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Unusually for a viral infection, the immunological phenotype of severe COVID-19 is
characterised by a depleted lymphocyte and elevated neutrophil count, with the
neutrophil-to-lymphocyte ratio correlating with disease severity. Neutrophils are the
most abundant immune cell in the bloodstream and comprise different subpopulations
with pleiotropic actions that are vital for host immunity. Unique neutrophil subpopulations
vary in their capacity to mount antimicrobial responses, including NETosis (the generation
of neutrophil extracellular traps), degranulation and de novo production of cytokines and
chemokines. These processes play a role in antiviral immunity, but may also contribute to
the local and systemic tissue damage seen in acute SARS-CoV-2 infection. Neutrophils
also contribute to complications of COVID-19 such as thrombosis, acute respiratory
distress syndrome and multisystem inflammatory disease in children. In this Progress
review, we discuss the anti-viral and pathological roles of neutrophils in SARS-CoV-2
infection, and potential therapeutic strategies for COVID-19 that target neutrophil-
mediated inflammatory responses.
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INTRODUCTION

Neutrophils are the first responders to infection and extravasate rapidly from the blood vessels into
tissue. They are the most abundant leukocyte in blood, with about 1011 neutrophils produced by the
bone marrow each day, representing 40-60% of circulating immune cells in healthy adults (1).
Neutrophils kill pathogens using oxidative burst, degranulation, phagocytosis and the release of
neutrophil extracellular traps (NETs) (2, 3). Their role is most prominent in bacterial infection but
they can also contribute to antiviral immunity.
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Severe disease in COVID-19 is associated to increased
neutrophil-to-lymphocyte ratio and high expression of
neutrophil-related cytokines IL-8 and IL-6 in serum, and
neutrophilia has been described as a predictor of poor outcome
(4–14). Peripheral blood neutrophil counts in patients with
COVID-19, although not as elevated as bacterial pneumonia,
are higher in severe COVID-19 compared with mild cases and
most other viral infections (4, 15). Neutrophils are associated
with the development of thrombosis and pulmonary infiltrates
found in post-mortem samples following severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (16–18). In this Progress
review, we focus on emerging data on the roles of neutrophils in
the pathogenesis and response to SARS-CoV-2.
NEUTROPHILS IN COVID-19

An altered neutrophil-to-lymphocyte ratio occurs in many
conditions such as cancer, cardiovascular disease, sepsis and
inflammatory disorders, including Systemic lupus erythematosus
(SLE) and psoriasis (19). Patients with COVID-19 with severe
disease had significantly higher absolute neutrophil counts (8)
similar to the neutrophilia in both Severe Acute Respiratory
Syndrome (SARS) and Middle East Respiratory Syndrome
(MERS) (20). The limited antiviral response in COVID-19 may
exacerbate neutrophil infiltration, resulting in exuberant
inflammation (21).

A small gene ontology (GO) analysis of COVID-19 infected
cells indicated that neutrophil activation and degranulation are
the most activated cellular immune processes in COVID-19, but
did not play a role in the antibody-mediated elimination of
SARS-CoV-2 in a passive immunisation model (22). Neutrophils
contribute to hypersensitivity pneumonitis in SARS-CoV-2
infection and altered neutrophil immunometabolism, with
accumulation of succinate correlating with disease severity
(21). A rat coronavirus (RCoV) model demonstrated that
neutrophils produce cytokines and chemokines in response to
alveolar epithelial cell infection with SARS-CoV-2, resulting in
an inflammatory response which contributes to lung injury (23).
NEUTROPHIL EXTRACELLULAR TRAPS

Neutrophil extracellular traps (NETs) are web-like chromatin
structures released by neutrophils to degrade virulence factors
and kill bacteria. Once unregulated in sepsis or severe COVID-
19, they induce multiple organ damage, including arterial
hypotension, hypoxemia, coagulopathy, renal, neurological,
and hepatic dysfunction as consequence of a NETs-associated
cytokine storm (24–26). Silva et al. found that gasdermin
inhibition with disulfiram or genic deletion decreases NETs
formation with reduced multiple organ dysfunction and
mortality in a sepsis model (27). NETs concentration was
markedly increased in the tracheal aspirate and plasma of
patients hospitalised with COVID-19 as well as in SARS-CoV-
2-infected lung airways and alveoli, with spontaneous NETs
Frontiers in Immunology | www.frontiersin.org 2
production from their neutrophils (13, 28–32). SARS-CoV-2
can directly induce healthy neutrophils to release NETs in
vitro, which increase pulmonary epithelium cell death (28).
NETs also appear to drive neuroinflammation in Ischemic
Brain Damage (IBD) and IBD following COVID-19, by
affecting the blood-brain barrier, promoting thrombosis, and
by inducing neuronal damage through extruded NETs
components, NETs-IL-1 loop and IL-17 cascades (33, 34),
making them a promising target for therapy.

