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Inferences of drug responses in 
cancer cells from cancer genomic 
features and compound chemical 
and therapeutic properties
Yongcui Wang1,*, Jianwen Fang2,* & Shilong Chen1

Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision 
medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that 
have been treated with different drugs. Here we focus on predicting drug response based on integration 
of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical 
approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and 
compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic 
response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark 
dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer 
cells and drugs. When integrating both genomic resources and compound information, the prediction 
coverage was significantly increased. The validity of PDRCC was also supported by its effective in 
uncovering the unknown cell-drug associations with database and literature evidences. It set the stage 
for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell 
‘A549_LUNG’ and compound ‘Topotecan’. In conclusion, PDRCC offers the possibility for faster, safer, 
and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails.

The recent successes in precision medicine enabled us to effectively casting large-scale genomic data of cancer 
cells into actionable, customized prognosis and treatment regimens for individual patients. However, the sys-
tematic translation of cancer genomic data into the knowledge of tumor biology and therapeutic possibilities 
remains challenging1. Accurately predicting the cancer cell response to medication is particularly important to 
address this challenge and leads us to achieve the ultimate goal of personalized diagnosis and treatment. Lots of 
efforts have been exerted to characterize the relationships between genomic profiles and drug response1–4, and 
several drug response prediction algorithms have been proposed1,2,5,6. All these works highlight the substantial 
complexity and heterogeneity relationships between genomic alterations and drug responses. Thus, systematical 
approaches to integrate heterogeneous pharmacogenomics data sources are urgently needed.

In previous works, the authors attempted to predict drug responses in cancer cells based primarily on genomic 
features of cells that have been treated with given drugs. For example, Geeleher et al., demonstrated a method for 
the prediction of chemotherapeutic response in patients using before-treatment baseline tumor gene expression 
data7; Venkatesan et al. developed a novel machine learning method to predict drug response by integrating 
genome-scale mRNA expression, copy number alteration and mutation profiles for nearly 1000 cancer cell line 
models spanning many tumor types8; Costello et al. applied the multiple kernel learning algorithm to improve 
drug sensitivity prediction from genomic, proteomic, and epigenomic profiling data in breast cancer cell lines9. 
Although achieving promising rersults for certain drugs, these approaches did not incorporate the information 
of compound and ignored the fact that structural or functional related drugs may have similar therapeutic efffect. 
Thus researches began to put their focuses on the development of the systematical algorithms, which predicted 
the responses of anti-cancer therapies in cancer cells from both genomic features and compound properties. For 
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example, Menden et al. developed machine learning models to predict the response of cancer cell lines to drug 
treatment based on both the genomic features of the cell lines and the chemical properties of the drugs6; Zhang  
et al. proposed a dual-layer integrated cell line-drug network model to predict anti-cancer drug responses 
through incorporating similarities between cancer cells and drugs10.

High-throughput drug screening technologies enabled us to test of hundreds of thousands of anti-cancer 
therapies against a panel of cancer cell lines. The curated databases deposit the responses of thousands of can-
cer cells to hundreds of anti-cancer drugs, such as NCI-6011, the Cancer Cell Line Encyclopedia (CCLE)1 and 
Connectivity Map (CMap)3. These valuable information sources provide a great opportunity to understand the 
mechanism of cancer treatments in a comprehensive genetic background. That is, cell-drug relationships could 
be constructed based on high-quality measurements of drug response data. Most importantly, the understandable 
rules for cell-drug associations can be learned by a statistical predictor based on these associations.

Here, we developed an integrative framework to Predict Drug Responses in Cancer Cells (PDRCC) by dis-
secting the cell-drug associations in a large-scale manner. We observed that the current available data sources, 
including KEGG BRITE12, SuperTarget13, and DrugBank14, describe drug’s biological function in living cell from 
different levels and different aspects. For example, drug’s chemical structure provides information by the ‘struc-
ture determines function’ paradigm; ATC-code annotation provides the therapeutic effect at molecular level; 
Protein target hints the therapy effect at molecular level. While, multiple genomic data sources describe the alter-
ations of cell function after treatment in diverse ways. For example, oncogene mutation and DNA copy number 
provide the molecular alterations at genomic level; gene expression reflects the direct changes in cells at tran-
scriptomic level. One straightforward assumption is that drugs similar in one or more data source metrics have 
similar therapeutic effects on cancer cells, and cancer cells with similar genomic properties have similar responses 
to anti-cancer therapies. We demonstrated that drugs with similar compound chemical properties, ATC-codes, 
or target proteins indeed associate with response measurements in cells, and cancer cells with similar genomic 
properties indeed correlate with their response profiles. Then we proposed the idea to integrate heterogeneous 
pharmacogenomics data from both cell and drug sides. Specifically, cells and drugs were first characterized by 
their similarity-based profiles, and a kernel function was then defined to correlate them. Finally, the cell-drug 
associations were inferred by training a machine learning model, i.e., support vector machines (SVM), which is 
motivated by statistical learning theory15,16 and has been proven successful on many different classification prob-
lems in bioinformatics17. PDRCC overcomes the main difficulty to integrate heterogeneous pharmacogenomics 
data sources from both genomic and chemical level. Moreover, through learning the relationships between cells 
and drugs, PDRCC could not only predict the response of a new cell line to existing drugs, but also predict the 
response of an existing cell line to new drugs, thus would potentially save the cost in a drug-cell line screening. By 
validating our PDRCC on the well-established CCLE data, we found that all genomic and compound properties 
were predictive in different ways. Moreover, more cell-drug associations could be uncovered by combination of 
genomic and chemical properties. In addition, database and literature searching indicate that our new predictions 
are worthy of future experimental validation.

