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ABSTRACT

Many enhancers regulate their target genes via long-
distance interactions. High-throughput experiments
like ChIA-PET have been developed to map such
largely cell-type-specific interactions between cis-
regulatory elements genome-widely. In this study, we
integrated multiple types of data in order to reveal the
general hidden patterns embedded in the ChIA-PET
data. We found characteristic distance features re-
lated to promoter–promoter, enhancer–enhancer and
insulator–insulator interactions. Although a protein
may have many binding sites along the genome,
our hypothesis is that those sites that share cer-
tain open chromatin structure can accommodate rel-
atively larger protein complex consisting of spe-
cific regulatory and ‘bridging’ factors, and may be
more likely to form robust long-range deoxyribonu-
cleic acid (DNA) loops. This hypothesis was vali-
dated in the estrogen receptor alpha (ER�) ChIA-
PET data. An efficient classifier was built to pre-
dict ER�-associated long-range interactions solely
from the related ChIP-seq data, hence linking dis-
tal ER�-dependent enhancers to their target genes.
We further applied the classifier to generate addi-
tional novel interactions, which were undetected in
the original ChIA-PET paper but were validated by
other independent experiments. Our work provides
a new insight into the long-range chromatin interac-
tions through deeper and integrative ChIA-PET data
analysis and demonstrates DNA looping predictabil-
ity from ordinary ChIP-seq data.

INTRODUCTION

Many distant enhancer elements in the human genome reg-
ulate their target genes through long-range deoxyribonu-
cleic acid (DNA) looping interactions (1–4). Such long-
range interactions are often related to 3D chromatin con-
formations that are important for gene regulation in specific
cell types (5–7). In general, these chromatin interactions can
be roughly grouped into two different types: one is closely
related to gene regulation and dynamically changes during
development or in response to external stimuli (8,9) and the
other plays more of a structural role, forming non-tissue-
specific chromosome conformations (10).

To biochemically detect how and where these long-range
interactions occur, chromatin conformation capture (3C)
(11) and related methods, such as 4C (12) and 5C (13), have
been developed. These methods are well suited for studying
targeted local chromatin regions. Recently, genome-wide
high-throughput techniques have been applied to detect
large numbers of multiple interacting regions at the same
time, which can delineate a global landscape of long-range
chromatin interactions. Two of the best known methods
are Hi-C (14) and ChIA-PET (15). Hi-C is directly derived
from 3C, which sequences all the interacting DNA frag-
ments with biotin-marked ligation junctions. It can detect
substantial interactions simultaneously and is not restricted
to the type of protein that ‘bridges’ these interactions. How-
ever, Hi-C can only provide a relatively low-resolution in-
teraction map (∼1 Mbp), which is unsuitable for studying
interactions between specific cis-regulatory elements, such
as enhancer–promoter loops. ChIA-PET combines ChIP
and 3C together, which enriches crosslinked DNA–protein
complexes using an antibody against the protein of inter-
est and uses proximity ligation to collect interacting DNA
fragments tethered by the ChIP-ed protein. It has a higher
resolution (similar to ChIP-seq) than Hi-C, but is limited
to detecting interactions mediated by only one type of pro-
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tein per experiment. Thus, Hi-C and ChIA-PET provide us
with global view of different aspects of the chromosomal
contact structure. However, they both require very exten-
sive sequencing depth and are often affected by noise from
random contact of DNA fragments in solution.

We decided to integrate genome-wide transcription fac-
tor (TF) binding and histone modification profiles in order
to better understand ChIA-PET data for two reasons. First,
it has been reported that active enhancers are most often
bound by multiple TFs, which form large protein complexes
to link enhancers to promoters (16,17). This may generate
a different epigenetic pattern compared with simple pro-
tein binding sites. Second, if two distant TF binding sites
are interacting with each other, ChIP-seq experiments will
likely detect both peaks in these two regions (18), and this
phenomenon can partially explain the fact that some TF
binding sites do not contain the canonical motif. We can
infer that those regions pulled down by the same antibody
are more likely to form interactions. These facts imply that
aligning multiple TF binding sites (e.g. according to ChIP-
seq and DNase-seq data) will be informative for predicting
physical interactions between functional cis-regulatory ele-
ments.

