.
Another appropriate technique is to use evolutionary optimization, for example, ant colony
optimization (ACO) [31], to derive the optimal solution for the defined travel sales problem
(TSP) in an appropriate amount of execution time. However, the technique cannot be
extended to a larger and complex environment. This technical rationalization also requires
a lot of extensive computational costs, and the results could be problematic if, for this
situation, at least the iteration optimal progress gets stuck at the local minima. The profile
shows the possibility of finding a way for the robot in complex conditions by memorizing
various deep learning references in predefined workspaces.

The current paper proposes a well-trained depth reinforcement learning model that
addresses TSP sequencing optimization to cover the entire area using a polyabolo-inspired
self-reconfigurable robot. The RL network’s reward function is designed to reflect the
robot’s actual operation with the decomposed polyabolo workspace by the proposed
tiling theory. The framework aimed to ideally realize a lower navigation cost linking
the predefined polyabolo tileset locations compared to conventional evolutionary-based
methods. The present paper is organized as follows: Section 2 describes the hTetran
platform. Section 3 is the RL-based CPP; then Section 4 is the experimental results in both
the simulation and real environments. The last section, Section 5, is the conclusion and
future works.

2. The hTetran Platform Description
2.1. The hTetran System Architecture

The presented robot was developed using the principle of linked polyabolo-based
blocks. The robot consisted of four isosceles right-angle triangular blocks connected with
active hinges. We chose the right angle isosceles poly-form as our robot structure to achieve
maximum area coverage by changing its defined morphologies among rectangle; triangle;
parallelogram; curve; and square as shown in Figure 1.

The robotic device was categorized into several subsystems such as the locomotion,
reconfigurable mechanism; structural design; and electronic circuits. This subsystem acts
as an essential component that combines achieving environmental adaptation and obstacle
detection. The structural dimension of each isosceles triangular block was developed with
a dimension of 210 mm in adjacent and 294 mm in hypotenuse. The block’s vertices were



Sensors 2021, 21, 2577 4 of 16

positioned as chambers to skip the edge collision between the blocks during reconfiguration.
The robot’s walls and base were constructed with an acrylic sheet of 2 mm thickness. The
robot is equipped with a set of Herkulex motors and Pololu dc motors in each locomotion
module. The Herkulex motor acted as a steering motor, and the dc motor drives the robots
as in Figure 2. With such an arrangement, the robot could achieve holonomic locomotion
as a soc. Each locomotion motor set was powered with 7.4 VDC battery. Concerning the
reconfiguration, we again equipped two Herkulex servo motors housed in block 1 and
block 2.

The Herkulex motor could rotate with an angle of range of 320 degrees with a stall
torque of 24 kgcm. Herkulex SM1 had a rotational angle limit of 180 degrees, housed
between blocks 1 and 2. Similarly, the other Herkulex SM2 and SM3 had the rotational angle
limit of 270, which was housed between blocks 2 and 3, and blocks 3 and 4, respectively.
The hinged motors also acted as a lock for the robot to maintain the shape through the
operation. We equipped most of our electronic components in block 2 since it acts as an
anchor point and does not involve any reconfiguration process, as shown in Figure 3. The
first principal component is the motor driver, which controls the Pololu motor housed in
each block. We attached an Arduino mega controller in block 2, which acts as a low-level
controller of the robot. The communication between the motor driver and the Arduino
happens through serial communication pin 1. Other than the motor driver, we had another
serial communication for Herkulex servo motors. The second serial communication was
connected in pin 2. Other than serial communication, we used an I2C communication
from Arduino to communicate with the IMU whose power was drawn from the Arduino
board. For the power source, we placed a 12 VDC battery in block 2, which is connected in
parallel to Arduino, the motor driver, and Herkulex motors. When it comes to higher-level
components, we used an Intel compute stick, which acts as a decision-maker for the robot.
The compute stick runs with a robot operating system (ROS) under an ubuntu environment.
For navigation and localization purposes, we used an RPLidar A3, which was mounted on
top of block 2. The Arduino at block 2, which acted as an MCU to communicate with each
motor controller (Roboclaw) located at the corresponding block. The control signal acted as
ROS topics sent from the compstick with the ROS master installed to Arduino to generate
the appropriate PWM to robot motors. We used a USB hub that took the Arduino and Lidar
cable as inputs and connected them to the Intel compute stick. With sensor information
from Arduino and Lidar, the compute stick’s decision passed the navigation commands to
the Arduino.