Results
Based on the assumption that cancer cells with similar genomic profiles are supposed to have similar responses to 
anti-cancer drugs, and anti-cancer drugs with similar chemical or therapeutic properties are hypothesized to have 
similar inhibition effects on cancer cells, we developed a systematically integrative method, called as PDRCC, 
to infer drug response in human cancer cell lines based on kernel fusion of heterogeneous pharmacogenomics 
data (Fig. 1A). Specifically, we first constructed bipartite graph by known drug responses in cancer cells. The two 
kinds of nodes in bipartite graph represent drugs and cell lines, respectively. The edges between cells and drugs 
represent the relationships among them, defined as either sensitivity or resistance (Fig. 1B). Then we applied 
compound molecular descriptors, target proteins, and ATC-codes to measure the similarity among drugs, intro-
duced oncogene mutation, DNA copy number, and mRNA expression to quantify the similarities among cancer 
cells, and defined a Kronecker product kernel to correlate with them (Fig. 1C). Finally, a support vector machine 
was utilized to predict the unknown relationships between cells and drugs (Fig. 1D). The PDRCC was validated 
on the well-established CCLE data, which contains 8-point dose-response curves for 24 compounds across 504 
human cancer cell lines.

Correlation analysis shows all cancer genomic data and compound information sources are 
predictive.  Here, to predict the associations between cancer cells and anti-cancer therapies, we integrated 
heterogeneous pharmacogenomics data from both cell and drug sides. Therefore, first of all, we would like to 
check whether each single data source is predictive or not. To this end, we correlated cancer genomic data with 
their response profiles, and correlated drug chemical and therapeutic properties with their inhibition effects. We 
hope that cells with similar genomic features have similar responses to drugs, and drugs with similar chemical or 
therapeutic properties exhibit similar inhibition effects. That is, cancer cells with similar mutation/copy number/
expression profile have similar response profiles, and drugs with similar chemical properties/target proteins/
ATC-codes have similar inhibition effects. The similarity between cells c and c′​ under their response  
measurements was calculated by the Gaussian kernel based on their IC50 profile μ  and μ ′ :​ 

γ µ µ′ = − − ′µ sim c c( , ) exp( )IC50
2 , where γμ is pre-determined parameter. Meanwhile, the similarity between 

drugs d and d′​ under their response measurements was calculated by the Gaussian kernel based on their IC50 
profile σ and σ′​ : γ σ σ′ = − − ′σsim d d( , ) exp( )IC50

2 , where γσ is pre-determined parameter.
The IC50 correlations were significant higher for cells with more similar genomic features (Fig. 2A–C). The 

statistical differences among groups were calculated by the t-test and the p-value were less than 1e-16 for all three 
types of features. The over 0.7 Pearson Correlation Coefficients (PCCs) between IC50 and genomic features were 
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Figure 1.  The flowchart of PDRCC. (A) The schematic plot for our PDRCC method. PDRCC applied the 
kernel method to integrate multiple information about cell, including oncogene mutation, DNA copy number, 
and mRNA expression, and multiple information about drug, including compound molecular properties, 
ATC-code, and drug side-effect, to detect the interactions between cells and drugs. (B) Collecting known 
relationships between cells and drugs as gold standard positives in a bipartite graph. (C) Calculating cell-cell 
and drug-drug similarity by genomic data of cells and chemical and therapeutic properties of drugs.  
(D) Relating the similarity among cells and similarity among drugs by Kronecker product kernel, and applying 
SVM-based algorithm to predict the unknown associations between cells and drugs.

