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Background: Many studies have shown that c-Myc plays a critical role in

tumorigenesis. However, the molecular role of c-Myc in head and neck

squamous cell carcinoma (HNSC) remains unclear.

Methods: Several biological databases, including UALCAN, TIMER2.0,

TCGAportal, GEPIA, KM plotter, OncoLnc, LinkedOmics, GSCA, and TCIA,

were used to analyze the molecular role of c-Myc in HNSC. The expression

levels of c-Myc were validated by real-time PCR (RT–PCR) and Western blot in

CAL-27 cells.

Results: The expression of c-Myc mRNA were significantly increased in HPV-

negative HNSC tissues. The expression of c-Myc gene level was correlated with

TP53 mutation status. HNSC also showed hypomethylated c-Myc compared

with normal tissues. c-Myc was identified as an ominous prognostic factor for

HNSC patients and correlated with immune infiltrating levels. Moreover, high

c-Myc expression was associated with decreased expression of a series of

immune checkpoints, resulting in a dampened immune response. c-Myc

potentially mediated IL-17 signaling pathway and Th1 and Th2 cell

differentiation. Inhibition of c-Myc expression increased apoptosis of CAL-27

cells.

Conclusions: These findings suggest a new mechanism of c-Myc in the

prognosis of HNSC, implying the potential of c-Myc as a therapeutic target

for HNSC patients.
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Introduction

Head and neck squamous cell carcinoma (HNSC) is the

eighth most frequent tumor worldwide and is associated with a

high rate of morbidity and mortality (1). Despite great advances

in diagnostic and therapeutic methods, a high rate of local and

distant failure after treatment of advanced HNSC was observed

(2). The prognosis for these patients with recurrent and

metastatic (R/M) HNSC receiving platinum-based therapy is

even worse (3). Hence, there is a high need for improved therapy

for this population. A variety of genomic imbalances are

involved in head and neck carcinogenetic processes (4–6).

The c-Myc proto-oncogene located at 8q24 has been

implicated in the regulation of cell growth, differentiation and

apoptosis (7). c-Myc overactivation is a frequently detected and

crucial genetic event in HNSC. c-Myc gene amplification is

involved in the pathogenesis of HNSC, especially in laryngeal

squamous cell carcinoma (LSCC), which is the prominent

histopathological entity among HNSC (8). Significant c-Myc

amplification detected by implementing the polymerase chain

reaction technique was observed in another study (9). c-Myc

promotes the activation of poly (ADP-ribose) polymerase

(PARP)-dependent DNA repair pathways, resulting in

chemoresistance (10). c-Myc also promotes CHK1 and CHK2

expression to mediate the DNA damage checkpoint response,

resulting in radioresistance (11). Overactivation of c-Myc seems

to be correlated with aggressive biological behavior in HNSC, so

its detailed mechanisms necessitate further study. The purpose

of our study was to investigate the molecular role of c-Myc in

HNSC to provide a new effective treatment option for

HNSC patients.
Materials and methods

Expression and methylation of c-Myc
in HNSC

UALCAN (12) and TIMER2.0 (13) were applied to evaluate

the expression c-Myc in HNSC patients. The comparison of c-

Myc expression between HNSC and normal samples was

conducted using TCGA-HNSC dataset. The expression of c-

Myc in subgroups of HNSC was subdivided based on TP 53

mutation status.
Survival analysis of c-Myc in HNSC

TCGAportal (http://www.tcgaportal.org), GEPIA (14), KM

plotter (15), and OncoLnc (16) were used to evaluate the impact

of c-Myc mRNA expression on OS in HNSC patients based on

the TCGA database.
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Relationships between c-Myc and
immune checkpoints in HNSC

The relationships between c-Myc expression and immune

checkpoints in HNSC patients from TCGA database were

further investigated via LinkedOmics (17).
Immune infiltration analysis of c-Myc
in HNSC

GSCA (18) was used to detect the correlation between c-Myc

expression and the immune microenvironment in HNSC.

TIMER2.0 (13) and TCIA (19) were used to estimate the

impact of immune cells on the OS of HNSC patients.
Explore c-Myc related pathways in HNSC

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were conducted to understand

the functions of c-Myc via LinkedOmics (17).
Materials and cell culture conditions

Triptonide (purity > 98%) was purchased from Sigma (St.