The first step in NETosis is cellular activation via pattern
recognition receptors (PRR) such as Toll-like receptors 4 (TLR4),
TLR7 and TLR8 in viral infections (24, 35, 36). Reactive oxygen
species (ROS) are subsequently produced, resulting in the
activation of protein arginase deiminase 4 (PAD4) which is
responsible for chromatin decondensation (24, 37). Neutrophil
elastase (NE), a granule protein, induces neutrophil nuclear
membrane break down while granule protein gasdermin D
facilitates pore formation in the cell membrane and mediates
release of NETs into the extracellular space (Figure 1) (24, 31).
NETs do play a role in viral clearance, but excessive NETs
production exacerbates inflammation in acute respiratory
distress syndrome (ARDS) and contributes to microvascular
thrombosis (Figure 1) (38). These is potentially related to
over-activation of the Stimulator of interferon genes (STING)
pathway through cyclic GMP-AMP synthase (cGAS) in
phagosomes, and by SARS-CoV-2 infection itself through
Angiotensin-Converting Enzyme 2 (ACE2)-angiotensin II (39,
40). Pharmacological activation of the STING pathway may also
regulate the effects of SARS-CoV-2 infection (41). NETs can also
have different proteins cargo associated to their deoxyribonucleic
acid (DNA), citrullinated histone 3 (cit-H3), NE, and
myeloperoxidase (MPO) structure which can influence the
type of immune response triggered (42). Severe COVID-19
patients were shown to have higher expression of the alarmin
nuclear protein High mobility group box 1 (HMGB1), antiviral
molecules like ISG-15 and LL-37, or functionally active tissue
factor (TF) as protein cargo in NETs, produced mostly by normal
density granulocytes (NDG) (43, 44). These cargo molecules
induced thrombogenic activity and differential cytokines
expression (43, 44).
INFLAMMASOME ACTIVATION IN
COVID-19

COVID-19 is characterised by a cytokine storm and the Pyrin
domain containing 3 (NLRP3) inflammasome has been implicated.
The inflammasomes are molecular mechanism involving
multiprotein complexes which regulate the production of pro-
inflammatory cytokines. NLRP3, a member of the nucleotide
oligomerization domain (NOD)-like receptor (NLR) family, is
present in neutrophils (17). After NLRP3 activation, pro-caspase
1 is cleaved to the active form caspase 1, leading to the cleavage of
pro-inflammatory pro-IL-1b and pro-IL-18 into the active forms
(Figure 2) (45). Single-stranded ribonucleic acid (ssRNA) viruses,
such as SARS-CoV-2, induce Nuclear factor kappa B (NF-kB)
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activation and the further production of pro-IL-1b and pro-IL-18
(45, 46). Simultaneously, ROS and Adenosine 5’-triphosphate
(ATP) produced by mitochondria trigger NLRP3 inflammasome
assembly (46). Active NLRP3 inflammasome is present in
peripheral blood mononuclear cells (PBMCs) and post-mortem
tissues of COVID-19 patients, and high expression of its derived
products such as Casp1p20 and IL-18 were seen to correlate with
disease severity and poor clinical outcome (47). NLRP3
inflammasome activation has also been described in neutrophils
of severe COVID-19 patients (48). Aymonnier et al. found that
neutrophils from COVID-19 patients with respiratory failure
demonstrated NLRP3 inflammasome molecule Apoptosis-
associated speck-like protein containing a CARD (ASC) specks,
and their early formation in NETosis. In patients with severe
COVID-19 neutrophils with intact multilobulated nuclei, ASC
specks formation and histone H3 citrullination was elevated (48).
In a murine model they also showed transient presence of ASC
specks at the microtubule organizing center, before nuclear
rounding, early in NETosis (48). In addition, SARS-CoV-2 has
been shown to directly activate the NLRP3 inflammasome through
viroporin protein 3a, whichmost likely acts by the formation of K+

and Ca+ channels (49). Such direct activation of the inflammasome
leads to the production of IL-1b and IL-18, perpetuating
inflammation and resulting in further neutrophil activation (50).
NLRP3 inflammasome activation in the blood of patients reveals an
impaired immature neutrophil response in severe COVID-19.
Inflammasome signature analysis in circulating myeloid cells
Frontiers in Immunology | www.frontiersin.org 3
allows COVID-19 patients to be stratified and predicts evolution
of disease severity (51).
NEUTROPHIL SUBSETS IN COVID-19

Heterogeneity within the neutrophil population during infection
has been demonstrated in multiple diseases, and different subsets
have defined roles in influencing the inflammatory response (38,
52). Neutrophil subsets varying in their density, maturity and
expression of surface markers have been reported in COVID-19
(53, 54). Classically, in sepsis, immature neutrophils are released
from the bone marrow and Carissimo et al. found increased
immature neutrophils in whole blood that correlated with
increased IL-6 and IP-10, and COVID-19 disease severity (55).
The ratio of immature neutrophils to gamma delta (Vd)2 T cells
could predict severe COVID-19 (55). Additionally, a shift toward
immature neutrophils as the driver of hyperinflammation is
associated with severe COVID-19 disease (56).

