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To study a high-efficiency online classroom intelligent management system, this article builds an artificial intelligence classroom
management system based on the tensor CS reconstruction model. Moreover, this study uses the cosine function to represent the
data energy fitting of the traditional active contour model and proposes a local cosine fitting energy active contour model based on
partial image restoration, which is used for image and composite image segmentation. Simultaneously, this study proposes a new
type of super-resolution algorithm. )is algorithm performs Fourier transform of a low-resolution image into a frequency range
and then performs an inverse Fourier transform on the image expanded in the frequency range to obtain the initial high-
resolution image and finally reconstructs a new super-resolution image using the frequency-domain compressed data of the high-
resolution image. Finally, this study verifies and analyzes the performance of the model through experiments. )e research results
are basically consistent with the expectations of the model.

1. Introduction

Smart teaching is the inevitable trend of future education.
)ere is a certain difference between the classroom manage-
ment of smart teaching and traditional classroom manage-
ment, and the corresponding teaching system needs to be
combined with the smart classroom teaching mode. Based on
this, this article builds an online classroom intelligent teaching
management system based onmachine learning algorithms [1].

)e difference between the traditional classroom and the
smart classroom is that the smart classroom makes the
traditional classroom more “smart” [2]. )at is, a smart
classroom can intelligently perceive situational information
such as the classroom, students, and environment through
related equipment and can make corresponding “actions” by
judging and processing the feedback situational information,
such as various reminders to students, online questions from
students, teachers’ timely feedback on students’ questions,
and recommendations to students that are equivalent to
their learning level [3]. Regardless of whether it is a smart
classroom or a traditional classroom, the classroom is used

as a place for students to attend classes, as well as a place for
students and teachers to exchange knowledge and academics
with each other. With the differences in the location and
learning status of students, classroom situation information
can be roughly divided into the following parts: classroom
location situation information, classroom time situation
information, classroom environment situation information,
student situation information, and classroom equipment
situation information [4].

With the popularization of computers and networks, my
country’s online education has also been fully developed, and
many universities in our country have successively opened
online education classes, providing a sufficient foundation for
the development of distance online teaching. At the same time,
major colleges and universities have begun to develop some
teaching software that suits the characteristics of their colleges
and universities, which has also accelerated the development of
online education to a certain extent [5].

)e network teaching platform is the concrete mani-
festation of modern informatization in teaching. In fact, it is
a kind of teaching environment. It includes not only various
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computer equipment and multimedia equipment in hard-
ware but also teaching software and operating system in
software application [6]. )e purpose is to assist in daily
teaching. )e content that it contains mainly includes course
introduction and inquiry, teaching arrangement, and an-
nouncement. Moreover, it is a comprehensive teaching system
that can achieve multiple functions. Nowadays, various in-
dustries have related online teaching platforms, including
schools, hospitals, and enterprises. Moreover, with the devel-
opment of technology, these teaching platforms are constantly
updated and upgraded, and they have achieved considerable
development in terms of function and performance.

2. Related Work

Low-rank models have richer mathematical properties than
sparse models. In high-dimensional data, the rank of a
matrix indicates the number of nonzero singular values of
the matrix, and low rank means that fewer vectors can be
used to represent the structure of the matrix. )e literature
proposed a low-rank representation-based subspace clustering
algorithm (LRR) [7]. )is model considers the joint multi-
subspace clustering problem, divides the sample data into
corresponding representative subspaces, and combines sub-
space segmentation and noise recognition in a framework.
Sparse representation SR and low-rank representation LRR are
the two most important ways of matrix representation. In data
mining, SR is often combinedwith clustering. LRR can not only
be used for clustering but also commonly used in matrix re-
covery applications [8]. At present, sparse and low-rank
subspace clustering algorithms have been extensively studied.
)ere are dozens of subspace clustering algorithms based on
sparse and low-rank representations. On the basis of SSC, the
literature extended the a priori condition of subspace inde-
pendence to subspace disjointness and proposed a sparse
subspace segmentation algorithm [9]. )e literature required
the coefficient matrix to be sparse while satisfying the positive
definite condition and proposed a quadratic programming
subspace division algorithm (SSQP) [10].