Louis, USA) and dissolved in dimethyl sulfoxide (DMSO) as a 5

mM stock and then freshly diluted in culture media at 10 nM, 30

nM, and 50 nM. Oral adenosquamous carcinoma cells, CAL-27

cells, were obtained from the Chinese Academy of Sciences Cell

Bank (Shanghai, China). CAL-27 cells were cultured in RPMI-

1640 supplemented with 10% fetal bovine serum in a humidified

atmosphere containing 5% CO2 at 37°C.
c-Myc siRNA

Synthetic c-Myc siRNA was used to knockdown the

expression of c-Myc in CAL-27 cells. c-Myc siRNA (target

sequence: 5′- GAGGAUAUCUGGAAGAAAUTT -3 ′ ;
antisense:5′- AUUUCUUCCAGAUAUCCUCTT -3′) was

purchased from Kaiji (Nanjing, China). Lipofectamine

RNAiMax was purchased from Invitrogen (Grand Island,

USA). Transfection was performed according to the

manufacturer’s instructions. Human non-specific siRNA

((Kaiji, Nanjing, China)) was used as a negative control (NC).
Apoptosis analysis

Annexin V/propidium iodide (PI) apoptosis detection kit

(Biyuntian, Shanghai, China) was used to detect cell apoptosis
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according to the manufacturer’s protocol. CAL-27 cells were

exposed to different concentrations of triptonide (10 nM, 30 nM,

or 50 nM) for 72 h and then collected. Cells were resuspended in

200 mL binding buffer containing 5 mL Annexin V and 10 mL PI

fluorescence dye, and then apoptosis was detected by flow

cytometry (Becton Dickinson FACS Calibur).
Western blot

Total proteins were extracted using SDS lysis buffer

(Beyotime, Shanghai, China) supplemented with protease and

phosphatase inhibitor cocktail (Beyotime). Protein samples were

subjected to 12% SDS–PAGE and then transferred to PVDF

membranes (Bio–Rad, California, USA). PVDF membranes

containing proteins were blocked by QuickBlock Blocking

Buffer at room temperature for 20 min and then incubated

overnight at 4 °C with primary antibody. After washing, the blots

were soaked with horseradish peroxidase (HRP)-conjugated

secondary antibody at room temperature for 1 h. Finally, blots

were visualized using Immobilon Western Chemiluminescent

HRP Substrate (Millipore).
Real-time PCR

Total RNA was extracted using the RNA-Quick Purification

Kit (Esunbio, Hangzhou, China) and then used in a reverse

transcriptase reaction with the PrimeScript™ RT reagent kit

(Takara, Kyoto, Japan). The TB Green™ Premix Ex Taq™ kit

(Takara) was used for the thermocycling reaction in an ABI-

7500 fast Real Time PCR machine (Thermo Scientific). The

primer sequences used in the experiment were as follows: c-Myc

(Forward: 5′-CGCCAGAGGAGGAACGAGCTAA-3′; Reverse:
5′- TCTGCTTGGACGGACAGGATGT- 3′).
Human oral squamous cell
carcinoma tissues

Twenty of the oral squamous cell carcinoma (OSCC) tissue

samples were obtained from the tissue bank of the department of

pathology, Nanjing Stomatological Hospital. The study was

approved by the institutional review board of the hospital.

Informed consent was collected from all patients or their

direct relatives. All diagnoses were histologically confirmed.
Tissue microarrays (TMA) construction
and immunohistochemistry (IHC)

Protein expression of c-Myc, PDCD1 and LAG3 was

analyzed by IHC using a tissue microarray (TMA) platform.

The TMA was constructed using pretreatment formalin-fixed

paraffin-embedded (FFPE) tumor specimens from 20 adult
Frontiers in Oncology 03
patients with OSCC. The samples included 11 (55.0%) males

and 9 (45.0%) females, with the mean age of 62.0 years old

(range: 23-77 years old). Sections (5 mm) were then cut from

each TMA and stained with antibodies to c-Myc (1:400; Abcam,

Cambridge, USA), PDCD1 (1:200; Abcam, Cambridge, USA),

and LAG3 (1:500; Abcam, Cambridge, USA). IHC staining was

performed as previously reported (20, 21).
Statistical analysis

Student’s t test, c2 test and one-way ANOVA were used for

comparisons, as appropriate. The difference was considered

statistically significant if P<0.05. All analyses were performed

using GraphPad Prism 8 (GraphPad Software, California, USA).