Figure 1. hTetran platform with shapeshifting to five morphologies.
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Figure 2. Electronic parts of hTetran platform.

Figure 3. Locomotion unit of hTetran to archive holonomic movement.

For stable localization, we fused the Lidar’s range information and the IMU data in
the robot localization package of ROS. Using the robot’s global position, the proposed
navigation algorithm will generate the appropriate path to achieve maximum area coverage.
This global path will be passed to the ROS navigation stack wherein the local path planner
generates the command velocity for the robot that passes to the local controller (Arduino).
The local controller later passes the PWM values to the motor.

2.2. Description of hTetran in the Polyabolo-Based Worspace

The prefabricated workspace is divided into a predefined size polyabolo-based con-
nected network in which each cell’s size is equivalent to robotic cubes. The robot inside
this workspace is described as a reference 4D coordinate W(x, y, T, ϕh) that includes the
gravity center of hTetran platform x, y, the tile T, the orientation heading ϕh. The mod-
ules and block actions of the hTetran structure with the robot structures of five accessible
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forms of the four-block areas on the hTetran header inside the workspace are depicted in
Figure 4. The required actions of hTetran shapeshifting in the sequence among the available
rectangle, triangle, parallelogram, curve, and square around the dynamic axis ID joins
presented as h1, h2, h3 is fine-tuned by the necessary point revolutions of the robot block.
The hTetran area of a square b is denoted by {xw

b , yw
b , ϕw

b }, where bis in the four modules of
hTetran (b ∈ {B1, B2, B3, B4}) which can be obtained from the robot morphologies inside
the workspace. The masses of all modules are distributed among m1, m2, m3, m4.

The robot’s related operations, including change shape, linear movement, and head-
ing adjustment, can be systematically described to move the robot between any given
waypoints within the working environment. In particular, the aim of the robot’s trajectory
to access all reference points is divided into the set of sequenced arrangements of the
two reference points. To handle all the reference points n, the course pair is described
as p(Ws

k , Wg
k ), where k denotes the considered pair and s is the source reference and g is

the goad reference of the pair k. The starting waypoint would have k = 1, and the final
reference would have k = n − 1. Considering the example workspace that includes n
desired points, n− 1 is the number of pairs, and the possible trajectory which connects all
the pairs is Ω = n(n− 1))/2.

Figure 4. Representation the shapeshifting of hTetran in the workspace.

3. Complete Path Planning by hTetran the Polyabolo-Based Tiling Platform
3.1. Tiling Theory for Polyabolo-Based hTetran

The hTetran platform applies the Polyabolo tiling-based path planning during the
area coverage of the predefined workspace. The presented work is our initial attempt to
implement Polyabolo tiling as a coverage path planning technique in a reconfigurable
robot. Specifically, we evaluated the tiling theorems, where they tiled a regular polygonal
area using only ‘I’, ‘T’, and ‘X’ tileset pieces. Figure 5 shows the tile pieces that belong
to each mentioned tileset. In the experiments, we only used the ‘I’, ‘T’, and ‘X’ tilesets to
perform the area coverage. The three theorems that will be used in our experiments are
detailed below.

Theorem 1. A triangle with a base can be tiled with the ‘X’ Tetrabolo only if the number of the
triangle either is 2 or is divisible by 2.

Theorem 2. A square whose sides have a divisible triangle by 2 and 8, then the square can be tiled
using ‘T’ tetrabolo.

Theorem 3. An octagonal space with a side that consists of triangles, which gives nonrational
values when it is divided by 2, which can be tiled using the ‘I’ tetrabolo.
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Figure 5. Hinged link between each right triangle for the hinged combination.