According to the development process of feature se-
lection algorithms, the current development of feature se-
lection algorithms tends to be the combination of feature
correlation and multiple algorithms. )e more classic
cluster-based feature selection algorithms are as follows. )e
literature proposed the multi-cluster feature selection
method (MCFS). )is method uses all the input features to
represent the data structure, then embeds high-dimensional
data into low-dimensional space through sparse features,
sorts the features according to the regression method, and
selects features that are easy to maintain the local popular
structure [11]. Literature proposed an unsupervised dis-
criminative feature selection (UDFS) method to make a
partial judgment on each sample and obtain the feature
subset with the highest score by solving the normalization
problem [12]. However, when expressing the relationship
between data, this method uses the distance function be-
tween samples, and once the function parameters are de-
termined, all relationships use the same function, which does
not conform to the law of data distribution. To solve this

problem, a local learning clustering feature selection method
(LLCFS) is proposed, which introduces correlation features
into a regularized local learning model to enable the model
to be optimized iteratively [13]. However, this method ac-
tually optimizes the two objective functions of structure
learning and feature selection, and its theoretical conver-
gence and practical results are not good. Most of the existing
unsupervised feature selection methods cannot accurately
estimate the data structure. On the one hand, the real
structure of the data is required for feature recognition, and
on the other hand, the feature is required to accurately
estimate the real data structure. Based on this, an adaptive
learning feature selection method is proposed. )is method
first extracts the global and local structure of the data, then
obtains relevant features through unsupervised feature
learning, and finally builds a sparse map through the ob-
tained relevant features [14]. )e adaptive learning feature
selection method algorithm integrates structural features
and unsupervised learning into the same framework. It is a
feature selection algorithm that can be improved adaptively
according to the data structure [15].

3. Construction of Adaptive
Learning Dictionary

)e ith noise-containing image block ui in the monitored
image Y with an assumed size of

�
n

√
×

�
n

√
is considered, and

ui is arranged into a column vector yi ∈ Rn. To establish a
sparse model, it is necessary to construct an over-complete
dictionary D ∈ Rn×k; among them, there is k≫ n. For image
Y, the sparse representation coefficient αij of dictionary D is
obtained by the following formula:

αij,
X  � argmin

αij,X
λ‖X − Y‖

2
2 + 

i,j

μij αij

�����

�����0

+ 
i,j

Dαij − RijX
�����

�����
2

2
.

(1)

Among them, i and j are the data row and column di-
rections, respectively; that is, the image block is located at the
(i, j) position. )e first item on the right is the similarity
between the noise image Y and the denoised image X. Among
them, λ is a parameter that controls the degree of punishment
of the regularization item. )e second term is the sparse
constraint, where μij is the penalty factor. In the third item, Rij

is a cropping operator used to extract small image blocks at
pixel (i, j), andRijX is a calculation formula for extracting and
converting small image blocks into column vectors. Dαij is the
small image block reconstructed by the column vector cor-
responding to the small image block RijX, and the difference
between Dαij and Rij is as small as possible.

3.1. Solving Sparse Model. We assume that the dictionary D
in the above formula is known, and the two unknowns of the
output image X and the sparse coefficient αij cannot be
calculated at the same time.)erefore, to solve the equations
of αij and X, we need to initialize X � Y first and then find
the optimal coefficient αij:
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αij � argmin
αij

μij αij

�����

�����0
+ Dαij − Rijx

�����

�����
2

2
. (2)

In the above formula, the coefficient column vector αij of
Rijx is calculated by selecting the value of μij. Once αij is
obtained, X is updated to the following form:

X � argmin
X

λ‖X − Y‖
2
2 + 

i,j

Dαij − RijX
�����

�����
2

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (3)

)e above formula is a simple quadratic equation, and its
closed solution has the following form:

X � λI + 
i,j

R
T
ijRij

⎛⎝ ⎞⎠

−1

λY + 
i,j

R
T
ijDαij

⎛⎝ ⎞⎠. (4)

Among them, I is the identity matrix.