Recently therehasbeena renewed interest in immunomodulatory
neutrophil subsets, specifically in the field of cancer, SLE and sepsis,
including low density granulocytes (LDGs) and myeloid derived
suppressor cells (MDSCs) (38), but there is not a consensus on
nomenclature and classification (57).MDSCs are amixedpopulation
of mature and immature cells with differing immunomodulatory
roles (58).There is a lackof clarity on thephenotypical and functional
characteristics of MDSCs and their relationship to LDGs but their
FIGURE 1 | The neutrophil and clinical characteristics of COVID-19 patients. Activated neutrophils can produce cytokines such as IL-1b, IL-6, TNF-a, MIF, IL-12, TGF-b,
IL-21, IL-23 and IL-27, contributing to a cytokine storm and the further development of ARDS and organ failure in COVID-19 patients. Pneumonia in COVID-19 patients is
most likely to be caused by the production of proteases, cationic polypeptides, cytokines and ROS by neutrophils. Upon SARS-CoV-2 recognition by TLR7/8/9, protein
arginase deiminase 4 (PAD4) is activated, which induces chromatin decondensation through histones citrullination and consequently NETs formation. Neutrophil nuclear
membrane is disrupted by neutrophil elastase (NE) and gasdermin D which facilitates the formation of a pore in the neutrophil cell membrane and mediates release of the
contents of NETs into the extracellular space. NETs induce macrophage activation and IL-1b production resulting in a positive loop with neutrophils and NETs formation.
Macrophages also secrete CCR1, CCR2, IL-6 and TNF-a leading to further neutrophil recruitment. Extracellular histones presented in NETs causes cell cytotoxicity
contributing with ARDS, sepsis and organ failure observed in COVID-19 patients. Extracellular DNA induces thick and viscous mucus production allowing bacteria
colonization and respiratory failure. NETs also interact with fibrinogen, VWF and platelets causing thrombosis in several organs such as lung, kidney, liver and
extremities. IL, interleukin; TNF, tumour necrosis factor; MIF, macrophage migration inhibitory factor; ARDS, acute respiratory distress syndrome; ROS, reactive
oxygen species; PAD4, protein arginase deiminase 4; NETs, neutrophil extracellular trap; NE, neutrophil elastase; CCR, chemokine receptor; DNA, deoxyribonucleic
acid; VWF, von Willebrand factor.
June 2022 | Volume 13 | Article 864387

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


McKenna et al. Neutrophils in COVID-19: Not Innocent Bystanders
defining characteristic is suppression of the adaptive immune
response (59). MDSC expansion is linked to G-CSF, a cytokine
increased in the lungs of COVID-19 patients (60) and almost 90% of
mononuclear cells in the severe disease cohort were MDSCs.
Proportion of LDGs increases with disease severity in COVID-19
patients, as well as their production of NETs when compared to
healthy controls (43, 61).

Morrisey et al. described a population of LDGs correlating with
disease severity and hypercoagulable state in COVID-19 patients
(53). A population of CD45+CD66b+CD16IntCD44lowCD11bInt

LDGs was found in patients with severe disease, which displayed
enhanced phagocytic capacity, spontaneous NETs formation and
elevated cytokine production. Similarly, an immune-suppressive
CD16bright/CD62Ldim neutrophil subtype was increased in patients
developing pulmonary embolism (PE)on the dayof ICUadmission
(54).Usingwhole blood transcriptomics analysis, increasedNLRP3
inflammasome, monocytes and LDGs were found in the lungs of
COVID-19 patients, and neutrophil activation-associated
signatures correlated to disease severity (62). In COVID-19,
immature neutrophils are expanded and show increased
programmed death ligand (PD-L) 1, which suppresses T cells,
and reduced oxidative burst functions with no change in
phagocytosis in severe COVID-19 (63). Chevrier et al. found
Frontiers in Immunology | www.frontiersin.org 4
higher LDGs were present in COVID-19 patients early in the
course of the disease and decreased in convalescence using mass
cytometry and serum proteomics, but CD16low neutrophil
population remained expanded over the disease course (64).
COVID-19 induced-ARDS is associated with MDSC expansion,
reduced lymphocyte function and arginine shortage, through
increased arginase activity, therefore arginase supplementation
may be therapeutic (65). Further study into the role of neutrophil
subsets in COVID-19 is warranted, potentially as biomarkers of
disease severity, or as new targets for therapeutic approaches.
NEUTROPHIL RESPONSE TO
SARS-COV-2