We started from MCF7 estrogen receptor alpha (ER�)
ChIA-PET data and combined gene expression, TF bind-
ing, histone modification profiles and open chromatin con-
formation data to uncover hidden features buried beneath
the long-range interactions. Firstly, invariant distance fea-
tures from different ChIA-PET data sets were extracted to
characterize promoter–promoter (PP), enhancer–enhancer
(EE) and insulator–insulator (II) interactions. Secondly, we
determined the genetic and epigenetic features that could
discriminate loop-associated and non-loop-associated ER�
binding sites (ERBSs). Our analysis demonstrates that
ERBSs associated with loop formation, especially those
that contain an estrogen response element (ERE), are more
likely to be nucleosome depleted, which is a surprise as some
previous study (19) reported that ER� could bind to nu-
cleosomes directly. Assembly of co-factors, such as FoxA1,
GATA3 and AP2� , and general co-activator p300 and ER�
complex appear to require such chromosome conformation
with higher DNA accessibility. Lastly, we used these fea-
tures to predict loop-associated ERBSs (laERBSs) and to
develop a DNA looping prediction algorithm. This allowed
us to recover novel ER�-mediated interactions that were
missed from the original ER� ChIA-PET paper (15). Many
known ER�-regulated genes that were not found in the orig-
inal ChIA-PET paper were identified by our method, and
some are supported by other independent 3C data or Pol2
ChIA-PET data. To our knowledge, this is the first success-
ful attempt to use multiple ChIP-seq data to predict long-
range chromatin interactions, thus could serve as a comple-
ment to the complicated and costly ChIA-PET experiments.

MATERIALS AND METHODS

Data sources

ChIA-PET data of ER� from E2 (17�-Estradiol) induced
MCF7 cell was obtained from (15), where the P-value of
each Paired-End Tag (PET) cluster was given; Pol2 and
CTCF data from MCF7 and K562 cells were obtained

from ENCODE project (20), and the coordinates of data
were changed to hg18 with the lift-over tool. The inter-
chromosomal interactions were not considered in our anal-
ysis as they were only composed of a very small proportion
of the interactions (a few tens) and were not enough for sta-
tistical analysis. ChIP-seq data of ER�, Pol2, H3K4me1,
H3K4me3, H3K9ac, H3K27me3 and Input control from
E2-induced MCF7 cells were from (21); ChIP-seq data of
H3K4me2 and DNase-seq data from E2-induced MCF7
cells were from (22); FoxA1 and AP2� data from E2-
induced MCF7 cells were from (23); GATA3 and p300 data
from E2-induced MCF7 cell lines were from (24). GRO-
seq data for E2-induced MCF7 cells after 40 min were
from (25). E2-induced differential expressed genes were ob-
tained from the supplementary data of (26). The related
Gene Expression Omnibus (GEO) accession numbers are
GSE11352, GSE18046, GSE23701, GSE23852, GSE29073,
GSE33216, GSE39495, GSM678539 and GSM678540.

Binding sites detection

Binding sites from ChIP-seq were called by Model-based
Analysis for ChIP-Seq (MACS) (27) with default parame-
ters for ER�, FoxA1, GATA3, AP2� , Pol2 and p300. En-
richment regions for histone modifications were called by
broad peak options with parameter setting ‘–nomodel –
nolambda’ as suggested by Feng et al. (28).

EE, PP and enhancer–promoter interactions classification

Distance between two ChIP-seq binding peaks was calcu-
lated as the genomic distance between their summits called
by MACS (27). Distance between two genomic regions was
defined as the genomic distance between their mid-points.
Density estimation was called by the R density function
with default parameters. Peak position of a uni-modal dis-
tribution was chosen as the point with the highest density
value. For multi-modal distribution, we first fitted the data
with a Mixture Gaussian Distribution by R package mix-
tools (29) and chose the estimated expectation of each com-
ponent as peak position.

We used log2-transformed read-count ratio between
H3K4me3 and H3K4me1 ChIP-seq data in the Pol2 bind-
ing sites to classify Pol2 ChIA-PET interaction clusters into
three types: EE interactions, PP interactions and enhancer–
promoter (EP) interactions. Windows for computing read
counts were selected as ±1.5-kb region around the peak
summits. Binding sites whose summits were closer than 1.5
kb were merged and the mid-point of merged regions was
chosen as the new peaks’ ‘pseudo summit’. The data were
then fitted with Mixture Gaussian Model and a Bayesian
posterior probability of 0.5 was set to determine whether a
Pol2 binding site was promoter-like or enhancer-like. PET
clusters with both ends classified as enhancer-like were
called EE interactions, both promoter-like were called PP
interactions and the rest were called EP interactions. For
ER� ChIA-PET data, we applied this classification in those
interactions that overlapped with H3K4me1 or H3K4me3
peaks at both ends. The subsequent steps were similar to
those of Pol2 ChIA-PET data.
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Histone modification, DNase-seq and GRO-seq profiles sur-
rounding ChIP-seq binding peaks

Each tag was extended by 200 bp along the read direction.
We selected peak summit as the center for signal alignment.
Each region was divided into 25-bp sub-regions and its read
coverage was computed as the read counts covering this
sub-region. The difference of read coverage between ChIP
data and input data was computed as the log2-transformed
read-coverage ratio at each sub-region. DNase-seq data
were not extended and only the 5′ end was used as aggre-
gation inputs. GRO-seq data were divided into two groups
according to the strand of the reads and then processed in
the same manner as histone modification data.