3.2. Dictionary Learning. Once the dictionary D is known,
the orthogonal matching pursuit (OMP) algorithm can be
used to solve equation (2) to estimate the optimized coef-
ficient matrix α{ }M

j�1. Moreover, the dictionary D can be
adjusted according to the different characteristics of the
band images that may contain noise.

To build a dictionary, formula (1) is redefined as follows:

D, αij,
X  � arg min

D,αij,X
λ‖X − Y‖

2
2 +


i,j

μij αij

�����

�����0
+ 

i,j

Dαij − RijX
�����

�����
2

2
.

(5)

First, the dictionaryD and the imageX to be denoised are
initialized. )en, the OMP algorithm is used to estimate the
sparse representation coefficient αij, as shown in formula (2).
Secondly, on the basis of the estimated coefficient αij and the
initial denoising image X, the dictionary D in the above
formula is updated using the K-SVD algorithm. Finally,
formula (4) is used to update the denoised image X.

All visible light and near-infrared bands of 13
Landsat − 7ETM + SLC − ON images are used, and the
K − SVD algorithm is used for redundant dictionary
training. To save space, each band selects only 5 of the 13
images to be displayed. In Figure 1, from left to right, the
first to fifth columns correspond to the Flathead Lake area
of Montana, USA, 08/03/1999, 09/20/1999, 10/08/2000,
and 07/07/ ETM+ image obtained on October 14, 2002
and 2001. For each column, the rows from top to bottom
correspond to bands 1, 2, 3, 4, 5, and 7, respectively. In the
last column, 6 dictionaries corresponding to the 6 bands
of the Landsat − 7 image obtained after training are
displayed.

4. Image Restoration Model Based on
Sparse Representation

To use the observed image y ∈ CM to repair the missing
data, the image pixel missing model can be expressed as
follows:

y � Φx. (6)

Among them,Φ ∈ CM×N is the missing operator, x is the
image without any data loss or repaired image, and y is the
observed data missing image. )e missing pixel data are
effectively estimated using the nonlocal information and
global information of the Landsat − 7ETM + SLC − ON
image. At the same time, a mathematical model is estab-
lished through the relationship between the image y to be
repaired and the image x after the repair. )e sparse model
based on image restoration can be expressed in the following
form:

y � Φx + ε. (7)

Among them, ε is additive noise. For the over-complete
word, D � d1, d2, . . . , di, . . . , dM  dictionary, where
di ∈ CN is the atom of the dictionary. If there is M≫N, D is
called a redundant dictionary. To repair the image, the
dictionary D can be sparsely decomposed into the following
form.

)e 6 dictionaries are for Landsat − 7ETM + SLC − ON
image training, and the training area is Landsat − 7ETM +

SLC − ON image in Flathead Lake, Montana, USA.)e rows
from top to bottom are the 1, 2, 3, 4, 5, and 7 band images
used to train the dictionary and the trained dictionary. For
each row from left to right, the first to fifth images are 5 of
the 13 images used to train the dictionary, which are dis-
played in the last column:

x � Dα . (8)

Among them, α ∈ CM is the coefficient of sparse rep-
resentation (SR), and its sparsity can be represented by ‖α‖0.
Among them, ‖ · ‖0 is the pseudo-norm of l0, which is the
number of nonzero elements in the coefficient α.
Substituting the above formula into formula (7), the fol-
lowing formula is obtained:

y � Φ Dα + ε,

s.t. ‖α‖0 < k.
(9)