Results

c-Myc is significantly differentially
expressed between TP53 wild-Type and
mutant HNSC

No significant difference in c-Myc mRNA expression in

HNSCs was observed (Figures 1A, B). However, patients with

HPV-negative HNSC had significantly higher c-Myc mRNA

expression (Figure 1A). c-Myc expression was correlated with

the mutation status of TP53 (Figures 1C, D). There was no

correlation between c-Myc and TP53 expression (Figure 1E).
c-Myc is a prognostic biomarker
in HNSC

The overall survival (OS) of HNSC patients with low c-Myc

mRNA expression was superior to that of patients with high c-

Myc mRNA expression (Figures 2A–D). The cutoff values of c-

Myc mRNA expression were different in these databases. These

results revealed that c-Myc mRNA is a valuable prognostic

biomarker in HNSC. TP53 mutant significantly deteriorated

the survival of HNSC patients with low c-Myc mRNA

expression (Figures 3A, B).
c-Myc expression is related to immune
checkpoint (ICP) genes in HNSC

In this study, we analyzed the association of c-Myc

expression and TP53 mutation status with immune

checkpoints in the TCGA database. As shown in Figure 4,

some inhibitory checkpoint molecules, including CTLA4,

HAVCR2, LAG3 and PDCD1, had negative correlations with

c-Myc mRNA levels in HNSCs. HNSC patients with TP53

mutant had low expression of CTLA4, HAVCR2, LAG3 and

PDCD1 (Figures 4E–H).
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c-Myc expression is correlated with
immune cell infiltration in HNSC

We aimed to explore the correlation of c-Myc expression

with immune cell infiltration in HNSC. The expression of c-Myc

was negatively correlated with the infiltration of B cells, CD8+ T

cells, CD4+ T cells, gamma delta T cells, and NK cells in HNSC

patients (Figures 5A, C, E, G, K). In contrast, c-Myc expression
Frontiers in Oncology 04
had a positive correlation with the enrichment of neutrophils

and Th17 cells (Figures 5I, M). As expected, the association of

these tumor-infiltrating immune cells with OS was also

observed in HNSC (Figures 5B, D, F, H, J, L, N). LinkedOmics

was used to construct KEGG pathway enrichment analyses

(Figure 6). c-Myc potentially mediated IL-17 signaling

pathway and Th1 and Th2 cell differentiation to affect

immune cell infiltration.
B C

D E

A

FIGURE 1

(A) c-Myc mRNA expression in pancancer (*: p-value < 0.05; **: p-value <0.01; ***: p-value <0.001). (B) c-Myc mRNA expression in HNSC
(UALCAN). (C) c-Myc mRNA expression based on TP 53 mutation status (UALCAN). (D) c-Myc mRNA expression based on TP 53 mutation status
(TIMER2.0). (E) Correlation between MYC and TP53 expression (TIMER2.0Fig 1E).
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Triptonide induces apoptosis of CAL-27
cells via c-Myc signaling

The apoptosis ratio of CAL-27 cells was investigated using

Annexin V-FITC/PI staining and flow cytometry (Figure 7A).

After incubation with 50 nM triptonide for 72 h, the percentage

of apoptotic cells was 24.05 ± 0.45% (P < 0.01). Interestingly,

low-dose (10 nM) triptonide treatment for 72 h also resulted in

obvious apoptosis of CAL-27 cells. The percentage of apoptotic

cells increased from 3.58 ± 1.04% to 6.94 ± 0.16% (P < 0.01) at 10

nM for 72 h. c-Myc specific siRNA also significantly increased

the percentage of apoptotic cells. On the basis of triptonide

treatment, we added c-Myc-specific siRNA to knockdown c-Myc

expression (Figures 7D, F) and observed that the percentage of

apoptotic cells still increased significantly (Figure 7B). We

treated CAL-27 cells with 10 nM triptonide for 72 h and then

collected cells for analysis of c-Myc protein levels using Western

blotting. We observed that triptonide treatment and c-Myc

specific siRNA induced a decrease in c-Myc protein

(Figures 7C, D). To reveal the mechanism by which triptonide

reduces c-Myc proteins, we tested the c-Myc mRNA level in

CAL-27 cells (Figure 7E) and observed that triptonide treatment
Frontiers in Oncology 05
led to a decrease in c-My, suggesting that trip¬tonide regulates c-

Myc at the transcriptional level.
LAG3 expression tended to increase in
patients with low expression of c-Myc