To classify whether an ERBS was an ERE-containing
one, we used STORM (30) to scan ±200-bp region around
the summit of ERBS for ERE sequence motif, with P-value
1e−4.

Model to predict laERBSs

ERBSs were extracted from ChIP-seq data. To predict
laERBSs, three types of features were computed:

(i) Fi,j: loge-transformed read counts for ChIP-seq data of
protein j (or DNase-seq data) in ERBS i, with a win-
dow size of 400 bp centered around ERBS peak sum-
mit;

(ii) Di: loge-distance between the neighboring ERBS of
ERBS i and ERBS i;

(iii) Hi,j: the differences between log2-transformed ratio of
read-coverage against input in central region (±100-
bp region relative to the peak summit) to average of
read-coverage against input in the two flanking regions
(−400 bp to −200 bp and +200 bp to +400 bp relative
to peak summit) of ERBS i for histone modification j.

We selected the 1822 ERBSs that related to 903 interac-
tions identified in both two ChIA-PET experimental repli-
cates as foreground training set. An equal number of ERBSs
that did not overlap with any interactions in either replicate
were randomly selected as background training set. We used
a logistic classifier to perform the classification, i.e.

P(Ei = 1) =
{1 + exp(−k0 −

∑
j
ai,jFi,j − biDi −

∑
j
ci,jHi,j)}−1,

in which Ei is the indicator whether ERBS i is a laERBS,
P is a probability function and k0,ai,j,bi,ci,j are the model
parameters.

After training, we chose the most significant features that
showed improvement over ER� ChIP-seq read counts in
ERBSs to fix the final classifier. Then ERBSs were filtered
by setting the threshold of the logistic classifier to be 0.2
to find putative laERBSs. Summits of these laERBSs closer
than 3 kb were merged and the mid-point was selected as
the new ‘pseudo summit’. This resulted in ∼15 000 candi-
date anchors.

Model to predict ERBS interaction clusters

To predict ER-associated interactions, the candidate an-
chors were paired with each other to form candidate ERBS
pairs. Those pairs that crossed topological domain bound-
aries in h1-ESC were excluded since domain boundaries
were roughly invariant across cell lines, and long-range
interactions were largely restricted within topological do-
mains (31). To predict interactions, two types of features
were computed for each candidate pair:

(i) PFi1i2,j = Fi1,j + Fi2,j: the sum of loge-transformed jth
ChIP-seq (or DNase-seq) read counts for each candi-
date ERBS pair (i1,i2), with a window size of 3 kb for
each end (±1.5-kb region relative to the peak summit);

(ii) PDi1i2,j: the loge-distance and inverse distance between
each ERBS pair (i1,i2), since previous study (32) sug-
gested that probability of long-range interaction was
not monotonically related to genomic distance.

Eight hundred ERBS interactions (out of 903 interac-
tions identified in both two ChIA-PET experimental repli-
cates) with both ends restricted within the same topologi-
cal domain were selected as foreground training set. Equal
number of candidate ERBS pairs that did not overlap with
any ER� interactions identified in either experimental repli-
cate was randomly selected background training set. We still
used a logistic classifier to perform the classification, i.e.

P(PEi1i2 = 1) =
{1 + exp(−k0 −

∑
j
ai1i2,jPFi1i2,j −

∑
j
bi1i2,jPDi1i2,j)}−1,

in which PEi1i2 is the indicator whether ERBS pair (i1,i2)
formed an interaction, P is a probability function and
k0, ai1i2,j, bi1i2,j are the model parameters.

Performance of the classifier was evaluated by a 5-fold
cross-validation; AUC (area under curve) and ROC (re-
ceiver operating characteristic) were plotted as the average
of each 5-fold cross-validation.

To predict novel ERBS–ERBS interactions, we trained
the model parameters on the whole training set and applied
it to the remaining candidate ERBS pairs. Predicted interac-
tions that were not reported in either replicate were further
analyzed.

Model to predict promoter–ERBS interaction clusters

To predict new promoter–ERBS interactions, we first found
out those promoters containing at least one of the FoxA1,
GATA3 or AP2� binding sites but not ERBSs from RefSeq-
annotated promoters (±1500-bp region surrounding the
transcription start site (TSS) and alternative TSSs within
1.5 kb were merged). Those features used for predicting
ERBS–ERBS interactions were computed by replacing dis-
tance between two ERBSs with distance between promoter
and ERBS.