Among them, k is the threshold of sparsity constraint.
However, because the coefficient α is a non-convex and

nondeterministic polynomial difficult optimization prob-
lem, it is more difficult to solve the l0 norm minimization
problem of the coefficient α. At the same time, when the
image contains noise, the solution of the above formula is
unstable. To avoid this problem, the convex l1− norm is used
to replace the non-convex l0− norm; that is, the non-convex
optimization problem of the above formula is transformed
into the following convex optimization problem for solution:

y � Φ Dα + ε

s.t. ‖α‖1 < k.
(10)

Algorithms such as alternating direction method (ADM)
can effectively optimize the above formula. )e above for-
mula can be equivalent to the following unconstrained
optimization problem by properly selecting the regulariza-
tion parameters:
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α � argmin
α

‖y −Φ Dα‖
2
2 + λ‖α‖1,

y � Dα.

⎧⎪⎨

⎪⎩
(11)

According to the expanded form of the above formula,
the structured sparse (SS) image repair model can be realized
by the following formula:

A � argmin
A

‖Y −Φ DA‖
2
2 + λ‖A‖1,

Y � DA.

⎧⎪⎨

⎪⎩
(12)

Y is the Landsat − 7ETM + SLC − OFF image. Matrix A
is the sparse coefficient matrix, A is the estimated sparse
coefficient matrix, and Y is the restored image. Algorithms
such as alternate direction method of multipliers (ADMM)
and split Bregman can effectively minimize the above for-
mula. In image restoration theory based on structural sparse
representation, nonlocal self-similar methods are often used,
such as the nonlocal method of Dong et al. [16] and the
simultaneous sparse coding of Banerjee and Chatterjee [17]
(SSC) method.

5. Image Restoration Algorithm Based on
Nonlocal Low-Rank Regularization

For Landsat − 7ETM + SLC − OFF images, a non-convex
nonlocal low-rank regularization model is proposed. )e
non-convex regularization model contains a set of self-
similar feature blocks and a low-rank approximation of
sparse representation. Nonlocal self-similarity is to intercept
a window in the image and select a small image block as a
sample image in the window. )e sample image block is
compared with other image blocks in the window, and m − 1
most similar sample image blocks are found, so that there are
m very similar image blocks in the entire window. Sample
image patches and m − 1 similar image patches are con-
verted into column vectors, and all column vectors are

arranged into a matrix, and then, the rank of this matrix is
very low. )e low rank of the matrix is very important prior
information, which is of great significance to the estab-
lishment and solution of the image restoration model.

Since the US Landsat − 7ETM+ image data are a large
data set, there are a sufficient number of similar image
patches of size

�
n

√
×

�
n

√
in the image x, and the given sample

image patches x\Ω
i are grouped according to similarity.

Among them, \Ω represents the effective part; that is, the
value of the missing pixel in the vector xi is set to 0, and the
rest of the set of nonzero elements is denoted as x

\Ω
i . )e

effective part of the image patch does not need to be updated
in the image patch repair. A given sample image small block
should contain no more than 3-pixel missing data. Among
them, the missing pixel value is set to 0.

x
\Ω
i � Rijx. (13)

In the image window x, small image blocks are
intercepted. If the pixel data corresponding to the effective
part of the sample image small block are found to be
similar to the effective part of the sample image small
block at position j, then the similar image small block is
represented by x

\Ω
ij
∈ Cn. )e pixel data in the position of

the non-corresponding effective part in the image small
block still have the pixel value set to 0. For each sample
image small block x\Ω

i in a local window, for example, in
70 × 70 or 90 × 90, the K-nearest neighbor (KNN) algo-
rithm is used for preliminary classification, as shown in
the following formula:

Gi � ij

 x
\Ω
i − x

\Ω
ij

������

������<T . (14)

Among them, T is the similarity threshold, and Gi is the
position of the image patch similar to the sample image
patch x

\Ω
i . For there are multiple image patches similar to

the sample image patches, only the m − 1 most similar image
patches are selected. )erefore, we obtain a matrix.