Does SARS-CoV-2 Actively Infect
Neutrophils?
Although neutrophils express the L-SIGN and DC-SIGN C-type
lectins receptors that have been suggested to act as entry
receptors for SARS-CoV-2, there is conflicting evidence about
active infection of neutrophils with the virus. In other ssRNA
viruses such asWest Nile and influenza virus neutrophils serve as
FIGURE 2 | Neutrophil activation. ACE2 or L-SING receptors on neutrophils most likely recognise SARS-CoV2 via a spike (S) protein on its surface. Once the virus enters the
cell, ssRNA viruses such as SARS-CoV-2 are recognised by TLR 7/8/9 which induce the activation of the MyD88 pathway. MyD88 activates TRAF3 and TRAF6 which result
in the transcription of NF-kB and IRF7 associated genes. The activated NF-kB pathway leads to the transcriptional induction of proinflammatory cytokines, chemokines and
additional inflammatory mediators in neutrophils. In addition, cytosolic viral RNA recruiting MDA5, RIF1 and PKR lead to the activation of TBK1 and the further activation of
IRF3 resulting in the transcription of type I/II IFN genes. The positive stimulatory loop by type I IFN induces the production of more IFNs through the JAK/STAT pathway and
the induction of Interferon Stimulated Genes (ISG). At the same time, SARS-CoV-2 possess ORF6, an accessory protein antagonist of IFNs by the inhibition of MDA5, TBK1,
IRF3 and IRF9. ssRNA viruses also cause the recruitment of the NLRP3 inflammasome complex and the further activation of pro-caspase-1 resulting in the cleavage of pro-IL-
1b and pro-IL-18 into the active forms. ACE2, angiotensin-Converting Enzyme 2; L-SING, L-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin/CD209L; RNA,
ribonucleic acid; ssRNA, Single-stranded RNA; TLR, toll-like receptor; MyD88, myeloid differentiation primary response 88; TRAF, tumor necrosis factor receptor (TNF-R)-
associated factor; NF-kB, nuclear factor kappa B; IRF, Interferon Regulatory Factor; MDA, melanoma differentiation-associated protein; RIF, Replication Timing Regulatory
Factor; PKR, protein kinase R; TBK, TANK Binding Kinase; IFN, interferon; ISG, Interferon Stimulated Genes; JAK-STAT, janus kinase; ORF, open Reading Frame; NLRP3,
nod like receptor family, pyrin domain containing 3; IL, interleukin.
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an important viral reservoir and contain actively replicating
virus, and studies with human immunodeficiency virus (HIV)
and Respiratory syncytial virus (RSV) viral models suggest that
neutrophils can internalise virus without productive infection
(66). Neutrophils are important for viral detection and initiation
of downstream effector immune pathways but the replicative
ability of ssRNA virus SARS-CoV-2 within neutrophils is
not known.

ACE2 is the primary cell entry receptor for SARS-CoV-2 and
ACE2 deficiency is associated with worse outcomes in COVID-
19 (67). Entry of SARS-CoV2 into the cells following membrane
fusion majorly down-regulates ACE2 receptors, with loss of the
catalytic effect of these receptors at the external site of the
membrane (68). This induces increased pulmonary
inflammation and coagulation due to enhanced and unopposed
angiotensin II effects. ACE2 down-regulation induced by viral
invasion may be especially detrimental in people with baseline
ACE2 deficiency (68). Following viral entry, the additional ACE2
deficiency may exacerbate the dysregulation between
ACE!Angiotensin II!AT1 receptor axis (potentially adverse)
and the ACE2!Angiotensin!Mas receptor axis (negative
regulator of angiotensin II activity, potentially protective
recombinant ACE2) (68). Therefore, angiotensin and
angiotensin II type 1 receptor blockers may be beneficial in
patients with severe SARS-CoV-2 (68). However, two large
cohort studies showed that angiotensin-converting enzyme
inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) use
was not associated with increased SARS-CoV-2 infection, but
was in fact associated with a lower risk of all-cause mortality in
hospitalized patients (69, 70). Further studies are needed to test
the protective effects of ACEIs/ARBs in COVID-19 (69, 70).
NETs triggered by SARS-CoV-2 depend on ACE2, serine
protease TMPRSS2, virus replication, and PAD-4 (28). ACE is
important in neutrophil antibacterial activity. Veras at al found
that NETosis was facilitated in neutrophils in patients with
COVID-19 (28). Neutrophils express ACE2 similar to other
immune cells and it is postulated that allows the virus-
triggered cell activation and NETosis (28). Knockout of this
gene in mice or treatment with an ACE inhibitor increased
susceptible to bacterial infection by methicillin-resistant
Staphylococcus aureus (MRSA). Mice overexpressing ACE in
neutrophils have increased killing of MRSA Pseudomonas
aeruginosa, and Klebsiella pneumoniae, with increased
neutrophil production of reactive oxygen species (ROS)
independent of the angiotensin II AT1 receptor (71).
DYSFUNCTIONAL NEUTROPHIL
ACTIVATION IN COVID-19