6938 Nucleic Acids Research, 2014, Vol. 42, No. 11

Figure 1. Characteristic distance features of ChIA-PET data. (A) Log10-
distance distribution between the two ends of chimeric and non-chimeric
PETs, where non-chimeric PETs presented a trimodal distribution. The
third peak at right of non-chimeric PETs was close to that of chimeric
PETs. (B) Log10-distance distribution between the two ends of PETs 2+
clusters of MCF7 ER� ChIA-PET data for two replicates. Interactions
with span more than 1 Mbps were excluded. Peak positions located at 3.8
and 4.77. (C) Log10-distance distribution between the two ends of PETs
2+ clusters from MCF7-specific and K562-specific Pol2 ChIA-PET data.
Peak positions located at 3.7 and 4.64. (D) Log10-distance distribution of
EE, PP and EP interactions from MCF7 Pol2 ChIA-PET data. Positions
of peaks for EE and PP interactions were 3.7 and 4.8, respectively.

RESULTS

Invariant distance distributions are associated with different
types of interactions

We collected the ChIA-PET data for ER� (15), Pol2 (33)
and CTCF from the GEO data sets (GEO accession num-
bers GSE18046 and GSE39495) and ENCODE project (20)
for this study. We first analyzed the distribution of the dis-
tance between the two ends of chimeric and non-chrimeric
PETs (34). Raw PETs of ER� ChIA-PET data from MCF7
cells presented a trimodal distribution (Figure 1A). The
third peak at the right, which was mainly composed by sin-
gle PET, was similar to that of chimeric PETs that rep-
resented randomly paired interaction sites. This suggested
that PETs with a long span (>1 Mbps) were more likely
to be derived from random DNA contact noise in solu-
tion or some non-specific interactions. Thus, they should
be filtered more carefully. In the following analysis, we re-
moved all PETs that had a span larger than 1 Mbps and
only considered the interactions that could be supported by
no less than two PETs (PETs 2+ clusters) instead of thresh-
old (no less than three PETs without distance restriction)
used in (15). This is because that majority of PETs 2+ clus-
ters have a span less than 1 Mbps, which is well separated
from the chimeric PETs. Setting a higher threshold will lose

many true positives and make the selection of background
less reliable. Interaction clusters from both ER� and Pol2
data presented bimodal distribution patterns (Figure 1B
and C). For the Pol2 data, we used H3K4me3/H3K4me1
log2 read-count ratio to classify the PETs 2+ clusters into
three groups (33), i.e. EE interactions where both ends of the
clusters showed higher H3K4me1 signals, PP interactions
where both ends of the clusters showed higher H3K4me3
signals and EP interactions for the rest (see details in the
Materials and Methods section). It was clear that the two
peaks from Pol2 data corresponded to the characteristic dis-
tances ∼5 kb and ∼60 kb for EE interactions and PP in-
teractions, respectively (Figure 1D). And we found that a
great percentage of EE interactions are indeed within the
flanking regions (±10 kb) of the same gene (Supplemen-
tary Figure S1). We removed common interactions between
MCF7 and K562 cells to study the cell-type specificity of EE
and PP interactions. Both of the two peaks were present in
MCF7 unique and K562 unique interactions (Figure 1C).
ER� data displayed a similar, albeit less pronounced, char-
acter. The bimodal pattern of distance distributions of chro-
matin interaction clusters was largely conserved across dif-
ferent cell types (in both MCF7 and K562 cells; Figure 1C),
and thus appeared to be an invariant feature embedded in
the typical promoter interacting TF ChIA-PET data.

We also checked II interactions using CTCF ChIA-PET
data. CTCF binding sites and interactions that overlapped
with H3K4me1 or H3K4me3 peaks at either end were fil-
tered out to avoid promoter- or enhancer-associated inter-
actions. The log10-distance distribution of the rest CTCF
interaction clusters had a unimodal pattern (Supplemen-
tary Figure S2A). The peak position was roughly invariant
between MCF7 (160 kb) and K562 (200 kb) cells (Supple-
mentary Figure S2A), and was roughly 5-fold as large as
the median distance of the neighboring CTCF binding sites
(Supplementary Figure S2B). This was consistent with the
notion that CTCF regulation is largely conserved between
different cell types (35). Thus, II interactions share a dif-
ferent distance preference, which is also largely invariant
across different cell lines.