Server

Wireless AP1 Wireless AP2 Wireless AP1 Wireless AP2

Classroom1 Classroom2

Figure 1: Wireless network structure model.
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x
\Ω
i � x

\Ω
i0

, x
\Ω
i1

, . . . , x
\Ω
im−1

 ,

x
\Ω
i ∈ C

n×m
.

(15)

Among them, it includes H and m − 1 most similar
patches of the sample image. Among them, x

\Ω
i is the ef-

fective part of the matrix Xi, Xi ∈ Cn×m. It is easy to find that
each column of x\Ω

i represents a small image block, which is
similar to the sample image small block x

\Ω
i . Since the

amount of data of Landsat − 7ETM+ imagemay be too large,
for the efficient operation of the subsequent singular value
decomposition (SVD) method, the matrix x

\Ω
i needs to be

composed of low rank; that is, several adjacent image patches
of the local window are very similar.)erefore, the following
similarity discrimination method is established:

Hi � (i, j)

 x
\Ω
i − x

\Ω
j

�����

�����<T1 . (16)

Among them, T1 is the similarity threshold, and Hi is the
position of two similar sample patches. After regrouping,
similar image patches are formed using the following
method; that is, if the following formula is satisfied, two
image patches can also be defined as similar:

Ki,j � (i, j)

 x
\Ω
i − x

\Ω
j

�����

�����<
T

2
 ,

x
\Ω
i − x

\Ω
ij

������

������<
T

2
,

x
\Ω
i − x

\Ω
jk

�����

�����<
T

2
.

(17)

Among them, x
\Ω
ij

and x
\Ω
jk

are image patches in Xi and
Xj, respectively. At the same time, similar image patches
meeting the following conditions are searched:

Mi � ij

 x
\Ω
i − x

\Ω
ij

������

������ + x
\Ω
i − x

\Ω
ij

������

������<T . (18)

Among all image patches that meet the above conditions,
only the most similar m patches are selected. If there is no
small image block that meets the above conditions, the
matrix is not merged. After regrouping the image patches,
the merged matrix of the two sample image patches x

\Ω
i and

x
\Ω
j is obtained:

Y
\Ω
i � x

\Ω
i , x

\Ω
i1

, . . . , x
\Ω
it

, x
\Ω
j , x

\Ω
jt+1

, . . . , x
\Ω
jm−1

 . (19)

Among them, there is Yi ∈ Cn×m, and this process is
repeated until all small image blocks that satisfy the above
formula are merged. )e merged image blocks have similar
structural features, and the matrix Yi is low rank.

In actual situations, Y
\Ω
i may be corrupted by noise,

which leads to deviations from the expected low-rank
constraint. )e method used here is to decompose matrix
Y

\Ω
i into

Y
\Ω
i � Z

\Ω
i + W

\Ω
i . (20)

Among them, Z
\Ω
i and W

\Ω
i represent low-rank matrix

and Gaussian noise matrix, respectively.)en, by solving the

minimization optimization problem of the following for-
mula, the low-rank matrix Z

\Ω
i can be calculated.

Z
\Ω
i � argmin

Z
\Ω
i

rank Z
\Ω
i ,

s.t. Y
\Ω
i − Z

\Ω
i

�����

�����
2

F
≤ σ2w.

(21)

In the formula, ‖ · ‖2F represents the Frobenius norm,
and σ2w is the Gaussian noise variance. However, since the
minimization in the above equation is a NP − hard
problem, this equation cannot be solved directly. To
obtain the approximate solution of the above formula, the
convex kernel norm ‖ · ‖∗ (singular value sum) regulari-
zation model is usually used instead of the low-rank
minimization problem. Although the convex kernel norm
‖ · ‖∗model is theoretically mature, many references prove
that a smooth and not convex low-rank replacement
model will produce better denoising results. Recently, a
logdet regularized non-convex approximate replacement
model was proposed. )e comparison between the non-
convex replacement function logdet and the kernel norm
replacement function under standard conditions shows
that when solving the rank minimization problem, the
non-convex logdet replacement function model can ap-
proximate the low-rank function better than the kernel
norm model.