3.2. Optimal Complete Overage Framework

The complete coverage framework for the hTetran robot consists of three stages:
workspace forming; stage placement; and execution. To explore the set of grid cells
after describing the workspace shapes, the backtracking technique [32] approach was
applied. Specifically considering a polyabolo-based predefined workspace, and selected
morphologies among five available hTetran shapes are arbitrarily set. In the case the
searching algorithm cannot sort the accompanying tiles, different perspectives of the
previous tile are tried. The same cycle is executed until the four blocks-based tilesets
completely cover all the workspace’s free polyabolo-based grid cells. The center of gravity
of block 2 of each tile of the tileset is defined at the waypoint to be visited by hTetran.
To complete the route connecting all the waypoint inside the workspace, the hTetran
derives the optimal trajectory then stores the sequence in the navigation database, as shown
in Figure 6. To clear every waypoint’s pair during navigation, hTetran performs three
operations, including shapeshifting to the desired shape at the target point; performing a
linear movement of the source reference point Ws reference target point Wd; and make the
correct orientation of robot heading between the robot’s current direction and the wanted
direction at the target. For the presentation of each activity, the required rotations θk of each
hTetran block to shift between five available shapes are presented in Table 1. The module
length of each block in meters during the shapeshifting could be lm = ∑(l1 + l2) in which
l1 is equal to length from hinge to the center of mass (COM) of the block during the first
rotation and l2 is equal to the length from the hinge to the COM of the block during the
second rotation. These qualities are shown in Table 2. The required directional adjustment
of the hTetran orientation adjustment is characterized by the different heading between the
hTetran header at the target reference point ϕ

g
h and the source reference point ϕs

h. From
the tables, the required actions linking to the energy usage to shift the robot shape from
one specific shape to the desired shape are considerably different. Hence, the optimal
shapeshifting order is needed during locomotion.

Figure 6. Sequence of 3 actions of hTetran from source Ws
k with a rectangle shape to destination Wd

k
with a square shape.
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Table 1. Required turning angle θk of hTetran modules during shapeshifting.

W s
Wd Rectangle

B1B2B3B4

Triangle
B1B2B3B4

Parallelogram
B1B2B3B4

Curve
B1B2B3B4

Square
B1B2B3B4

Rectangle 0 0 0 0 0 0 0 π −π 0 0 π
−π/2
−7π/4
−7π/4 0

0 0 −7π/4
(π, −7π/4)

Triangle 0 0 0 −π 0 0 0 0 0 0 0 −π
−7π/4
−7π/4 0 0

−7π/4
−7π/4 0
−7π/4

Parallelogram π 0 0 −π 0 0 0 π 0 0 0 0
(π, −7π/4)
−7π/4 0
−7π/4

(π, −7π/4)
−7π/4 0 0

Curve π/2 7π/4
7π/4 0

7π/4 7π/4 0
0

(−π, 7π/4)
7π/4 0 7π/4 0 0 0 0 0 0 0 −7π/4

Square 0 0 7π/4
(−π,7π/4)

7π/4 7π/4 0
7π/4

(−π, 7π/4)
7π/4 0 0 0 0 0 7π/4 0 0 0 0

Table 2. Turning length of the hTetran modules when shapeshifting.

W s
Wd Rectangle

B1B2B3B4

Triangle
B1B2B3B4

Parallelogram
B1B2B3B4

Curve
B1B2B3B4

Square
B1B2B3B4

Rectangle 0 0 0 0 0 0 0 l1 l1 0 0 l1 l2 l1 0 l1 0 0 l1 (l1,l2)
Triangle 0 0 0 l1 0 0 0 0 l1 0 0 0 l2 l1 0 0 l2 l1 0 l1

Parallelogram l1 0 0 l1 l1 0 0 0 0 0 0 0 (l1,l2) l1 0 l1 (l1,l2) l1 0 0
Curve l1 l1 l1 0 l1 l1 0 0 (l1,l2) l1 0 l1 0 0 0 0 0 0 0 l1
Square 0 0 l1 (l1,l2) l1 l1 0 l1 (l1,l2) l1 0 0 0 0 0 l1 0 0 0 0