No significant relationship was found between c-Myc

expression and gender, age, tumor staging, and differentiation

(Table 1). LAG3 protein was expressed on the tumor-infiltrating

lymphocytes (TILs) in 15 out of 20 (75%) samples. 45.0% tissues

exhibited PDCD1 immunostaining (Figure 8). There was a trend

that more LAG3 expression was found in patients with low c-

Myc expression (p=0.072). There was no significant relationship

between c-Myc and PDCD1 (p=0.653).
Discussion

Identifying novel molecular prognostic biomarkers is of

great importance for improving outcome of HNSC, which

develops as a result of a series of genetic and epigenetic
B

C

D

A

FIGURE 2

Overall survival curves of c-Myc in HNSC from different databases. (A) TCGAportal. (B) GEPIA. (C) KM-plotter. (D) OncoLnc.
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alterations in “cancer genes” (tumor suppressors and

oncogenes). c-Myc is mainly involved in apoptosis, cell cycle,

metabolism, proliferation, and ribosome biogenesis. The

overexpression of c-Myc has been almost invariably linked to

tumorigenesis. Our results indicated that c-Myc was highly

expressed in TP53-mutated HNSC patients. Additionally, high

expression of c-Myc in CAL-27 cells was also detected by

Western blot. Subsequently, the prognosis analysis results

demonstrated that the expression of c-Myc in HNSC could be

an independent predictive factor. As a result, due to the

downregulation of c-Myc expression in CAL-27 cells, the

percentage of apoptotic cells was increased. c-Myc silencing by

either shRNA c-Myc or c-Myc inhibitor (10058-F4) resulted in a
Frontiers in Oncology 06
dose-dependent reduction in long non-coding RNA SNHG16

levels, which induced cell apoptosis in CAL-27 and TSCCA

cells (22).

The tumor-immune microenvironment (TME) in HNSC is

immunosuppressive and may play an important role in HNSC

progression and treatment resistance (23). Understanding the

landscape of the tumor-immune microenvironment is critical

for improving the efficacy of current immunotherapies in HNSC.

The TME is composed of different subsets of cells, such as T

cells, B cells, neutrophils, macrophages, regulatory T (Treg) cells,

natural killer (NK) cells and mast cells (24). Tumors often evade

host immune surveillance by suppressing cytotoxic T cell

function or by activating and expanding immunosuppressive
B

A

FIGURE 3

Survival analysis based on c-Myc expression and TP53 mutation status. (A) Kaplan Meier model. (B). Cox proportional hazards model.
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B

C D

E F

G H

A

FIGURE 4

Correlation between c-Myc and immune checkpoints. (A) CTLA4. (B) HAVCR2. (C) LAG3. (D)Immune checkpoints expression based on TP 53
mutation status. (E) CTLA4. (F) HAVCR2. (G) LAG3. (H) PDCD1.
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cell populations. It is now clear that c-Myc plays a crucial role in

instructing the tumor microenvironment (25, 26). c-Myc

regulates the TME through effects on both immunoregulatory

proteins and immune effector cells. Our results also showed that

c-Myc expression was associated with immune cell infiltration.

Enhanced tumor infiltration of CD3+CD4+, CD3+CD8+ T cells

and NK cells were observed in the Myc-dependent prostate

cancer (MycCaP) tissues after small molecule inhibitors (MYCi)

treatment (27). Our results showed that an increase percentage

of these tumor-infiltrating immune cells were associated with

better OS in HNSC patients. MYC inhibitor treatment may

induce immunogenic cell death (ICD), which could activate the

immune response in tumors leading to immune cell infiltration

(27). Myc inhibitor prodrug (MI3-PD) could reduce M2

macrophages in the tumor microenvironment while sparing

M1 antitumor macrophages (28). c-Myc inhibitor JQ1 could

block M2 polarization of macrophages via S1PR1 (29). Mst1-

deficiency may induce the hyperactivation of dendritic cells

(DCs) (30). IL-23 was increased in Mst1 -/- dendritic cells

(DCs), which also exhibited an increase in c-Myc protein

levels. c-Myc inhibitor could downregulated the increased

expression of IL-23 observed in Mst1 -/- DCs (30). Upon c-

Myc activation, there is an immediate exclusion of T, B and NK

cells within the tumor microenvironment via IL-23 signaling

(25). c-Myc also cooperates with Ras to regulate the regulate the
Frontiers in Oncology 08
secretion of CCL9 and IL-23 (25), thereby promoting the