Figure 2.  Correlating genomic features with cell response profiles to anti-cancer drugs. (A–C) The 
boxplots showing cells with similar genomic features responding to their IC50 correlations. X-axis indicates the 
correlations between cells under their genomic features, while y-axis indicates the correlations between cells 
under their IC50 profiles. (D) Barplots showing the PCCs between oncogene mutation, copy number alteration, 
and expression value and cell IC50 profiles. It shows that cell responses correlate mutation similarity more than 
other similarity measurements.
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shown in Fig. 2D as barplots. The p-values were less than 1e-3 for all three PCCs. These results mean that all 
mutation, copy number, and expression similarity correlate with IC50 correlations well. That is, cells with similar 
genomic features (mutation, copy number, and expression profiles) exhibit similar response profiles. Moreover, 
Fig. 2 showed that mutation correlated more with IC50 correlations, comparing with other two features. It not 
only displayed the highest correlation coefficient value, but also got highest IC50 correlations in cells with all low, 
moderate, and high similar genomic features. In another aspect, boxplots in Fig. S1 showed that drug sensitivity 
correlations were significant higher for drugs with more similar chemical and therapeutic properties. The over 0.3 
PCCs were obtained and PCC between drug sensitivity and chemical property went beyond 0.5. That is, chemical 
property correlated more with drug response profile. All these results together suggest that all data sources about 
cancer cells and drugs are predictive. Furthermore, IC50 correlates more with cell mutation profile and drug 
chemical property, which indicates that cell mutation profile and drug chemical property may play important role 
during learning the association rules between cancer cells and drugs.

Drug response prediction by PDRCC.  We firstly validated the performance of PDRCC on each single data 
source when utilizing the IC50 as the response measurement. The effect of mutation, copy number, and expres-
sion similarity on uncovering the observed cell-drug associations were shown by replacing the cell similarity 
matrix Scell in kernel function (Method) with SMut, SCN and SGE, respectively. And the effect of chemical property, 
target protein, and ATC-code similarity on uncovering the observed cell-drug associations were shown by replac-
ing the drug similarity matrix Sdrug in kernel function (Method) with SChem, STarget and SATC, respectively. The per-
formance of each single data source on learning the association roles between cancer cells and drugs was 
evaluated and visualized by ROC curves18 and precision-recall curves19. The precision-recall curves were also 
introdcued here due to the unbalanced issue. That is, the number of resistant associations is always much larger 
than the number of sensitive associations. While the precision-recall curves is the better index to evaluate the 
prediction performance on imbalance data19. The AUCs on each data source effect were displayed in Table 1. It 
showed that, from cell side, “Mut” performed the best, and “CN” and “GE” achieved comparable prediction per-
formance. From drug side, “Chem” achieved the best performance and “Target” performed the worst. Among all 
combination of data sources, the highest AUC of 0.798 was achieved by “Mut +​ Chem”, and the worst AUC of 
0.572 was obtained by “GE +​ Target”. The precision-recall curves (Fig. S2) obtained by each single data source also 
indicate the best performance of “Mut +​ Chem”, and the worst performance of “GE +​ Target”. We drew ROC 
curves of “Mut +​ Chem” and “GE +​ Target” in Fig. 3A, it displayed that the ‘bad’ guy “GE +​ Target” could make 
the ROC curve beyond the diagonal (random classification), and the ‘good’ guy “Mut +​ Chem” made ROC close 
to 0-1 baseline. Moreover both two AUPRs were larger than 0.75 (Fig. 3B), suggesting the efficiency of all data 
sources on distinguish sensitive associations from the larger number of resistant associations. All these results 
together indicate that, each data source for cell and drug will do one’s bit in inferring the potential rules from the 

AUC Chem ATC Target Combd

Mut 0.798 ±​ 0.01 0.776 ±​ 0.008 0.752 ±​ 0.007 0.827 ±​ 0.006

CN 0.618 ±​ 0.008 0.613 ±​ 0.005 0.582 ±​ 0.008 0.713 ±​ 0.005

GE 0.62 ±​ 0.007 0.607 ±​ 0.007 0.572 ±​ 0.01 0.743 ±​ 0.006

Combc 0.852 ±​ 0.007 0.846 ±​ 0.006 0.809 ±​ 0.005 0.89 ±​ 0.005

Table 1.   The AUC obtained by PDRCC by considering all of data sources separately, two together, and all 
together. The best predictions obtained are highlighted in bold.

Figure 3.  The ROC curves and AUPRs of PDRCC on various data source. (A) The ROC curves on the most 
predictive, the worst contributed data sources for cell and drug, and the combination of all data sources. (B) The 
AUPRs on the most predictive, the worst contributed data sources for cell and drug, and the combination of all 
data sources. It shows that the performance of cell-drug association identification can be significantly improved 
by combination of all data sources about cell and drug.
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existing cell-drug associations. Therefore, combination of these data sources should produce a much more sophis-
ticated picture of the associations among cells and drugs.