4. Reinforcement Learning Approach for TSP-Based Coverage Path Planning
4.1. Energy Aware RL Reward Function

The succession of required operations, including morphology shifting, linear move-
ment, and orientation adjustment during the clearance of a pair of waypoints found by
tiling and backtracking techniques, is shown in Figure 6. These operations’ energy usage
is estimated by accumulating the actuator’s rotation distance and the individual robot
module’s weight. The required energies for linear translation, shape transformation and
direction modification are described in Equations (1)–(3). The total robot’s energy spent
can then be determined by using the idea of transferring the stage mass from the source
reference point Ws

k (x, y, T, ϕh) to the target reference point Wg
k (x, y, T, ϕh), described by

the sum of all partial energies as shown in Equation (4):

Etranl(Ws
k , Wg

k ) =
B4

∑
b=B1

mb

√
(xg

b − xs
b)

2 + (yg
b − ys

b)
2 (1)

Etran f (Ws
k , Wg

k ) =
B4

∑
b=B1

mbθblm (2)

Eori(Ws
k , Wg

k ) =
B4

∑
b=B1

mb|ϕ
g
h − ϕs

h|lm (3)

E(Ws
k , Wg

k ) = Etranl(Ws
k , Wg

k ) + Etran f (Ws
k , Wg

k ) + Eori(Ws
k , Wg

k ) (4)

Based on the unique operation of a robot defined as energy functions, the proposed
complete path planning is modeled as cleaning the set of predefined waypoint sequences
with the target capacity to limit the overall energy usage. The defining problem is the
classic TSP, the nondeterministic polynomial time hardness problem. To deal with this
NP-hard TSP with many reference points, an indeterminate methodology is presented
to infer the Pareto-optima arrangement. This paper deals with the hTetran tile sorting
sequence to clear the predefined waypoints using RL and deep recurrent neural networks.
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With the defined 4D location of the reference points generated by the tiled hypothesis, as
the observation space of a finite Markov decision process, we observe the one direction
trajectory π, connecting all the reference points (in addition to the original reference points)
that have minimal energy usage. A permutation π as the cost of the trajectory is presented
as follows:

L(π|O) = E(Ws
n, Wg

1 ) +
n−1

∑
k=1

E(Ws
k , Wg

k ), (5)

where the observation space tileset contains n reference points O = {Wk}n
k=1 and each

Wk store shape and pose of the robot in the predefined workspace. Then, we defined the
negative of the trajectory cost described by Equation (5) as the cumulative expected reward
r(π|O), which we aim to maximize:

r(π|O) = −L(π|O)

= −E(Ws
n, Wg

1 )−
n−1

∑
k=1

E(Ws
k , Wg

k )
(6)

4.2. Optimization with Reinforcement Learning

We applied the well-known RL-based TSP framework of [33] with the proposed cost
functions connecting pairs of 4-dimensional waypoints (x, y, shape, heading) based on the
robot kinematic design and operation within the polyabolo tileset generated by tiling
theory. Note that the original paper’s cost function uses the 2D Euclidean between two
locations inside the workspace. Specifically, we employed the actor–critic methods [34]
to learn approximations to both the policy and value functions of the RL problem. Two
neural networks were utilized to represent the actor and critic networks, similarly to the
work of [30]. Both networks employed the pointer network architecture [35], consisting of
a pair of RNNs (encoders and decoders), each containing long short-term memory (LSTM)
layers [36] to parameterize the trained policy and value model. For further details on the
neural network architecture, we refer to the works of [30,35].

We learn the policy parameters θ of the actor network concerning the training objective,
i.e., the expected reference points trajectory given an input observation space tileset as
Equation (7):

J(θ|O) = Eπ∼pθ(.|O)r(π|O). (7)

The methods that follow this general schema of learning the policy parameter θ based
on the gradient of J(θ|O) with respect to the policy parameter θ are called policy gradient
methods, whether or not they also learn an approximate value function [37]. Since we
followed the actor–critic methods described in the previous section, a critic network was
also utilized to learn approximations to the value function.