Neutrophils express all known Toll-like receptors (TLRs) with
the exception of TLR3 (72). TLR7, TLR8 and TLR9 are involved
in the detection of ssRNA viruses such as SARS-COV-2 (73).
Activation of these receptors leads to downstream activation of
NF-kB and interferon regulatory factor (IRF7), and the
subsequent production of pro-inflammatory cytokines and
Frontiers in Immunology | www.frontiersin.org 5
chemokines in neutrophils (Figure 2) (74). In conjunction
with neutrophils, these pro-inflammatory cytokines and
chemokines drive the characteristic hyperinflammation and
pulmonary infiltration seen in severe COVID-19 (74).
Neutrophils also produce type 1 interferons (IFN-a/IFNb)
through the activation of IRF proteins (75) and this broad, but
dysregulated, pro-inflammatory and antiviral response puts
selective pressure on these highly pathogenic respiratory
viruses. The host response to SARS-CoV-2 has also been
broadly defined as a significantly depleted type 1 IFN response,
with a consistent upregulation of chemotactic signals (CCL8,
CCL2, CXCL2, CXCL8 and CXCL9), most of which are key
mediators of neutrophil recruitment. Liao et al. found that in the
lungs of patients with severe COVID-19, macrophages
exacerbate inflammation by producing chemokines that recruit
neutrophils to the site of infection through chemokine receptors
CC-chemokine receptor 1 (CCR1) and C-X-C chemokine
receptor type 2 (CXCR2) (57). Using a SARS-CoV-2 animal
model early induction of CXCL9 and CCL8 was found consistent
with observations in primary human bronchial epithelial cells
infected with SARS-CoV-2. At day 7, despite waning levels of
virus, elevated CCR5, CCL2, CXCL9 and IL-6 were found in the
animal model, suggesting neutrophil-mediated inflammation
may persist after the virus has been cleared (76). This may
correlate with the clinical findings of persistent symptoms and
fatigue with post-viral infection complications in some patients.

The loss of IFN signalling is vital to understanding why
SARS-CoV-2 elicits such a potent inflammatory and
neutrophilic chemotactic response. For instance, bats appear to
limit the inflammatory and neutrophilic chemotactic response
when infected with coronaviruses endemic in the bat population
(77). Banerjee et al. have proposed that bats possess repressors of
NF-kB signalling, a potent inductor of pro-inflammatory and
chemotactic responses, allowing these strains of the viruses to
become endemic in the population. However, unlike bats,
humans lack this repressor activity rendering us susceptible to
this uncontrollable neutrophil-mediated inflammatory response
following viral infection (77).
NEUTROPHILS AND THROMBOSIS

Coagulation cascade activation is a common finding in patients
with COVID-19 and is associated with disease severity (78).
Elevated levels of fibrin D-dimer degradation products, a marker
offibrin degradation indicating overactive coagulation, correlates
with a worse clinical outcome (79). High plasma levels of
plasminogen activator (tPA) and plasminogen activator
inhibitor-1 (PAI-1) in hospitalised COVID-19 patients had
strong correlations with neutrophil counts and activation, and
extremely high levels of tPA increasing fibrinolysis (80).
Plasmatic matrix metalloproteinase-9 (MMP-9) was likewise
increased in COVID-19 patients which induced platelet and
neutrophil activation, and NETs formation in vitro (81). Post-
mortem studies have consistently shown that micro-thrombi are
present throughout the pulmonary vasculature (82). Collectively,
June 2022 | Volume 13 | Article 864387
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these data suggest that coagulation activation and vasculopathy
within the lungs (pulmonary intravascular coagulopathy [PIC])
plays a role in modulating COVID-19 pathogenesis (78). The
biological mechanisms through which SARS-CoV-2 infection
causes PIC within the lung blood vessels remain poorly
understood (83). However, recent autopsy studies have
reported significant endothelial cell (EC) damage, apoptosis,
loss of tight junctions and separation from the basement
membrane (84). Local inflammation and dysregulated pro-
inflammatory cytokine generation within the lungs are a major
factor as well as local hypoxia and complement activation, which
significantly enhance procoagulant pathways and downregulate
anticoagulant pathways in vivo. Moreover, ECs express the ACE2
receptor through which SARS-CoV-2 gains entry into cells, and
electron microscopy studies have reported viral inclusion bodies
within ECs.

Neutrophils and platelets are key modulators of thrombosis.
Significant NETosis is found in patients with severe COVID-19
and is important in thrombus aetiology (85). NETs can bind to
platelets, triggering platelet activation, and through their
citrullinated histone H3 (citH3) they can also interact with
procoagulant von Willebrand factor (VWF) (85). In addition
to their effects on primary hemostasis, NETs also enhance local
thrombin generation. In particular, NETs initiate coagulation
activation through the alternative contact pathway and trigger
thrombin generation by enhancing the intrinsic tissue-factor
dependent pathway. NETs have also been described to over-
activate the STING pathway through the cGAS sensor in
phagosomes (40). The over-activation of the STING-pathway
increases hyper-coagulability via interferon-b and tissue factor,
released by monocytes-macrophages, and can be inhibited
upstream the STING-pathway by aspirin, intravenous
immunoglobulins and Vitamin-D (40). NETs histones can
activate platelets by stimulating platelet TLR4 and TLR2;
neutrophils can bind to these active platelets through surface
glycoprotein Ib to induce NETosis and, consequently, result in
thrombosis (85). Platelet activation is associated with disease
severity in COVID-19 (86). Finally, NETosis has potent pro-
inflammatory effects on ECs, which serve to attenuate the normal
ability of ECs to regulate procoagulant pathways (87, 88). NETs
and thrombosis have been implicated in several disorders
inc luding cancer , SLE, rheumatoid arthri t i s (RA),
atherosclerosis and ischemic stroke. NETs have been shown to
invade microthrombi in septic patients and contribute to organ
damage, hence it is likely that neutrophils are a mediator of organ
dysfunction in COVID-19 (31).
NEUTROPHILS AND COVID-19
IN CHILDREN