laERBSs are more likely to be nucleosome depleted

To identify genetic or epigenetic features that could dis-
criminate ERBSs involved in loop formation from those
solo ones, we carried out integrative analysis of multiple
(TF and histone modification) ChIP-seq data sets from the
same cell line (MCF7). Firstly, we analyzed histone modi-
fication patterns around laERBSs and non-loop-associated
ERBSs (nlaERBSs). Here laERBSs were selected as ERBSs
overlapping with PETs 2+ clusters identified in both two
ChIA-PET experimental replicates (903 clusters). To align
histone modification signals around ERBSs, we selected the
strongest summit of ERBS as the center if more than one
ERBS was contained in the same end of an interaction clus-
ter, resulting 1203 ERBSs as the foreground set. We ran-
domly selected an equal number of ERBSs that were not
associated with any interaction clusters identified in either
ChIA-PET experimental replicate as the background set.
It was noticed that laERBSs showed subtle depletion of
histone modification signal in the center compared with
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Figure 2. Histone modification and DNase-seq signal profile for four
groups of ERBSs. Average H3K4me1 (A), H3K4me3 (B) and H3K9ac (C)
read-coverage against input surrounding laERBSs with and without an
ERE and nlaERBSs with and without an ERE. Average DNase-seq tag
counts surrounding laERBSs with and without an ERE and nlaERBSs
with and without an ERE (D).

nlaERBSs (Supplementary Figure S3A–C). laERBSs and
nlaERBSs were further divided into two groups by the pres-
ence or absence of an ERE. Surprisingly, we found that
a significantly more proportion of laERBSs with an ERE
shown depleted histone modification signals in the center
(Figure 2A–C, Supplementary Figure S4 and Supplemen-
tary Table S1) than the other three groups. DNase-seq data
confirmed that laERBSs were more frequently located in
open chromatin regions (Supplementary Figure S3D), es-
pecially those that contained an ERE (Figure 2D and Sup-
plementary Figure S5). Since only about 10% laERBSs lo-
cated in promoter regions, our observation could not be ex-
plained by nucleosome depletion in active promoter regions
(Supplementary Figure S6). Therefore, although to the best
of our knowledge, there were no direct genome-wide nu-
cleosome positioning data available in E2-induced MCF7
cells, our integrative analysis of multiple histone modifica-
tions and DNase-seq data suggested that nucleosomes were
more likely to be depleted in laERBS. In fact, a previous
paper (22) reported that ER� binding to DNA was not sen-
sitive to nucleosomes; while on the contrary, we found that
those laERBSs with an ERE showed significant nucleosome
depletion in the center. This indicated that there might be
some other co-factors that can bind to these laERBSs co-
operatively to facilitate long-range interactions and be re-
sponsible for nucleosome eviction.

To test this hypothesis, we conducted an enrichment
analysis against the ChIP-seq data of three known ER�’s
co-factors, and the general co-activator p300. More than

Figure 3. Proportion of FoxA1, GATA3, AP2� and p300 binding peaks
that overlapped with four groups of ERBSs. P-values smaller than 0.05
were listed above the bars, which were given by one-tailed Fisher test in R.
***P < 2.2e−16.

80% laERBSs (either with an ERE or not) overlapped
with FoxA1, GATA3 and AP2� binding sites (Figure 3).
The percentages were significantly higher than those of
nlaERBSs (P < 2.2e−16; Supplementary Table S2), indi-
cating that these three TFs are likely in the complex me-
diating ER�-associated long-range interactions. Reported
RNAi knock-down experiments also support the notion
that these three co-factors are important for ER� loop for-
mation (23,24). Thus they might be associated with nu-
cleosome eviction in laERBSs. For p300, the percentage
of overlapping with laERBSs was not as high as that of
those three co-factors. However, interestingly, p300 was sig-
nificantly enriched in laERBSs with an ERE in compar-
ison with laERBSs without an ERE (P = 7.59e−4), but
showed no difference between nlaERBSs with an ERE and
nlaERBSs without an ERE (P = 0.72), while none of the
three co-factors have a similar pattern. A previous study
(36) showed that p300 is a component of an estrogen re-
ceptor co-activator complex and the formation of the p300
complex is associated with nucleosome eviction (37). This
indicated that p300 might be more frequently recruited to
laERBSs with an ERE for higher level of nucleosome de-
pletion. In addition, with the GRO-seq data (GEO ac-
cession numbers GSM678539 and GSM678540) we found
that laERBSs showed stronger bidirectional transcription
of small RNAs (smRNAs) compared to nlaERBSs (Sup-
plementary Figure S7), with the highest transcription level
occurring in laERBSs with an ERE (Supplementary Figure
S7A). This is consistent with the notion that the bidirec-
tional smRNAs transcription may help maintain the open
chromatin structure in these regions (38). Taken together,
these observations suggest that laERBSs, especially those
with canonical EREs, are often associated with an open
chromatin structure, which is likely resulted by the forma-
tion of the looping-specific protein complex of ER�, its co-
factors and p300, and associated with the bidirectional tran-
scription of smRNAs.