In this work, proximal policy optimization (PPO) algorithm [38] was adopted to
optimize the policy of the actor pointer network parameters. PPO is the latest modern
policy gradient method in reinforcement learning, which is extremely powerful and can
be implemented and tuned very simply. Hence, the policy gradient-based objective as
Equation (8) is expressed using the PPO’s clipped surrogate function, which offers robust
updates throughout the scheme of optimization:

∇θ JCLIP(θ|O) = Êπ∼pθ(.|O)

[
min

(
Ât∇θrt(θ), Ât∇θclip(rt(θ), 1− ε, 1 + ε)

)]
(8)

where the expected value Êt[· · · ] is the empirical mean across a finite batch of samples,
rt(θ) = πθ(at |ot)

πθold
(at |ot)

is the probability ratio of the new πθ and the old πθold policies, Ât =

r(π|O)− b(O) denotes the advantage function, where b(O) represents the baseline, which
is used to estimate the expected value of the trajectory cost, thereby reducing the variance
of the gradients. If the probability ratio between the new policy and the old policy falls
outside the range (1− ε)–(1 + ε), the advantage function will be clipped.
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The baseline b(O) we proposed utilizes the same pointer architecture without the final
softmax layer, called a critic network. The critic network is parameterized by θv, where
the expected value of the reference points trajectory or the baseline is estimated by the
input observation space tileset. This work optimizes the critic network using the stochastic
gradient descent of the mean squared error objective between its estimations b(O) and
actual reward value of the reference points trajectory r(π|O), which we collect from the
most recent episode:

J(θv) =
1
b

b

∑
i=1

(b(Ok)− r(πk|Ok))
2 (9)

5. Experimental Results
5.1. RL Training and Trajectory Generation Results

We experimented with the generated directions determined by CPP techniques in
reconstructed workspaces with an arrangement of polyabolo tiles. The grid cell was set
to the exact shape of an hTetran block as shown in Figure 7. The four linked polyabolo
blocks were placed by backtracking technique to represent the reconfigurable robot mor-
phologies inside a specific workspace with arranged obstacles. The obstacle regions were
arbitrarily placed and have a value of −1. To show the movement of the hTetran shape,
the complicated workspaces that complied with tiling theory were created to fit the robot
shape properly. The workspace was designed so that one shape, such as the rectangle or
square shape, was impossible to cover completely, but all the hTetran available shapes were
exploited to cover the given workspace. Tilesets were created by the arbitrary arrangement
of robot shapes inside the predefined workspace by backtracking [32]. Ideal directions were
represented as a derived path connecting the tiles with the optimal navigation strategy in
terms of energy saving.

We implemented the proposed RL approach using the Tensorflow framework with
the pointer network architecture for TSP and changed the policy optimization to PPO loss.
All analyses ran on a workstation with the specifications: Intel Center i7-9750H processor
and 16 GB Memory with Nvidia Quadro P620 GPU. We tried different parameter sets with
1000 charts of 20, 50, and 100 examples of TSP 4D reference points. The mini-batch was
set to 256 arrangements with lengths of 10, 20, and 50. We utilized the proposed energy
reward function as described in Equation (6). The α = 0.3 was chosen depending on the
preliminary trial results. The Adam optimizer [39] with an initial learning rate of 1 × 10−3

was applied to enable the minimization of the cross-entropy loss per batch.
The conventional TSP techniques consisting of zigzag, spiral, and evolutionary-based

ant colony optimization were compared with the RL-based proposal technique. A de-
scription of the total number of waypoints, including the testbed workspace, is shown in
Figure 8. Figure 9 presents the productivity-driven awareness of the RL-based strategy
for different workspaces and tile arrangements. Figures 10 and 11 show the correlation
direction of all the techniques tried for the obstacle workspace tilesets of Figure 9a,b, respec-
tively. Table 3 represents the values for the cost and time comparison. The cost function
in Equation (6) is used in both RL and evolutionary technique ACO [40]. One constraint
condition has been added to the zigzag- and spiral method while selecting the connected
pair of waypoints, which is that if the Euclidean distance between two waypoints should be
less than the defined threshold of 5. We excluded the waypoint 56 of Figure 9 and waypoint
46 in Figure 10 during the path planning since they are in the corner of the workspace
which can not be accessed by the robot.
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Figure 7. Simulation experimental setup with different layouts: (a) scenario 1 environment; and
(b) scenario 2 environment.