Table 1 suggested that, “Combc” and “Combd” performed better than using single data source, and 
most important thing was that the highest AUC of 0.89 and AUPR of 0.957 were obtained by integration of 
all data sources from both cell and drug sides. For example, “Mut +​ Chem” obtained an AUC of 0.792, while 
“Combc +​ Chem” and “Mut +​ Combd” made the AUC 0.852 and 0.827, respectively; “GE +​ Target” obtained an 
AUC of 0.572, while “Combc +​ Target” and “GE +​ Combd” made the AUC reach to 0.809 and 0.743, respectively, 
which has two percent improvement comparing with “GE +​ Target” did. In addition, the ROC curves (Fig. 3A) 
and precision-recall curves (Fig. S2) suggests that “Combc +​ Combd” performed better than using mutation for 
cell and chemical property for drug, which was most predictive data sources among all single one for cell and 
drug. All these facts demonstrate that all data sources are useful in prediction. Combination of them significantly 
improves the accuracy of cell-drug association identification.

Comparison with alternative integrative strategy.  In this work, we integrated multiple properties of 
drugs, including chemical information, ATC-code annotation, and the drug target protein, and multiple genomic 
data sources of cancer cells, including somatic mutation, DNA copy number, and gene expression value. The max-
imum among them was applied to obtain good predictions. However, there are alternative strategies to address 
the same issue, such as the multiple kernel learning (MKL), which optimizes the weight to integrate kernels20–22. 
MKL is a unified framework and has elegant model to integrate different data sources. To achieve the prediction 
results through MKL, we implemented the MKL optimization procedure. That is, iteratively obtained the opti-
mal weights to integrate kernels and the decision function. For saving the computational cost, we only validated 
MKL on either drug or cell side. That is, only using implemented MKL optimization procedure on either cell or 
drug side. Previous results indicated that somatic mutation and compound chemical properties provide more 
information in prediction, comparing with other data sources. Thus, for comparison, we implemented MKL 
on drug side and mutation similarity in cancer cell, and implemented MKL on cell side and chemical property 
similarity in drug. It turns out that MKL achieved the best AUC of 0.824 when implementing MKL in drug and 
using somatic mutation to represent cell similarity. This performance was comparable with “Mut +​ Combd” did. 
All these results suggest that our simplified strategy is the better option for integrating data sources. In addition, 
MKL will add extra computational complexity. So in practice, it is better to choose the maximum strategy in our 
work to simplify the model and make it available to large-scale problems.

Tissue specific conditions.  Proteins are dynamic in biological process. Their function may vary in different 
tissues and conditions. This fact would influence the drug responses in diverse tissue types. Therefore, the diverse 
tissue conditions should be considered when validation the performance of PDRCC. The distribution of tissue 
types in the 504 cancer cells with responses available was shown in the Fig. 4A. The most major types were Lung, 
haematopoietic and lymphoid tissue (HL), and Skin. They were taken 18% (90), 14% (71), and 8% (40) of all 504 
cancer cells, respectively. We validated the effect of PDRCC on discovery the association between drugs and the 
cells in each of above three tissues. The AUC and AUPR obtained by “Combc +​ Combd” were shown as barplot in 
Fig. 4B. The AUCs and AUPRs obtained in all three tissues were above 0.75 and 0.80, respectively. In addition, for 
all three tissues, PDRCC always achieved higher AURPs than AUCs, suggesting that PDRCC is suitable to dis-
tinguish the sensitive associations from those larger numbers of resistant associations under specific tissue con-
dition. These results indicate the efficiency of our PDRCC on different tissues. Moreover, both AUCs and AUPRs 
were not varied too much in three tissue types. For example, the AUCs were 0.78, 0.75, and 0.77 on Lung, HL, and 
skin, respectively; the AUPRs were 0.83, 0.81, and 0.82 on Lung, HL, and skin, respectively. These results together 
suggest that our PDRCC can not only discovery the association between drugs and the cells with different tissue 
types, but also achieve the consistent accuracy on diverse tissue types.

The efficiency of PDRCC in uncovering diverse measurements of drug response.  Previous anal-
ysis indicated that PDRCC performed well in predicting associations between cancer cells and drugs based on 
IC50 measurement. To test whether it can produce the consistent performance on another measurements of drug 
response, such as the maximal activity value (Amax) and the area between the drug-response curve and a fixed ref-
erence (ActArea), the PDRCC was performed on above two measurements, respectively. Specifically, the value of 
Amax and ActArea were firstly discrete into three categories: sensitive, resistant, and unknown (Fig. 5A,B). Then 
the combination kernel of cancer cells and drugs were applied to integrate cell genomic features and drug chemical 
and therapeutic properties. Finally, the 10-fold cross-validation was done to validate the performance of PDRCC.

The effect of PDRCC on uncovering the observed cell-drug associations based on Amax and ActArea meas-
urements were shown by AUC and AUPR in Fig. 5C. Although the AUCs obtained based on both Amax and 
ActArea were lower than the IC50 did, they were larger than 0.8. It suggests the efficiency of PDRCC in other 
types of response measurements. We have to note that the prediction problem when either using Amax or 
ActArea as the measurement of drug response is imbalance due to the inequality number of resistant and sensi-
tive associations. For IC50, AUPR was larger than AUC. While, for both Amax and ActArea, “Combc +​ Combd” 
achieved comparable AUPR and AUC, and both AUPRs were larger than 0.75. This result means that when using 
both Amax and ActArea to measure the response value, PDRCC is effective in distinguishing the sensitive associ-
ations from the different number of resistant associations. These results together confirm the efficiency of PDRCC 
by using different gold-standard datasets is indicated by above results.

