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There are many areas in biomechanics that 
could be considered a “Grand Challenge,” 
I have selected, as a Grand Challenge, the 
development of computational models of 
biomechanical systems from the sub-cellu-
lar level to the whole body that have been 
properly validated against critical experi-
ments. The types of models can be best 
shown in a table that lists the anatomies and 
the processes that are involved, see Table 1.

Most successful modeling efforts are 
focused on answering well-defined ques-
tions, and as such they are focused on 
specific physiologic processes that are 
considered within a hierarchy of anatomic 
detail. For example, an impact to the head 
can be considered from a system level, 
considering head accelerations and neck 
constraints, and resulting in an index such 
as a Head Injury Criterion (HIC) score. A 
head impact can also be considered from an 
organ point of view, addressing bone flex-
ure, considering anatomic variations, and 
resulting in a likelihood of facial or cranial 
fractures. Further, head impacts could be 
considered from a tissue level, addressing 
strain distributions and peaks, and consid-
ering anatomic features such as white/gray 
matter, sulci, and internal membranes in 
the brain. Head impacts can also be con-
sidered from an injury process point of 
view, addressing the physiologic response 
to mechanical damage, and the likelihood 
of minor bleeding, edema, or circulatory 
changes. Finally, head impacts could be 
considered form a cellular or sub-cellular 
point of view, assessing axonal patency, 
membrane rupture, or apoptosis. In fact, 
head impact as a process crosses all these 
modeling hierarchies, and any modeling 
effort should address these hierarchies of 
anatomy, either justifying the relevance of 
the model or clarifying the assumptions 
that make the modeling effort meaningful 

to answer the questions posed. Clearly, an 
integrated understanding of a process such 
as head injury involves an iterative effort 
whereby the assumptions for the modeling 
efforts at each hierarchical level are revisited, 
and the relevance of various features are re-
assessed as overall understanding improves. 
Therefore, Table 1 shows a conceptual rela-
tionship between anatomic hierarchies and 
some generic physiologic processes, with 
examples of the processes that occur at the 
different anatomical levels. A generic force-
dominated process is shown, and a generic 
displacement-dominated process is also 
shown, along with examples of the types 
injuries that focus attention on the hierar-
chies considered.

With the appropriate caveats, research at 
each level can be well-justified. For example, 
a tissue-level (strain-based) study of brain 
injury could assume that any tissue dam-
age at the cellular level does not affect the 
continuum-level stress-strain relationships 
used; it would assume that the structure of 
the head is relevant (i.e., that the head con-
sidered is either an accurate computational 
model, or that the animal model used is rel-
evant); and it would assume that the overall 
forces applied to the head are either accurate 
for humans or scaled appropriately.

A number of such models at different 
levels have already been developed and 
validated under differing conditions, but 
there are no full body human models that 
include full validation at all levels shown 
in Table 1. Probably the most complete full 
body human finite element (FE) model is 
that developed as part of the Global Human 
Body Models Consortium (GHBMC) by 
Gayzik et  al. (2012). This model includes 
the skeletal structure and all organs and 
has been validated against a number of 
frontal and lateral rigid impactor and sled 
tests. This model does not include anatomic 

detail below the organ level in Table 1. A 
total human model for safety (THUMS) 
FE model was developed, primarily to 
study various kinematic injury mecha-
nisms, and is used as a substitute for the 
crash test dummies used for car occupants 
and pedestrians, Iwamoto et al. (2002). This 
model was validated through the verifica-
tion of pedestrian’s whole body kinematics 
and lower extremity injuries, but lacks the 
detailed definition of material properties 
and anatomic detail in order to predict 
injuries in the organs.

Human torso models, as an examples of 
a regional model, with varying degrees of 
anatomic detail, have been developed and 
validated under differing conditions, from 
blunt to ballistic impact and blast, see for 
instance, Chen (1978), Plank and Eppinger 
(1989, 1991), Plank et  al. (1994), Wang 
(1995), Jolly and Young (2000), Shen et al. 
(2008), and Roberts et al. (2007). There have 
also been human head FE models, of varying 
anatomic detail, developed and validated 
to compute strains and intracranial pres-
sures in order to assess whether there have 
been focal injuries (contusion) or Diffuse 
Axonal Injuries (DAI). These models have 
been validated with forcing functions that 
include head linear and rotational accelera-
tion as well as blunt impact and blast, see 
for instance, Merrill et  al. (1984), Dimasi 
et al. (1991), Trosseille et al. (1992), Ruan 
et al. (1993), Kang et al. (1997), Claessens 
et  al. (1997), Kleiven (2002), Willinger 
and Baumgartner (2003), Takhounts et al. 
(2003), Deck et al. (2004), and Roberts et al. 
(2012).

Since “blast lung” has been thought to 
be one of the primary injuries to humans 
in blast events, there are organ level models 
that examine the effects of blast on the pul-
monary system, see for instance, Stuhmiller 
et al. (1996). Other organ level models that 
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all the different types of models, with dif-
fering degrees of validation for each. The 
grand challenge that this journal seeks to 
address is to provide a forum for models 
that are tested against experimental data in 
critical ways; whether they succeed in rep-
resenting the experimental data or not, the 
comparison between proposed mechanisms 
and data will advance our understanding.
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Table 1 | Anatomy and processes for computational modeling.

Anatomy Process

Transport Force/stress Deflection Injury Modeling approach

Whole body Cardiac output, lung 

physiology,

Force/pressure 

impacts, acceleration

Dislocation, falls, blunt 

trauma, whole body 

vibration

Movement or behavior 

disorders

Lumping of different 

models

Region Blood/lymph flow 

(intracranial, cardiac, 

pulmonary). Lung 

collapse

Forces/pressure, 

impacts, acceleration, 

force transmission

Blunt trauma, 

penetrating trauma, 

impact, whiplash

Reflex sympathetic 

dystrophy, compartment 

syndromes, lower 

extremity injuries

Lumping of different 

models

Organ Circulation, interstitial 

pressure, intracranial 

pressure

Energy/forces, 

pressures applied to 

organs

Relative motion between 

organs and bones, peak 

deflections in bones

Ruptured spleen, lung, 

or brain contusions. TBI,

Lumping of different 

models

Tissue Regulation of circulation, 

pO2, pH, edema

Stress, strain energy 

density

Strain peaks Extracellular damage, 

fracture, edema

Continuum

Cells O2, nutrients Membrane tension, 

filament forces, 

dermatomes

Cell stretch, axonal 

stretch, smooth muscle 

contraction

Rupture, apoptosis Sub-continuum

Subcellular ATP Stress Actin/myosin/tubulin Membrane stretch Lumped sub-continuum
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