recruitment of immunosuppressive cells and the exclusion of

adaptive T and B cells and innate immune NK cells to facilitate

tumor immune escape. IL-23 plays a critical role in enhancing

IL-17 production in vivo (31). KEGG results showed that IL-17

signaling pathway was actived in c-Myc overexpressed HNSC

patients. Th17 cells are maintained and expanded by IL-23 via

tumor-secreted PGE2 (32). Th17 cells further produce IL-17

interacting with IL-17RA/RC complex on receptor carrying cells

to regulate functionality of DCs and create a self-sustaining

feedback loop via IL-23 (33). Induced c-Myc expression could

enhanced tumor infiltration of neutrophils, which play a

stimulating role in c-Myc-induced liver tumorigenesis (34).

Neutrophils play a key role in mediating tumor angiogenesis,

however, the increase of neutrophil infiltration could be

suppressed by the inhibitor of angiogenesis (34).

The mutational profile of TP53 was an independent

prognostic factor in HNSC (35). TP53 mutations occurred in

HNSC with a frequency of 72% in a whole-exome sequencing

analyses study (36). Mutant p53 proteins not only lose tumor-

suppressive functions but also frequently exert oncogenic gain-

of-function (GOF) properties through their ability to modulate

gene expression (37). c-Myc acted as a major mediator of mutant

p53 GOF in HNSC (38). Mutant p53 gains its function via c-Myc

activation upon CDK4 phosphorylation in HCC (39). Mutant
B C D

E F G H

I J K L

M N

A

FIGURE 5

c-Myc expression is correlated with immune infiltration of (A) B cells, (C) CD8+ T cells, (E) CD4+ T cells, (G) gamma delta T cells, (I) neutrophils,
(K) NK cells, and (M) Th17 cells. Tumor-infiltrating immune cells were associated with OS (B, D, F, H, J, L, N).
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p53 can regulate the expression of the endogenous c-Myc gene

and could sustain active the c-Myc promoters (38, 40).

Predictive power of coexpression of mutant p53 and c-Myc

proteins in outcome of HNSC is more accurately than what these

proteins do individually (41). Mutant p53 not only contributes

to c-Myc hyperactivation but also enhances c-Myc protein

stability by preventing FBW4A-mediated ubiquitination and

degradation in HCC cells (42).

HNSC patients exhibited higher c-Myc expression, and the

expression of most immune checkpoint molecules, such as

CTLA4, HAVCR2, LAG3, and PDCD1, had negative

correlations with c-Myc mRNA levels in HNSC in our study.

A trend that more LAG3 protein expression was found in

patients with low c-Myc expression (p=0.072) was observed in

our study. Depending on the cellular context, the c-Myc

oncogene could serve as a positive or negative regulator of

immune checkpoint molecules expression (43). Knockdown of

c-Myc expression in hepatocellular carcinoma cells exposed to

IFN-g using siRNA assay increased expression of PD-L1 both at

mRNA and protein levels (44). The expression of PD-L1 could

be mediated by the IFNR/JAK/STAT1/IRF1 pathway, yet c-Myc

could suppress the expression of STAT1 both at mRNA level and

protein level (44). Up-regulation of c-Myc expression during T-

cell priming was inhibited by treatment with I-BET-762, which

also led to increased expression of the inhibitory cell-surface
Frontiers in Oncology 09
receptor LAG3 (45). CTLA4 mRNA was significantly less

expressed in lymph nodes chronic lymphocytic leukemia (LN-

CLL) cells, and c-Myc mRNA was significantly overexpressed in

LN-CLL cells (44). Suppression of CTLA4 in chronic

lymphocytic leukemia (CLL) patient samples caused a

reduction in the levels of c-Myc messenger RNA and protein

(46). These results indicate that there was a relationship between

c-Myc and CTLA4. HNSC patients with higher CTLA4 levels

had longer OS than those with lower CTLA4 levels (P < 0.001)

(47). Altogether, it is still unclear how c-Myc might

downregulate the expression of immune checkpoint molecules

in HNSC.