Generally speaking, matrix Z
\Ω
i is neither a square

matrix nor a positive semi-definite matrix. )e above for-
mula can be rewritten as follows:

L Z
\Ω
i , ε  ≔ log det Z

\Ω
i Z

\Ω
i 

T
 

1/2
+ εI 

� log det U
1/2

U
−1

+ εI⎛⎝ ⎞⎠

� log det 
1/2

+ εI⎛⎝ ⎞⎠.

(22)

Among them,  is a diagonal matrix, and the diagonal
elements of  are the eigenvalues of matrix Z

\Ω
i (Z

\Ω
i )T.

Matrix Z
\Ω
i (Z

\Ω
i )T can be decomposed into orthogonal

form:

Z
\Ω
i Z

\Ω
i 

T
� U  U

−1
. (23)

Since 
1/2 is a diagonal matrix, its diagonal elements are

the singular values of matrix Z
\Ω
i . To solve for Z

\Ω
i , Z

\Ω
i ’s

logdet model is used. )erefore, a low-rank approximate
model can be obtained as follows:

Z
\Ω
i � argmin

Z
\Ω
i

L Z
\Ω
i , ε ,

s.t. Y
\Ω
i − Z

\Ω
i

�����

�����
2

F
≤ σ2w.

(24)

In fact, the minimization problem of the above formula
can be equivalent to the following unconstrained optimi-
zation problem:
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Z
\Ω
i � argmin

Z
\Ω
i

Y
\Ω
i − Z

\Ω
i

�����

�����V + λL Z
\Ω
i , ε . (25)

For each sample image block in the monitoring image,
the low-rank matrix Z

\Ω
i of the approximate matrix Y

\Ω
i can

be obtained by solving the above formula.

6. Model Building

As the gateway layer of the entire system, the wireless router
is responsible for the identification of mobile devices, the
judgment of entering and leaving the classroom, the re-
cording of attendance time, and the transmission of at-
tendance data. )e MAC address is used as the unique
identifier of each device, which can be associated with the
MAC information of the student and the mobile phone, and
the student’s identity can be confirmed by obtaining the
MAC information of the device. In this system, a wireless
router installed with OpenWrt system is used to capture the
detection request frame sent by the device at the system data
link layer, and the MAC information can be parsed
according to the frame format. )e wireless network
structure model of this system is shown in Figure 1.

)e camera module uses Hikvision DS-2CD893PF-E
camera. )e camera is directly connected to the router, and
the camera network is set. )e Linux system timer controls
the camera to take pictures of the students in the classroom
during class time and stores the pictures on the server. )e
overall structure of the camera module is shown in Figure 2.

)e overall server architecture is shown in Figure 3,
which is mainly divided into Web server, Linux server, and
database. )e tomcat server is built on the Web server side,
and all data interaction is in the form of a URL interface.)e
Linux server uses the Ubuntu system, which is mainly used
to control the camera snapshot storage. Using the crontab
timer, the start and end time of the course are used as the
start time of the timer and write timer for camera snapshot
storage task. During class time, the timer is started to start to
control the camera to take pictures and upload the picture
information to the Web server. )e Web server accurately
cuts out students’ classroom pictures by querying the lo-
cation information of students’ mobile phone attendance,
generates personal attendance picture information, and
stores it in the database. )e relational database MySQL is
used as the server database to store student information,
teacher information, course information, course selection
information, attendance information, picture information,
etc.