Novel prediction.  By cross-validation, PDRCC displayed its promising performance in predicting observed 
cell-drug associations, especially using IC50 to measure the drug response. To test whether it could produce 
biologically useful predictions, we focus on the unknown cell-drug pairs, which were obtained by categorizing 
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method. We trained “Combc +​ Combd” on the sensitive and resistant associations, and tested it on 2,774 unknown 
cell-drug pairs. Since we may be more interested in the discovering the novel sensitive associations between can-
cer cells and anticancer therapies, thus our expectation is that “Combc +​ Combd” can discover novel sensitive 
associations between cancer cells and drugs.

The top five sensitive associations were listed in Table 2. For each novel prediction, we searched the data-
base and literature evidences from CCLE and PubMed to support the efficiency of PDRCC in uncovering the 
novel sensitive associations between cancer cells and known anti-cancer drugs. Taken the top one prediction 
as an example, the cell subtype of cancer cell ‘A549_LUNG’ is Non Small Cell Lung Cancer (NSCLC), and the 
literatures23–27 indicated that the anti-cancer drug ‘Topotecan’ was ready to be the novel therapeutic strategy in 
the treatment of NSCLC and Small Cell Lung Cancer (SCLC). These evidences support the sensitive association 
between ‘A549_LUNG’ and ‘Topotecan’. The similar story for remaining four novel predictions can be addressed 
from Table 2. In conclusion, database and literature search support these novel predictions. That is, PDRCC can 
uncover potential sensitive drugs to caner cells, which provide candidates for further experiments.

Discussion
Systematical approach to identify the novel associations between cancer cells and anti-cancer therapies may guide 
the early-phase clinical trials of multiple novel compounds under development. Here, we proposed a novel sys-
tematical approach to predict responses of multiple drugs in hundreds of cancer cells simultaneously in one 
model by inferring the associations between cancer cells and drugs. This strategy make our prediction model can 
be applied not only to predict the response of a newly measured cell to already tested drugs, but also to predict 
the inhibition effect of an existing drug in cancer cells with known genomic information. It would greatly save the 
cost in drug-cell screening. The machine learning framework was constructed to implement the prediction task 
and the kernel method was applied to integrate pharmacogenomics data. Our main contributions here are both 
in proposing the machine learning framework and integrating heterogeneous data from both cell and drug sides 
through kernel function to construct the predictive model. The validity of this approach, called as PDRCC, was 
supported by its effective in uncovering the cell-drug associations with database and literature evidences, and it 
set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer 
cell ‘A549_LUNG’ and compound ‘Topotecan’. Database and literature searching indicate that our novel inhib-
itors provide the promising opportunities to cure their predicted sensitive cancer cells. In conclusion, PDRCC 
will hopefully enhance the discovery and validation of additional predictive cancer therapeutics. Here we only 
attempted to improve the accuracy of drug response prediction. However, the biomarkers, that determine the 
sensitive and resistant association between cancer cells and anti-cancer therapies, are urgently needed in clinical 

Figure 4.  The performance of PDRCC under specific tissue conditions. (A) The distribution of tissue types 
in cancer cells in CCLE. The most majority tissues are Lung, haematopoietic, and lymphoid tissue (HL), and 
Skin. (B) The AUCs and AUPRs on Lung, haematopoietic and lymphoid tissue (HL), and Skin. It shows PDRCC 
could achieve the consistent performance on diverse tissues.
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applications. Thus the future work will extent this work to include the biomarker determination, to make the 
prediction algorithm not only produce the promising associations between cancer cells and therapies, but also 
uncover the novel biomarkers of sensitivity and resistance to cancer therapeutics.

In this work, instead of learning the exact response value, which usually did in previous work6,8–10, we stud-
ied drug response by detecting the binary relationships (sensitive or resistant) between cells and drugs. It is not 
only because of the inaccuracy of experimentally measured response value, but also because that people may 
have more interests on whether the cancer cell is sensitive or resistant to a given therapy than what the exact the 
response value is. While we also noted that, by casting continuous IC50s into discrete ones, our prediction task 
became imbalance, due to unbalanced number of sensitive associations and resistant associations. SVM model 
took care of this issue by assigning different weights to sensitive associations and resistant associations, respec-
tively, and the good performance was achieved. To show the importance of dealing with the imbalance issue dur-
ing learning, we compared our method with other machine learning algorithms, such as logistic regression and 

Figure 5.  The performance of PDRCC on diverse measurements of drug response. (A) Assigning Amax into 
three classes: sensitive, resistant and unknown. (B) Assigning ActArea into three classes: sensitive, resistant and 
unknown. (C) The AUCs and AUPRs obtained based on the diverse measurements of drug response. PDRCC 
produces the consistent performance when measurements of drug response changing.