Clustered ERBSs are more likely to be associated with loops

Of all the 1299 regions that formed PETs 2+ interaction
clusters identified in both two ChIA-PET experimental
replicates, 30% contained more than one ERBS. Statistical
tests showed the clustered ERBSs within 3 kb were more
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likely to associate with DNA loops (P < 2.2e−16, 45% ver-
sus 20%).

A logistic classifier can predict laERBSs and associated long-
range interactions

We tested the prediction power of the above features ex-
tracted from previous sections by building a classifier to pre-
dict ER�-associated long-range interactions based on TF
and histone modification ChIP-seq data. Given a pair of
ER� ChIP-seq binding peaks, a powerful classifier should
be able to judge how likely they are actually forming an in-
teracting DNA loop. Our predictor was built in two steps.
First, we used the above features to distinguish laERBSs
and nlaERBSs. We used 903 PETs 2+ clusters confirmed in
both two replicates as the positive training samples, since
they were more reliable than those non-reproducible ones.
We evaluated the performance of the classifier with 5-fold
cross-validation and got the average true positive rate (TPR)
at 74% and average false positive rate (FPR) at 21% at the
Bayesian threshold (0.5) with only three features, i.e. ER�
ChIP-seq signals, neighboring ERBS distances and DNase-
seq signals. AUC for predictor with single feature and ROC
comparisons for different feature combinations were shown
in Figure 4A and C, respectively. Although transcriptional
rate of bidirectional smRNA and the binding intensity of
p300 showed good predictive power, they are redundant
with ER� ChIP-seq signals, neighboring ERBS distances
and DNase-seq signals. And unexpectedly, histone mod-
ification features did not provide additional information
over DNase-seq signals for the prediction. We finally set the
Bayesian threshold 0.2 to contain as many laERBSs (in the
training set) as possible (97%) while the relatively high FPR
(61%) can be further dealt with in the next filtering step.

In the second step, we tried to predict long-range interac-
tions between the putative laERBSs obtained from the first
step. Recently, Hi-C data analysis suggests that chromatins
are organized as large topological domains and interactions
between regulatory elements are largely restricted within
these domains (31). As shown in (31), although strengths
of chromatin interactions between and within these do-
mains may vary across different cell lines, such domains are
roughly invariant across different cell types. Thus, we fur-
ther restricted the two ends of the same interaction cluster
within the same Hi-C-determined topological domain. This
criterion only excluded 69 (∼8%) PETs clusters from our
positive set, but reduced more than one half of ERBS pair-
wise combinations, a large percentage of which are likely to
be noise (there are 97 202 candidate ERBS pairs by using
constrain of topological domain while there exist 239 016
and 6 377 706 possible intra-chromosome ERBS pairs with
and without restriction of 1-Mb genomic distance, respec-
tively). With the above restrictions, we revealed 800 PETs 2+
interactions between filtered laERBSs within the topologi-
cal domains, which served as the foreground training set.
Classifiers with different feature combinations on the train-
ing set were evaluated by 5-fold cross-validation. The best
performer achieved a TPR of 93% and an FPR of 8% at
the Bayesian threshold 0.5. The intensity of ERBSs and the
distance between candidate pairs acted as the top two sig-
nificant features to distinguish foreground and background

Figure 4. AUC and ROC curves for the predictors. (A) AUC for each
feature to predict laERBSs. Here AUC was computed as the average
area under ROC curve for predictors with each single feature for 5-fold
cross-validation. (B) AUC for each feature to predict interactions be-
tween predicted laERBSs. AUC was computed in the same manner as in
(A). “dis” is distance between two ERBSs and “idis” is the inverse distance.
(C) ROC trained for ER� alone, ER�+distance of neighboring ERBSs,
ER�+distance of neighboring ERBSs+DNase-seq and all the features. (D)
ROC trained for ER� alone, ER�+distance and ER�+distance+6 signifi-
cant features and all the features.

(Figure 4B). The binding intensity of FoxA1 and AP2� had
a similar predictive power, but was somewhat redundant
with that of ER�. Beyond these features, DNase-seq and
histone modification signals that were able to describe chro-
matin accessibility could also improve the performance. Fi-
nally, eight features (Supplementary Tables S3 and S4) that
showed significant improvement over the ER�+distance
combination (Figure 4D) were selected to build the final
classifier.