Around the classroom attendance management, router
attendance is designed, which mainly records the time when
students go to and from get out of class. )e generated
attendance information is stored in the database, the timer
controls the camera to take pictures during class time, and
the pictures are stored in the database. )e server calculates
the student’s course conduct scores based on the router’s
attendance data and crops the camera shots according to the
student’s mobile phone sign-in location. Moreover, it makes
the traditional classroom attendance more streamlined and
standardized, and it conducts all-round classroom

management.)e data processing relationship between each
summary is shown in Figure 4 module relationship.

)emain process receives the message, obtains the MAC
information, queries the student information table stdinfo in
the database, and queries the student ID through the MAC
information to confirm the student’s identity. After that, the
main process uses the structure linked list to store the as-
sociation information between the MAC information and
the student’s student ID and the scan status of the student’s
mobile phone. )e main process traverses the scanning
status linked list every ten seconds to determine whether the
student is in attendance or sign-out status. After meeting the
requirements, the attendance or sign-off information is
generated, and the information is sent to the server using
CURL, and the information is stored by the server in the
attendance information table signinfo in the database. )e
router obtains the mobile phone MAC information and
generates the attendance information as shown in Figure 5.

)e client function is completed through the manage-
ment module, the teacher-student interaction module, and
the recommendation reminder module. )e server-side
function is mainly the system administrator’s maintenance
function of the system, which is completed by the infor-
mation management module. )e specific overall system
function module diagram is shown in Figure 6, and the
detailed description of each module is as follows: (1)
management module: the management module manages the

Wireless AP1 Wireless AP1

Classroom1 Classroom2

C C

Server

Figure 2: Overall structure of the camera module.

Database

Push server

Web server HTTP interface

Figure 3: Server architecture diagram.
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involved user information and user-related information and
includes the registration, modification, and maintenance of
user information; the designation, modification, and re-
cording of attendance information; the calculation and
viewing of score information; and the arrangement, sub-
mission, and inspection of job information. (2) Teacher-
student interaction module: the teacher-student interaction

module is the interaction between students and teachers in
the classroom, including teacher teaching behavior and
student feedback behavior. (3) Recommendation module:
the recommendation module is the recommendation re-
minder service introduced above, which mainly includes
time reminder, location reminder, learning efficiency re-
minder, and learning material recommendation. (4)

Router
attendance

Camera taking 
pictures

Automatic
scoring

Picture
cropping

Server Query display

Attendance
information Class 

picture

Figure 4: Module relationship.

The router receives
the management

frame

Get the MAC
information and send

the main process

Mobile phone sends
management frame

Determine student
status

Judgment of entry
and exit status

Generate attendance
information

Figure 5: Router generates attendance information.

Teaching process management system for
smart classroom

Client Service-
Terminal

Management
module

Interactive 
module

Recommended
module

Information 
management module

Class
Information 

behavior

Course
information
management

Student 
information
management

System 
information
management

Figure 6: System function module diagram.
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Information management module: the information man-
agement module mainly refers to the management and
maintenance functions of the systemmanagement personnel
to ensure the stable, safe, and real-time operation of the
system. It mainly includes the entry, modification, and
deletion of class information, course information, and user
information, as well as certain maintenance of the system.

7. System Performance Verification

Next, this article analyzes the performance of the model
constructed in this article. )e model constructed in this
study mainly uses image recognition to identify the char-
acteristics of students and make corresponding strategies
based on the recognition results. First, this article analyzes
the accuracy of student image feature recognition through
96 sets of data.)e results are shown in Table 1 and Figure 7.

It can be seen from the above chart that the model
constructed in this study performs well in the accuracy of
teaching image recognition. Next, this article scores the
model decision effect, and the results are shown in Table 2
and Figure 8.

Table 1: Accuracy of model image feature recognition.