HERB database, a high-throughput experiment- and

reference-guided database of traditional Chinese medicine, was

used to find that c-Myc is the target gene of Tripterygium

wilfordii Hook (48). Triptonide is a small molecule monomer

extract from the ancient Chinese herb Tripterygium wilfordii

Hook, which has historically been used in traditional Chinese

medicine to treat rheumatoid arthritis for centuries (49). TN

induced nasopharyngeal carcinoma (NPC) cell cycle arrest and

apoptosis activation through downregulation of c-Myc (50). Our

results also showed that Triptonide regulated c-Myc at the

transcriptional level to induce apoptosis of CAL-27 cells. A

combination of Triptonide and c-Myc-specific siRNA could

induce more apoptotic cells than Triptonide used alone,
FIGURE 6

KEGG analysis of c-Myc.
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B

C D

E F

A

FIGURE 7

(A) Triptonide induces cell apoptosis. (B) c-Myc siRNA transfection induces cell apoptosis. (C) c-Myc levels in CAL-27 cells after treatment with
triptonide, assessed by western blot. (D) The expression of c-Myc measured by western blot after c-Myc siRNA transfection. (E) c-Myc levels in
CAL-27 cells after treatment with triptonide, assessed by RT–PCR. (F) The expression of c-Myc measured by RT–PCR after c-Myc siRNA
transfection.
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therefore, we suspected that Triptonide could induce the

apoptosis of CAL-27 cells through other signaling pathways,

such as ERK/MAPK pathway (51).

Several conceptual and practical difficulties, including the

lack of defined “pockets” and potential toxicity to normal tissues

have led to c-Myc being difficult to target (52). Recent strategies

of targeting c-Myc indirectly, such as with BRD4 or CDK7
Frontiers in Oncology 11
inhibitors showed a therapeutic window for targeting c-Myc,

alleviating the above concerns (53, 54).Han et al. developed the

c-Myc inhibitors with well tolerability that disrupted MYC/

MAX heterodimerization, enhanced c-Myc degradation, and

impaired c-Myc-driven gene expression to increase tumor

immune cell infiltration, and sensitize tumors to anti-PD1

immunotherapy (27). The development of novel agents to
TABLE 1 The relationship between c-Myc expression and clinicopathological features of OSCC patients.

Cases, n (%) c-Myc expression c-Myc expression p value
low, n (%) high, n (%)

All patients 20 (100%) 9 (45%) 11 (55%)

Gender 0.964

Male 11 (55%) 5 (25%) 6 (30%)

Female 9 (45%) 4 (20%) 5 (25%)

Age 0.279

≤60 years 7 (35%) 2 (10%) 5 (25%)

>60 years 13 (65%) 7 (35%) 6 (30%)

Smoking 0.582

No 12 (60%) 6 (30%) 6 (30%)

Yes 8 (40%) 3 (15%) 5 (25%)

TNM staging 0.888

I-II 7 (35%) 3 (15%) 4 (20%)

III-IV 13 (65%) 6 (30%) 7 (35%)

Differentiation 0.369

High 4 (20%) 1 (5%) 3 (15%)

Medium-Low 16 (80%) 8 (40%) 8 (40%)
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FIGURE 8

c-Myc, PDCD1 and LAG3 expression in an OSCC TMA by immunohistochemistry.
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inhibit c-Myc activity should be highly sought after and a very

promising approach for applying targeted therapeutic strategies

for cancer therapy.

Several study limitations could have affected our results as

well. First, specific data on surgery, chemotherapy, radiotherapy,

tumor size and other factors were not available to perform

subgroup analyses. Second, the study is based on data from

public databases, and the quality of data may affect the results.

However, we obtained similar results by analyzing multiple

databases. Third, it would be more informative to analyze the

difference in immune cell infiltration between different c-MYC

expression and TP53 mutation status, since TP53 also highly

influences the immunogenic profiles. Forth, only CAL-27 cell

line was used to justify the results of bioinformatics analysis and

the effect on the cell line may be a random effect. Fifth, we chose

Triptonide to interfere with c-Myc expression according to

HERB database. In fact, targeting c-Myc by genetic ablation or

pharmacological inhibitors may be the best choice to verify the

role of c-Myc in HNSC. Lastly, we investigated the molecular

functions and biological effects of c-Myc in HSCC by “in silico

analysis”, which is within a matter of speculation. The molecular

functions and biological effects of c-Myc which should be

intensively studied in future investigations.

In conclusion, the current study showed that c-Myc can be

considered a therapeutic target for HNSC. However, further

functional studies are required to clarify the role of c-Myc

in HNSC.
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