We applied the classifier to predict interactions among
the 97 202 candidate ERBS pairs. Originally, Fullwood et al.
(15) reported 3527 high confidential interactions that share
ER� ChIP-seq binding peaks at both ends for the com-
bined two replicates. Among them, 3113 were restricted in
the topological domains, 76% (2356) of which could be re-
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Figure 5. Evaluation of novo predicted interactions by other independent
data sets. (A) Proportion of reported, predicted and unreported and rest
of the candidate (non-predicted and unreported) ERBS–ERBS pairs that
overlapped with Pol2 PETs 2+ and PETs 3+ clusters, respectively. (B) Pro-
portion of reported, predicted and unreported and rest of the candidate
(non-predicted and unreported) ERBS–promoter pairs that overlapped
with Pol2 PETs 2+ and PETs 3+ clusters, respectively.

called, while only 9% (8805) of the remaining 94 089 un-
reported pairs were predicted to be ER�-associated inter-
action clusters. Therefore we conclude that our classifier is
highly effective in predicting known ChIA-PET interactions
from multiple ChIP-seq data.

Many novo predicted interactions are supported by other data
sources

Next, we compared our newly predicted 8805 interactions
with other sources of data to confirm their biological sig-
nificance. They are significantly overlapping with known
Pol2 PETs clusters (33) (P < 2.2e−16) (Figure 5A and
Supplementary Table S5). And the overlapping proportion
was comparable with that of 3113 high-confidential ERBS–
ERBS pairs reported in (15) (Figure 5A and Supplementary
Table S5). This observation suggested that our predicted
novel ERBS interactions might contain a considerate pro-
portion of true positives that were not captured by the pub-
lished ChIA-PET analysis (15), probably due to the fact that
the original ER� experiments were not saturated and many
interactions were filtered out to reduce false positives.

New ER� target genes are predicted

There are thousands of ERBSs in the genome (21), but only
a small fraction of them (10–15% in different experiments)
are located in regions proximal to gene TSS (±1500 bp).
ChIA-PET experiments validated that a considerate per-
centage of ERBSs (∼10%) function via long-range inter-
actions to their target promoters (15). Here we further ex-
tended our classifier to predict potential target genes regu-
lated by the distal ER�-bound enhancers but without direct
ER� binding at the promoters, which were hard to detect
with traditional ChIP-seq analysis methods. Candidate pro-
moters were selected as those that contained at least one of
the FoxA1, GATA3 or AP2� ChIP-seq binding peaks, but
not ERBSs. Again, we restricted all those promoter–ERBS
pairs within the topological domains. The classifier identi-
fied 507 pairs of ERBS–promoter interactions, associated

Figure 6. Genome browser view by IGV tools (42, 43) of predicted loops
around CTSD and XBP1 gene. (A) predicted interaction between promoter
of CTSD gene and a -9kb upstream ERBS. (B) predicted interaction be-
tween promoter of XBP1 gene and a -13kb upstream ERBS.

with 374 genes. These predicted interactions were signifi-
cantly overlapping with Pol2 PETs clusters (P < 2.2e−16)
as expected (Figure 5B and Supplementary Table S6), and
similar to the 113 ERBS–promoter pairs (without ERBS at
promoters and restricted in topological domains) reported
in (15) (Figure 5B and Supplementary Table S6). From the
gene expression data (GSE11352), we found those genes up-
regulated at 4 h, 12 h and 24 h were all significantly enriched
in the predicted genes than in rest of the candidate genes,
while the down-regulated genes were not (Supplementary
Table S7). Interestingly, some well-known ER� target genes
that have been reported in the literature but not detected in
the original ER� ChIA-PET study appeared in our predic-
tion. For example, 3C experiments confirmed that CTSD’s
promoter (Figure 6A) can form a loop with the −9 kb up-
stream ERBS containing enhancer (39). CTSD is impor-
tant for tumor progression and in metastasis and is used as
a specific biomarker in breast cancer diagnosis (40). XBP1
(Figure 6B), a TF involved in the unfolded protein response
(41), is also an estrogen-regulated gene and its expression
is strongly correlated with ER� expression in breast cancer.
Sengupta et al. (41) have reported that the −13-kb enhancer
upstream of the XBP1 promoter is an E2-response regula-
tory element that can functionally regulate XBP1 gene ex-
pression as we predicted. These observations suggest that
our classifier can reliably predict ER� target genes regulated
by distal elements while the common ChIP-seq data analy-
sis has failed.
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DISCUSSION

Long-range interaction is an important and complex mech-
anism that regulates gene expression in space and time.
With 3C-based technologies, many functional long-range
interactions can be detected genome-widely. Among them,
ChIA-PET can provide a more detailed view of whole
genome interactions for a given TF. Our comprehensive re-
analysis of ChIA-PET data revealed invariant characteris-
tic distance features between different regulatory elements.
Such distance features are largely unchanged across differ-
ent cell types for EE interactions (5–6 kb), PP interactions
(60–80 kb) and II interactions (160–200 kb). These charac-
teristic distance features may reflect the underlying invari-
ant properties of the structural organization of these regu-
latory elements in 3D chromatin DNA.