Rank Cell Drug Cell Type Drug Usage

1 A549_LUNG Topotecan NSCLC NSCLC23,24, SCLC25–27

2 MFE319_ENDOMETRIUM 17-AAG Endometrioid adenocarcinoma Endometrial Carcinoma44,45

3 K029AX_SKIN Irinotecan Malignant melanoma Melanoma46,47

4 MIAPACA2_PANCREAS Irinotecan Ductal carcinoma Pancreas48,49

5 MDAMB453_BREAST Nilotinib — Tamoxifen-resistant breast cancer50

Table 2.   The top five novel sensitive associations obtained by PDRCC on “Combc + Combd” kernel and the 
value of IC50. The abbreviation: Non Small Cell Lung Cancer (NSCLC), Small Cell Lung Cancer (SCLC).
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random forests, which are more interpretable for the question that where the prediction coming from. We firstly 
run logistic regression (non specific strategy for unbalanced data) on our integrated datasets, and applied 10-fold 
cross-validation to validate the performance. Turns out that, the logistic regression achieved about 0.7 AUC and 
0.6 AUPR, which were worse than “Combc +​ Combd” obtained. Furthermore, it obtained less than 0.5 true posi-
tive rate and about 0.7 true negative rate, suggesting that the worse performance may come from the ignoring the 
unbalanced issue. Then, we validated the performance of random forests (addressing imbalance issue through 
incorporating diverse class weights) on our integrated datasets through 10-fold cross-validation. As a matter 
of fact, random forests achieved an AUC of 0.919 and AUPR of 0.898, respectively. While, “Combc +​ Combd” 
obtained an AUC of 0.89 and 0.957, respectively. Although, AUC is higher, AUPR (the better index to evaluation 
the performance of classifier on imbalance problem) is much lower. All these results suggest the importance for 
dealing with unbalanced issue during learning, and our PDRCC is suitable to distinguish sensitive responses from 
different number of resistant responses of drugs.

Previous work applied various data sources to describe drug’s biological function from different levels and 
aspects. Here, the chemical properties, therapeutic annotations and effects were utilized to measure the similar-
ity among drugs. We have to note that there are another data sources to describe the function of drugs, such as 
drug side-effects, which hint the unwanted effects of drug at phenotype level. Furthermore, previous work sug-
gested the validity of drug side-effects in predicting drug mode of actions, including targeting proteins28, cured  
diseases29–31 et al. Therefore, drugs with similar side-effects may indicate the similar profile of responses in cancer 
cells. However, there are only few of 24 compounds in CCLE with their side-effects available. For example, only 
six compounds got their side-effects in SIDER database (\url{http://sideeffects.embl.de/}). Previous work indi-
cated the strong associations between drug side-effects and target proteins28, thus we already included side-effects 
information in some sense by introducing target proteins to represent the similarity among drugs.

Here, we utilized sequence information to characterize the similarity among proteins, and the drug simi-
larity under protein target measurement was then defined by the maximum sequence similarities among their 
target proteins. The experimental results showed that sequence information was predictive in drug response 
prediction. One concern is that protein sequence similarity is too strict to measure the similarity among proteins. 
Because two proteins may be similar to each other due to another reason, such as they are co-expressed and have 
some functional linkage32,33. In future, we will extend our work to include other data sources for protein in drug 
response prediction. For example, we could define the protein similarity through GO annotation and expression 
value et al. Another possible improvement might be to use the defined interacting domain in protein sequence 
and to make the sequence similarity score more accurate.

Besides cell genomic features and drug chemical and therapeutic features, there are other types of features 
were applied to detect the drug responses in cancer cells. For example, Majumder et al. integrated the tumor 
ecosystems with a novel machine learning algorithm to predict the therapeutic efficacy of targeted and cytotoxic 
drugs in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer (CRC)34; Frieboes 
et al. attempted to implement a novel quantitative approach to study the drug effects on the growth and regression 
of tumor mass based on cell phenotype35. All these informative data sources could be easily incorporated into 
our model. In future, we will try to incorporate much more data sources from both cell and drug sides to further 
improve the accuracy of our prediction model.

Methods and Materials.  Given two cancer cell and drug pairs, we considered to construct a kernel func-
tion, which potentially correlated with them. Since the kernel function represents the similarities among the 
training samples in some sense36, we focused on the similarity scores among samples rather than the sample 
profile itself for each data source.

Cancer cell similarity.  The oncogene mutation, DNA copy number, and mRNA expression were applied to 
calculate the similarity among cells.