The severity of COVID-19 differs between age-groups, and
children, especially neonates, exhibit milder disease with only a
small proportion require intensive care with acute respiratory
illness. There are many theories about this discrepancy, which is
also seen with other similar viral illnesses, and the decreased
Frontiers in Immunology | www.frontiersin.org 6
expression of ACE2 and NETs formation may be contributory
(89). However, a multisystem inflammatory disease in children
(MIS-C) or paediatric multisystem inflammatory syndrome
temporally associated with COVID-19 (PIMS-TS) has emerged
in children, occurring weeks after the primary infection with
SARS-Cov-2, that can lead to serious and life-threatening illness
in previously healthy children (90). There is no internationally
accepted single definition of MIS-C/PIMS-TS, but most case
definitions require multi-organ dysfunction, systemic
inflammation evidence of recent a SARS-CoV-2 infection, and
the exclusion of other causes. The clinical presentation and
laboratory findings in MIS-C are similar to Kawasaki’s disease
and toxic shock syndrome, and considered to be a spectrum of
disease (90).

Similar to adults with COVID-19, neutrophilia and
lymphocytopenia are common in MIS-C. Neutrophils play a
key functional role in Kawasaki disease with recent descriptions
of NETosis and neutrophil activation in the form of CD11b and
CD64 production (91). Neutrophil counts predict responsiveness
of pat ients with Kawasaki di sease to intravenous
immunoglobulin therapy, also used in MIS-C (92, 93).
Neutrophils activation marker Fc g receptor I (FcgRI; CD64)
was described to be highly expressed on neutrophils of
treatment-naive MIS-C patients in acute phase compared with
healthy controls (94). These patients also showed increase levels
of the neutrophils chemoattractant cytokine IL-8 (94).
Ramaswamy et al. talk of a potential myeloid dysfunction in
MIS-C patients based on the high expression of alarmin-related
S100A genes in neutrophils and monocytes, and the significant
reduction in key antigen-presentation molecules such as HLA
class II and CD86 (95). Additional research is required to fully
understand the role of neutrophils in MIS-C and to determine
whether treatments used in Kawasaki disease such as intravenous
immunoglobulin therapy could also be used with MIS-
C patients.
THERAPEUTIC TARGETING
OF NEUTROPHILS

Targeting Cytokines
The efficacy of targeting cytokines produced by various immune
cells, including neutrophils, is being explored in ongoing clinical
trials. Neutrophils produce IL-6, and IL-6 inhibitor tocilizumab
has been shown to decreases neutrophil survival and
lipopolysaccharides (LPS)-induced oxidative burst, as well as
neutrophil release from the bone marrow and lung
demargination (96, 97). Tocilizumab has been approved by the
United States Food and Drug Administration (FDA) for use in
COVID-19 patients and decreased mortality, poor outcome and
mechanical ventilation (98, 99). Clazakizumab also targets IL-6
and is currently being evaluated for safety in several clinical trials
of patients with life-threatening COVID-19 (Table 1). The
interleukin-6 receptor inhibitors (IL6ri) sarilumab or
tocilizumab decreased intubation and mortality in a study
including 255 patients with COVID-19 (100). Doxycycline (a
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TABLE 1 | Clinical trials therapeutically targeting neutrophils.

Therapeutic target Type of drug Drug name Effect on Neutrophils Reference number

IL-6 Anti-IL-6 Clazakimumab Reduces inflammation produced by neutrophils
and other immune cells

NCT04363502
NCT04381052
NCT04343989

Anti-IL-6 Tocilizumab NCT04403685
Anti-IL-6 Siltuximab NCT04329650
Anti-IL-6 Olokizumab NCT04452474
Anti-IL-6R Sarilumab NCT04357860

GM-CSF Monoclonal antibody-anti-GM-CSF Lenzilumab Blocks neutrophils recruitment NCT04351152
Monoclonal antibody-anti-GM-CSF Mavrilimumab NCT04397497
Monoclonal antibody-anti-GM-CSF TJ003234 NCT04341116
Monoclonal antibody-anti-GM-CSF Gimsilumab NCT04351243
GM-CSF Sargramostim Recruits neutrophils NCT04400929

NCT04411680
NCT04326920
NCT04400929

NLRP3 inflammasome Inhibitor of NLRP3 inflammasome Colchicine Reduces NLRP3 inflammasome activated by
neutrophils

NCT04322682
NCT04350320
NCT04322565
NCT04326790
NCT04367168
NCT04381936

Inhibitor of NLRP3 inflammasome Tranilast Reduces hyperinflammation and organ damage ChiCTR2000030002
NLRP3 inflammasome Inhibitor of NLRP3 inflammasome Dapansutrile Reduces hyperinflammation and organ damage NCT04540120
IL-1b Anti-IL-1b monoclonal antibody Canakinumab Reduces hyperinflammation and organ damage NCT04365153

NCT04348448
NCT04362813

IL-1 IL-1 receptor antagonist Anakinra Reduces hyperinflammation and organ damage NCT04339712
NCT04324021
NCT04341584