Figure 8. Real environment setup with the worlksape similarly to Figure 9.

Figure 9. Worksapces tileset arrangements: (a) scenario 1 environment; and (b) scenario 2 eviroment.

From the information in Table 3, all the evaluated strategies have practically identical
Euclidean lengths. Similar to [33] for the TSP with the small number of waypoints, the
arrangement of the RL-TSP system reaches the ideal cost level simulated workspaces.
The improvement between RL-TSP and ACO fluctuates slightly with a relatively small
reference waypoints workspace. Despite completing the fastest time, zigzag and spiral
processes using the basic crosswise pairs connecting by linear lines in the left and right
order, cost weight results are slightly higher than the evolutionary-based techniques. The
runtime and cost weight of these path-searching techniques are higher than those of the GA
and ACO systems. The RL-based method gradually focuses on the mathematical estimates
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of cost weight and execution time. The RL-based technique’s cost weight was around 7%
better than ACO, the second-best optimal method.

Considering the strategy trajectories generated by the RL-based method, two hTetran
shapes with equal morphologies and less directional orientation differences were chosen
to connect in priority order inside the detected trajectory as shown in Figure 10d and
Figure 11d. With the advancement of the comparative cell title in a timely manner, the RL
sometimes gives a higher need to select the reference point that comes with the shape with
lesser directional changes. For example, with shapes equivalent to the rectangle of tile 34 in
Figure 9a, RL-CPP links tile 39 and not tile 27. Moreover, from tile 25 of the triangle shape,
it selects tile 26 that is the same triangle shape, even though tiles 24, 34, 38 of square shapes
have the shortest Euclidean distance to become the following tile because there is no need
to transform the shape and correct the heading of the robot.

Furthermore, the RL-CPP selects the next tile of the directional trajectory, considering
the fewer blocks to transform the robot shape to the desired morphology. For instance,
from tile 54 of rectangle shape, RL links to tile 51 of the parallelogram that requires the
module B1, and B4 is turned around the axis h1, h3 with revolutions of −pi, pi rad and
magnitudes of l1 and l1, respectively, instead of tile 52 with the curve shape, which requires
the three modules B1, B2, and B3 to rotate the revolutions of −π/2,−7π/4,−7π/4 rad
and magnitudes of l1, l1, l1 around the axes h1, h2, h3, respectively. Due to the reduced
steps of transforming the robot shape into the desired reference point, the proposed CPP
technique is able to find the best reward strategy during the optimization.

Table 3. Cost weight and running time of generating trajectories for simulation workspaces.

Approach 2D
Distance (m)

Total Cost
Weight (Nm)

Running
Time (second)

Zigzag 51.43 382.26 0.05
Spiral 50.91 384.32 0.06
ACO 49.42 322.15 6.21
RL 49.09 315.36 2.16

Figure 10. Optimal trajectories generated by tested methods for scenario 1: (a) Zigzag ; (b) Spiral;
(c) ACO; and (d) reinforcement learning-based travel sales problem (RL-TSP).
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Figure 11. Optimal trajectories generated by tested methods for scenario 2: (a) Zigzag ; (b) Spiral;
(c) ACO; (d) Proposed RL-TSP-based method.