Oncogene mutation.  CCLE provided 25 oncogene mutations across 486 cancer cells. The mutation MAF 
file was used for somatic mutation data analysis. A gene-by-sample matrix of binary values (1-mutated, 
0-wildtype) was generated for similarity calculation. The matrix SMut was applied to represent the cell similarity 
matrix based on their oncogene mutation measurement. Each row (or column) was the mutation based similarity 
profile for a single cell. The element of SMut was defined as the weighted cosine correlation coefficient: 
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, where z and z′​ are binary vectors for cell c and c′​ representing the mutation or 

wide-type of the corresponding oncogene. wk is the weight for the k-th oncogene, defined as σ= −w exp f h( / )k k
2 2 2 , 

where fk is the mutation rates of the k-th oncogene in the data and M is the total number of oncogene (equals to 
25 here), σ is the SD of =f{ }k k

M
1, and h is a parameter (set to 10 in this study).

DNA copy number.  There were 23,316 gene copy numbers across a total of 1043 cancer cells based on CCLE 
‘CCLE_copynumber_byGene_2013-12-03’ TXT file. Given two cells c and c′​, the copy number based similarity 
between them was calculated by Gaussian kernel function. A matrix SCN  was then constructed to represent the 
copy number similarity for cancer cells. Each row (or column) of this matrix was the copy number based similar-
ity profile for a single cell.

mRNA expression.  There were 54,675 gene expression values across a total of 127 cells based on CCLE 
‘CCLE_Expression_2012-09-29’ CSV file. Given two cells c and c′​, the gene expression based similarity between 
them was calculated by the absolute value of Pearson Correlation Coefficient between their gene expression 

http://sideeffects.embl.de/
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values across the CCLE cells. A matrix SGE was then constructed to represent gene expression similarity for cell 
lines. Each row (or column) of this matrix was the expression based similarity profile for a single cell.

Drug similarity.  The compound chemical properties, drug ATC-codes, and drug-targets were used to repre-
sent the similarity among drugs, respectively.

Compound chemical properties.  The compound chemical property for each drug came from a collection 
of molecular descriptors was calculated by QuaSAR-Descriptor in the Molecular Operating Environment (MOE 
v. 2011.10, Chemical Computing Group Inc., Montreal, Canada). The MOE descriptor generated a total of 308 
features for 24 compounds, which included 2D descriptors, Internal 3D descriptors, and External 3D descriptors. 
Then the chemical similarity between two drugs d and d′​ was computed by the Gaussian kernel function on their 
molecular descriptors. A matrix SChem was then constructed to represent chemical similarity for drugs. Each row 
(or column) of this matrix was the chemical property similarity profile for a single drug.

Drug-targets.  The target proteins for 24 compounds were provided by CCLE. Given two drugs d and d′​, the 
target-based similarity between them was calculated as follows: ′ = ∈ ∈ ′sim d d

max
g T d g T d sim g g( , ) ( ), ( ) ( , )

i j i j
, 

where T(d) and T(d′​) are the sets of target proteins for d and d′​, respectively. The sequence data was applied to 
measure protein similarity due to the rapidly developed sequencing techniques. The sequence similarities among 
proteins were defined by a normalized version of Smith-Waterman scores37. They were calculated by “swalign” 
function in Matlab Bioinformatics toolbox. A matrix STarget was then constructed to represent target protein sim-
ilarity for drugs. Each row (or column) of this matrix was the target protein similarity profile for a single drug.

ATC-codes.  ATC-codes of drugs were extracted from WHOCC. Considering the hierarchical structure of 
ATC-codes, a probabilistic model38 was introduced to calculate the similarity. Specifically, the similarity between 
two ATC-codes (ti and tj) was calculated as follows: ω ω ρ= −sim t t t t exp d t t( , ) ( ) ( ) ( ( , ))i j i j i j , where d(ti, tj) is the 
shortest distance between ATC-codes ti and tj in the hierarchical structure of the ATC classification system, ω(ti) 
and ω(tj) represent the weights of the corresponding ATC-codes, and were defined as the inverse of ATC-code 
frequencies, which means that more emphasis was put on specific codes rather than the general ones39. ρ is a 
predefined parameter (set to be 0.25 in this study). The drug ATC-codes similarity was calculated by the equation 
of ′ = ∈ ∈ ′S d d max sim t t( , ) ( , )ATC t A d t A d i j( ), ( )i j

, where A(d) and A(d′​) are the sets of ATC-codes for dand d′​, respec-
tively. SATC was used to denote the resulting drug ATC similarity matrix. Each row (or column) of this matrix was 
the ATC-code annotation similarity profile for a drug.

The kernel function for data fusion.  With the representation of drugs and PPIs by their similarity pro-
files, the kernel function with cell-drug pairs was calculated as Kronecker product kernel40,41: 

= ⊗−K S Scell drug cell drug , where Scell can be any one of SMut, SCN and SGE or their combination and Sdrug can be any 
one of SChem, STarget and SATC or their combination.