IFN-y Anti-IFN-y Emapalumab Inhibits activation of neutrophils NCT04324021
TLR4 TLR4 inhibitor EB05 Reduces hyperinflammation and organ damage NCT04401475
NETs rhDNase1 Dornase alfa Promotes clearance of NETs NCT04432987

NCT04359654
NCT04355364
NCT04409925
NCT04402970
NCT04402944

NE inhibitor 13 cis retinoic acid Promotes clearance of NETs NCT04396067
NE inhibitor Alvelestat NCT04539795
NE inhibitor Brensocatib NCT04817332

JAK-STAT JAK1/2 inhibitor Ruxolitinib Reduces inflammation produced by neutrophils
and other immune cells.

NCT04334044
NCT04348071
NCT04355793
NCT04366232
NCT04362137

JAK-STAT JAK1/2 inhibitor Baricitinib
Tofacitinib

Reduces inflammation produced by neutrophils
and other immune cells.

NCT04320277
NCT04340232
NCT04321993
NCT04401579
NCT04469114
NCT04750317

Angiotensin receptor Angiotensin receptor blocker Telmisartan Reduces oxidative stress. Inhibits NADPH
oxidase in neutrophils.

NCT04360551
NCT04355936

Angiotensin II receptor antagonist Losartan Blocks neutrophils recruitment NCT04340557
NCT04328012

Angiotensin II receptor antagonist Valsartan Reduces oxidative stress. Inhibits NADPH
oxidase in neutrophils.

NCT04335786

Inhibitor of the spike protein serine
proteases

Alpha-1 antitrypsin Blocks neutrophils recruitment NCT04385836

Neutrophil Calcium-release activated calcium
(CRAC) channel inhibitor

CM4620-IE Blocks neutrophils recruitment NCT04345614

Neutrophil viability modulator Intravenous
immunoglobulin (IVIG)

Neutrophil viability modulator NCT04432324
NCT04411667

(Continued)
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tetracycline) reduces IL-6, IL-1b and TNF-a levels, however,
doxycycline treatment did not have a significant clinical impact
on time to recovery, hospital admissions or deaths related to
COVID-19 in patients with high risk to adverse outcomes (101).

Granulocyte-macrophage colony-stimulating factor (GM-
CSF) is involved in neutrophil recruitment, survival, IL-6
release and priming for NETosis (102, 103). Mavrilimumab, an
anti-GM-CSF receptor-a monoclonal antibody, improved
clinical outcomes in patients with COVID-19 pneumonia and
systemic hyperinflammation (104). In contrast, sargramostim, a
recombinant human GM-CSF is under investigation, to improve
the immune response by recruiting neutrophils, dendritic cells
and macrophages to fight the virus and to repair tissue damage
(Table 1), although there may be significant risks including
neurotoxicity (103). GM-CSF also induces the expansion of
immunosuppressive MDSCs, which impair NK cells, CD8+ T
cells and increase proliferation of immunosuppressive T
regulatory (Treg) cells (105, 106). GM-CSF stimulates the
expression of IL-1b, IL-6, TNFa and other pro-inflammatory
cytokines and chemokines, therefore, its inhibition would more
broadly dampen hyperinflammation than therapy for IL-6 alone.
In patients with rheumatoid arthritis this strategy is used for
those unresponsive to anti-TNF therapy or tocilizumab (106).
Cytokine signalling pathways are targeted by using inhibitors of
JAK1/JAK2, to potentially reduce inflammation (Table 1).
Clinical trials using JAK1/JAKK2 inhibitor Baricitinib showed
reduction in 30-day mortality in over 70s with moderate-to-
severe COVID-19 pneumonia, and combined with Remdesivir
decreased recovery time and reduced 28-day mortality, serious
events and new infections (107, 108). Reduction in the risk of
death or respiratory failure was also described in a clinical trial
including 289 COVID-19 patients when comparing the effects of
JAK inhibitor Tofacitinib with a placebo (109).

NLRP3 inflammasome activation in neutrophils is implicated
with pulmonary inflammation and inhibition with MCC950
inhibited IL-1b in the lungs of cystic fibrosis mice (110). Tranilast
is the first NLRP3 inflammasome inhibitor in clinical trials in the
Chinese Clinical Trial Registry. Interleukin-1 blockade with
canakinumab treatment increases neutrophil apoptosis and
Frontiers in Immunology | www.frontiersin.org 8
decreases pro-inflammatory signalling in the IL-1b pathway using
gene expression and pathway data (111). Canakinumab, is another
FDA approved drug under investigation in clinical trials, and may
help reduce respiratory and cardiac damage. Colchicine targets the
neutrophil andmonocyte NLRP3 inflammasome, hence attenuating
activation of IL-1b (112). However, no significant differences were
seen in primary (disease progression or mortality) or secondary
(time to discharge, proportion of patients discharged, time in
Intensive Care unit (ICU) or duration of hospitalisation)
outcomes in two separated clinical trials comparing patients who
were given colchicine to placebo/usual care treated patients (113,
114). Anakinra (commercially known as Kineret) is an FDA
approved human IL-1RA (inflammasome-regulated immune
response inhibitor of IL-1) which may reduce hyperinflammation
and organ damage (Table 1) (112). Clinical trials using anakinra as
treatment for COVID-19 have reported conflicting results. One
study described lower risk of clinical progression in patients who
received anakinra compared to placebo, while other study reports
no effect of anakinra treatment on in-hospital mortality or days of
organ support (115–117). However, the European Medicines
Agency (EMA) recommended the use of anakinra in December
2021, specifically for COVID-19 adult patients at risk of developing
severe respiratory failure or with pneumonia requiring
supplemental oxygen (118).