No. Accuracy (%) No. Accuracy (%) No. Accuracy (%)
1 94.7 33 95.5 65 96.4
2 95.3 34 95.4 66 96.8
3 94.1 35 94.3 67 94.5
4 95.7 36 95.8 68 94.3
5 95.8 37 95.5 69 95.6
6 96.4 38 96.8 70 95.4
7 95.6 39 94.6 71 95.2
8 96.4 40 95.9 72 95.6
9 94.0 41 94.9 73 96.1
10 96.2 42 94.8 74 94.0
11 94.7 43 96.1 75 94.3
12 96.8 44 94.9 76 96.7
13 94.3 45 95.9 77 95.3
14 95.8 46 95.7 78 96.2
15 94.3 47 96.8 79 95.2
16 95.7 48 95.0 80 95.5
17 96.4 49 94.8 81 95.9
18 94.1 50 96.3 82 96.0
19 95.5 51 95.0 83 96.2
20 95.6 52 96.5 84 96.2
21 95.8 53 97.0 85 94.4
22 95.0 54 96.9 86 95.9
23 96.5 55 96.8 87 96.8
24 94.8 56 95.1 88 94.7
25 96.7 57 94.1 89 95.4
26 96.4 58 96.4 90 95.0
27 95.3 59 95.4 91 96.7
28 96.4 60 95.6 92 95.6
29 95.4 61 95.6 93 95.2
30 95.0 62 94.2 94 94.6
31 95.0 63 94.7 95 94.7
32 96.7 64 94.5 96 96.1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

Figure 7: Statistical diagram of the accuracy of model image
feature recognition.

Table 2: Statistical table of scoring of model classroom manage-
ment decision.

No. Score No. Score No. Score
1 90.4 33 86.1 65 87.4
2 88.6 34 85.2 66 88.6
3 92.5 35 87.7 67 84.7
4 89.7 36 85.9 68 92.7
5 86.7 37 86.5 69 89.0
6 87.3 38 84.2 70 89.8
7 89.0 39 93.0 71 91.9
8 91.2 40 87.4 72 85.0
9 86.5 41 86.3 73 89.7
10 85.7 42 92.5 74 92.9
11 86.2 43 88.6 75 88.2
12 88.1 44 87.5 76 91.2
13 89.9 45 92.9 77 89.8
14 90.2 46 85.4 78 84.6
15 92.1 47 86.5 79 92.9
16 92.0 48 85.6 80 87.7
17 85.4 49 90.4 81 93.0
18 91.0 50 89.5 82 91.4
19 84.3 51 89.5 83 88.4
20 87.0 52 84.3 84 87.0
21 92.0 53 92.3 85 90.4
22 90.1 54 90.0 86 86.9
23 84.0 55 89.6 87 92.4
24 91.6 56 91.5 88 91.1
25 89.6 57 85.3 89 90.5
26 86.0 58 86.9 90 85.2
27 90.8 59 87.2 91 91.8
28 88.2 60 92.3 92 88.9
29 88.0 61 86.7 93 85.4
30 87.8 62 84.0 94 87.2
31 92.6 63 91.1 95 90.3
32 88.3 64 90.5 96 92.7
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)e experimental results show that the classroom in-
telligent management system constructed in this study has
good decision-making performance.

8. Conclusion

)is study uses the tensor CS reconstruction model to
construct an online education classroom intelligent
management system, uses the cosine function to represent
the data energy fitting of the traditional active contour
model, and proposes a model based on partial image
restoration to fit the energy activity contour of the local
cosine, which is used for image and composite image
segmentation. )e model can segment the composite
image with uneven intensity and extract the region of
interest in the image. )e proposed model is compared
with the convex model (CVMST) of Mumford-Shah and
the threshold model, the local binary fitting model (LBF),
and the L0 regularized Mumford-Shah (L0MS) model. )e
results show that the model has higher efficiency and
robustness for the segmentation of noisy images and
blurred images, and the calculation time is close to or faster
than these advanced models. In addition, this study uses a
discrete form to describe the model, which makes it easier
to add a regular term to control the segmentation. Finally,
this study uses the improved algorithm proposed to seg-
ment the image and obtains the three-dimensional visu-
alization results. )e experimental results show that the
algorithm proposed in this study has a certain teaching
effect.
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