In this paper, “Mut” denoted the case when Scell =​ SMut, “CN” denoted the case when Scell =​ SCN, “GE” denoted 
the case when Scell =​ SGE, and “Combc” denoted the case when Scell=​max(SMut, SCN, SGE), which means cell sim-
ilar in one or more than one metrics will sensitive/resistant to similar drugs. “Chem” denoted the case when 
Sdrug =​ SChem, “Target” denoted the case when Sdrug =​ STarget, “ATC” denoted the case when Sdrug =​ SATC, and “Combd” 
denoted the case when Sdrug =​ max(SChem, STarget, SATC), which means drug similar in one or more than one metrics 
will have similar therapeutic effects. “Combc +​ Combd” denoted the case when Scell =​ max(SMut, SCN, SGE) and 
Sdrug =​ max(SChem, STarget, SATC). Taken together, the rationale behind our kernel function construction scheme for 
cell-drug pairs is that two cell-drug pairs are similar only when the corresponding cell and drug are simultane-
ously similar supported by different lines of evidences.

Prediction of drug response by using the defined kernel function and a ‘categorical’ classifier.  
With the above kernel function construction scheme, the drug response prediction task was ready to feed to 
SVM. Here, we’d like to apply a ‘categorical’ classifier to implement prediction task. That is, instead of estimating 
the continuous response value, we assigned response value into the classes of sensitive, resistant and unknown, 
and predicted whether cancer cell is sensitive or resistant to anti-cancer therapy.

To this end, we first drew a distribution of response values (IC50: the half maximal inhibitory concentration 
of a substance with respect to cell viability), and then categorized them into three classes: sensitivity, resistance, 
and unknown. The distribution of IC50 values across all 504 cell lines were drawn in the left picture of Fig. S3. 
Obviously, there were three types of bars in the histogram. They were the bars for value range from 0 to 0.5, 0.5 to 
7.5, and 7.5 to 8, respectively. The two dramatic bars were used to determine the classes of sensitivity/resistance, 
that is, sensitivity was for those IC50s changing from 0 to 0.5, and resistance was for those IC50s form 7.5 to 8. 
Under this setting, IC50 profiles across cell lines were then become a relationship matrix with three values: 1, 
0, −​1, which represented sensitivity, unknown, and resistance relationship, respectively (right panel of Fig. S3). 
After above categorizing, drug response prediction problem was ready to be formalized as a binary classification 
problem with a pair of cell and drug as prediction input, sensitive or resistant relationship between them as the 
output, which was feeding to SVM-based algorithms15,16,42.

Benchmark datasets and SVM implementation.  The dataset used to validate our method came from 
CCLE, which contains 8-point dose-response curves for 24 compounds across 504 human cancer cell lines. The 
sensitive and resistant associations between cancer cells and drugs were utilized as gold-standard positive and 
negative dataset, respectively. Oncogene mutation, DNA copy number, and mRNA expression were applied to 
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represent cell lines, which came from CCLE ‘CCLE_Oncomap3_2012-04-09’ MAF file, ‘CCLE_copynumber_
byGene_2013-12-03’ TXT file, and ‘CCLE_Expression_2012-09-29’ CSV file, respectively. Chemical proper-
ties, drug-targets, and ATC-code annotations were utilized to measure the similarity among drugs. Chemical 
property came from a collection of molecular descriptors calculated by QuaSAR-Descriptor in the Molecular 
Operating Environment (MOE v. 2013.10, Chemical Computing Group Inc., Montreal, Canada). Target pro-
tein amino acid sequences were extracted from UniProt (\url{http://www.uniprot.org/}). ATC-codes of drugs 
were extracted from World Health Organization Collaborating Centre (WHOCC) (\url{http://www.whocc.no/
atc_ddd_methodology/who_collaborating_centre/}).

We trained the SVM-based predictor by using LibSVM43. In our implementation, the penalty parameter C was 
optimized by grid search approach with 3-fold cross-validation, and the optimal value of C was 10. To evaluate the 
performance of PDRCC, 10-fold cross-validation was introduced here. The performance of PDRCC was shown 
by receiver operating characteristic (ROC) curve18, which shows the trade-off between the true positive (correctly 
predicted interactions) rate (TPR) with respect to the false positive (wrongly predicted interactions) rate (FPR). 
We noted that our prediction task was imbalance, because that the number of resistant associations was usually 
much larger than the number of sensitive association about three times. For example, there were 2,564 sensitive 
associations when using IC50 as the measurement of drug response. While, the number of resistant associations 
was 6,750, which were about three times of the number of sensitive ones. Thus, we introduced the precision-recall 
curve19, which is the better index to evaluation the performance of classifier on imbalance problem, to further 
evaluate the performance of our PDRCC. Furthermore, the evaluation criteria, area under ROC (AUC), and 
area under precision-recall curve (AUPR) were also used to assess the performance of the proposed predictive 
methods.
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