Intravenous Immunoglobulin (IVIG)
and Corticosteroids
IVIG are purified IgG made from a pool of plasma from healthy
donors (119) and modulate neutrophil viability through
agonistic antibodies anti-Fas and Siglec-9 (120). It may also
decrease neutrophil activation and NETs formation and mitigate
vascular injury (121). IVIG has been tested in clinical trials in
patients with COVID-19 (Table 1) and has shown to have
therapeutic value (121). Similar positive effects of IVIG have
been described in children with Kawasaki’s disease and MIS-C.
However, ambiguity exists about dose dependent pro/anti-
inflammatory effects as high dose IVIG is anti-inflammatory
while a lower dose is considered pro-inflammatory (122). The
widespread utility of this therapy may be precluded by plasma
TABLE 1 | Continued

Therapeutic target Type of drug Drug name Effect on Neutrophils Reference number

NCT04383548
NCT04403269

L-MOD Neutrophil viability modulator NCT04353674
Neutrophil chemotaxis inhibitor Lenalidomide

Dexamethasone
Blocks neutrophils recruitment NCT04361643

NCT04325061
NCT04395105
NCT04360876
NCT04344730

IL-6, IL-8, IL-1b and TNF-a Modulates IL-8, TNF-a, IL-1b and IL-6
gene expression

Doxycycline Reduces inflammation produced by neutrophils
and other immune cells

NCT04371952

IL-17A Binds interleukin 17A and neutralizes it Ixekizumab Reduces inflammation produced by neutrophils
and other immune cells

NCT04724629

Anti-inflammatory and anti-
fibrotic agent

Monoclonal antibody TB006 Reduces inflammation produced by neutrophils
and other immune cells

NCT04801056
June 2022 | Volume
IL, interleukin; GM-CSF, granulocyte-macrophage colony-stimulating factor; NLRP3, nod like receptor family, pyrin domain containing 3; IFN, interferon; TLR, toll-like receptor; NET,
neutrophil extracellular trap; JAK-STAT, janus kinase; TNF, tumour necrosis factor.
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shortage, as it is also use as treatment in immunodeficiencies and
inflammatory disorders. Treatment of healthy neutrophils with
IVIG decreased NETosis and ROS production but enhanced
phagocytosis (122).

The efficacy of treating COVID-19 patients with corticosteroids
remains controversial. Lomas et al. have demonstrated that
dexamethasone can inhibit neutrophil chemotaxis in vitro and in
vivo (123).Avarietyof studieshypothesise that thisanti-inflammatory
drug may be effective in reducing ARDS and respiratory failure in
COVID-19 patients (Table 1). The randomised evaluation of
COVID-19 therapy (RECOVERY) trial in hospitalized COVID-19
patients found that treatment with dexamethasone results in a lower
28-day mortality for patients receiving oxygen only or ventilation,
though no explanation of themechanism for this was provided (124).
Neutrophil-to-Lymphocyte ratio was reduced in patients treatedwith
corticosteroids for COVID-19.

Targeting NETs
The targeting of neutrophil extracellular traps with dornase alfa,
a human recombinant deoxyribonuclease (DNAse) enzyme,
degrades DNA and promotes the clearance of NETs and has
been used in patients with cystic fibrosis (125). Several studies are
investigating the use of dornase alfa to improve pulmonary
function in severe COVID-19 with ARDS (Table 1) (125).
Similarly, all-trans retinoic acid, an inhibitor of NE (granular
component involved in NETosis), is also being explored to
improve lung injury in COVID-19 patients. COVID-19 is
associated with a significant neutrophil NETs burden and
targeting NETs-driven IL-1 signalling, using the IL-1 receptor
antagonist, decreased NETosis and may modulate inflammation.
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSION

The clinical syndrome of severe COVID-19 has several unique
features, including, unusually for a viral infection, an increased
neutrophil-lymphocyte ratio. Neutrophils play a role in viral
clearance in terms of NETs and the production of IFN.
However, neutrophils can have detrimental effects by aiding
the pathogenesis of SARS-CoV-2 and exacerbating
complications of COVID-19 such as ARDS, thrombosis and
MIS-C. Understanding the role of neutrophils in the
pathogenesis of severe COVID-19 may lead to identification
of key therapeutic targets and/or biomarkers for early
iden t ifi ca t i on o f pa t i en t s who may benefi t f rom
immunomodulatory agents to control hyperinflammation and
reduce mortality rates.
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