5.2. Real Environment Testbed

During the real workspace trials with the paths that were generated, the robot’s energy
and time to clear the waypoints found in the sorted data set were evaluated. The robot
was placed in continuous self-government and exploration mode to adjust its COM for
each of its characteristic reference points, reinforcing its ideal area and shape. The robot
roadmap works with the node components and topics provided in the ROS framework.
The development requirement robot locomotion of the adaptive feedback control (PID)
was developed in our previous work for tiling robot [41]. Once the title was identified,
the motor controllers drove servo motors to the direction so that the locomotion units of
four blocks were aligned with the direction of the waypoints, then activate DC motors to
generate the linear motions.

The fused localization from the different laser-based odometry sensors, IMU, and
wheel encoder-based odometry by the Kalman EKF method which enhances the robot’s
understanding of the current area even if any sensors are against hardware failure or noise
interference. The robot maintains a safe distance from the obstacles throughout the route.
The tiles number 34 and 39 in the workspace as Figure 9a represent the robot’s ability to
overcome the narrow space. The hTetran’s energy usage was derived using current sensors
that communicate with the robot’s battery power 14.4 V, 1000 mAh. The current sensor was
fixed at the rate of 10 kHz. The maximum speed of DC motors was regulated to 50 rpm.

Numerical comparisons of energy and time usages of the aforementioned techniques
are shown in Table 4 . From the given values, one can observe that if the hTetran implements
the trajectory as demonstrated, with a lower cost weight, less energy and time are consumed.
The method that archived the optimal energy and time usage was the recommended RL-
based method. This strategy’s profitability is about 7%, better than ACO as the second-best
method. The outcomes show that the proposed path planning method is a plausible
process that could be implemented in order to spare the energy spent, specifically for the
hTetran robot.



Sensors 2021, 21, 2577 14 of 16

Table 4. Energy and time usages in real testbed workspace.

Method Costweight Summation Translation Transformation Orientation Travel
- (Nm) Energy (J) Energy (J) Energy (J) Energy (J) Time (second)

Zigzag 382.26 63.26 32.39 19.52 11.35 1683
Spiral 384.32 60.26 30.32 19.11 10.83 1679
ACO 322.15 53.59 25.51 17.95 10.13 1244
RL 315.36 51.15 26.24 15.56 9.35 1212

Energies for a single operation between shifting, correcting direction, and linear
movement to complete the testbed area are provided in Table 4. According to the results,
straight movement consumes the most battery capacity since all three DC motorscarrying
the whole robot’s weight, and all guide servo motors holding the robot blocks are activated
during linear movement. Shapeshifting is the second place of energy usage; in addition,
the robot heading offset adjustment represents a third of the battery usage.

6. Conclusions

The reconfigurable tiling hTetran delivers a viable solution to cover different prede-
fined workspaces by saving both energy and time by about 7%, better than the state-of-the-
art CPP methods. RL-based CPP was systematically evaluated to infer the most restrictive
direction for the proposed TSP than the conventional-based strategies. The proposed CPP
is suitable for being skillfully applied to other tiling platforms such as diamond, hexagon,
and rhombus shapes. This paper’s proposed CPP framework is the initial step to realizing
the feasible RL-based TSP framework into the cleaning business, where the fixed-structure
platforms present the limitations in the area coverage of complex workspaces.

Since the robot is in the developing stage of the operation within relatively small
workspaces, strategic testing in larger workspaces to confirm the proposed RL-TSP CPP
framework needs to be further analyzed. On the other hand, the other tiling robot with
a different shape such as diamond, rhombus, the hexagon can be combined to form a
flexible reconfigurable platform to troubleshoot instructions to specific sub-maps. The
investigation opens up various potential discoveries, including ideal control techniques,
mechanics, and system designs. The future works could be as follows:

• A model for assessing necessity in a dynamic workspace;
• The autonomous tuning for hyperparameters of RL frameworks;
• Multi-target RL;
• Increased autonomy of considerable distance with the robot stage tiled movement;
• Consideration of robot locomotion and environment friction.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
CPP Coverage Path Planning
GA Genetic Algorithm
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
PPO Proximal Policy Optimization
RL Reinforcement Learning
RNN Recurrent Neural Network
ROS Robot Operating System
TSP Travelling Salesman Problem
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