Our integrative analysis of histone modification and
DNase-seq data showed that, although some ER� DNA
binding sites may not be sensitive to nucleosomes, laERBSs
are often found in open chromatin regions. This implies
those ERBSs that are involved in specific long-range reg-
ulatory interactions with their target genes may be strongly
dependent on local open chromatin structure in order to
accommodate sophisticated protein complexes through 3D
DNA looping. We expect that this insight may be generally
applicable to many other different TFs, where nucleosome
eviction can act as a predictive mark to distinguish loop-
associated transcription factor binding sites (TFBSs) from
solo TFBSs.

Another sex hormonal receptor, the androgen receptor
(AR), is a TF that is very similar to ER�, as they both coop-
erate with FoxA1 for binding. A previous paper (22) reports
that their binding sites have different chromatin accessibil-
ity patterns: AR favors pre-defined nucleosome-depleted re-
gions, while ER� does not. However, here we showed that
laERBSs, especially those with an ERE, have a similar static
open chromatin structure just like most AR binding sites,
indicating a more general long-range regulation mechanism
by nuclear hormone receptors.

By extracting features from multiple ChIP-seq data sets
of histone modification and TF binding profiles, we have de-
veloped classifiers to predict laERBSs and significantly in-
teracting ERBS pairs. The ER� ChIP-seq signal, distance
of the neighboring ERBS and DNase-seq signals are the
most predictive features for laERBS, while other features
are more or less redundant with these three ones. The re-
strictions of interactions between predicted laERBSs and
within Hi-C-defined topological domains have proved to be
very effective filters. Our final trained logistic classifier can
not only recover a large percentage (76%) of reported ER�
interactions but also predict many novel ERBS pairs that
are validated by independent 3C or ChIA-PET experiments.
We also applied our model to predict ERBS–promoter in-
teractions. Some newly predicted ER� target genes, whose
promoters were not directly bound by ER� and hence un-
detected by common ChIP-seq analysis, can also be linked
with the E2-induction process or breast cancer pathways
through other experimental supporting evidence. This in
turn validates our model. The method we have described
here should be applicable to other TFs, such as AR.

There are still two main potential limitations of our
model. One is that we used topological domains in H1 cells,
not in MCF7 cells due to lack of the data, to filter ERBS
pairs before interaction prediction. Although it is reported
that topological domains are largely conserved between dif-
ferent cell types and only a small proportion of ER� ChIA-
PET-detected interactions in MCF7 cells were filtered out.
Using topological domains detected in the same cell type
would be able to further improve the performance. The
other is that our predictions depend on multiple ChIP-seq
data, especially those of ER�’s co-factors, which is not al-
ways available in other types of cells. Overall, our work in-
dicates that integrative analysis of ChIP-seq, Hi-C, ChIA-
PET data, etc. could overcome the limits of each single
method and provide a more comprehensive understanding
of the chromatin interaction landscape at multi-scales.

CONCLUSION

In this work, we carried out a comprehensive analysis of
ER� ChIA-PET data by combining gene expression, TF
binding, histone modification profiles and open chromatin
conformation data together. We showed that laERBSs were
more likely to be nucleosome depleted compared with
nlaERBSs. They were also significantly overlapping with
FoxA1, GATA3, AP2� , and p300 ChIP-seq binding peaks.
An efficient classifier was developed to predict laERBSs and
chromatin interactions between these laERBSs. Among all
the features, the ER� ChIP-seq signal, distance of the neigh-
boring ERBS and DNase-seq signals are the most predic-
tive features for laERBSs. When predicting ERBS interac-
tions, the restriction within Hi-C determined topological
domains is very effective to filter many potential false pos-
itives. The logistic classifier we trained can recover a large
percentage (76%) of ChIA-PET experiment identified ER�
interactions. Besides, many of our predicted novo ERBS in-
teractions could be validated by independent 3C or other
ChIA-PET data sets. The model was applied to predict the
interactions between distal ERBS and promoter. We found
that some newly predicted ER� target genes whose promot-
ers did not overlap with ERBSs were associated with breast
cancer related gene ontology items. Comparing with tradi-
tional analysis of ChIP-seq and ChIA-PET data, our inte-
grative analysis and predictive model can provide a better
understanding of the chromatin long range interactions.
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