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Abstract: Improving the assessment of breast imaging reporting and data system (BI-RADS) 4 lesions
and reducing unnecessary biopsies are urgent clinical issues. In this prospective study, a radiomic
nomogram based on the automated breast volume scanner (ABVS) was constructed to identify benign
and malignant BI-RADS 4 lesions and evaluate its value in reducing unnecessary biopsies. A total
of 223 histologically confirmed BI-RADS 4 lesions were enrolled and assigned to the training and
validation cohorts. A radiomic score was generated from the axial, sagittal, and coronal ABVS images.
Combining the radiomic score and clinical-ultrasound factors, a radiomic nomogram was developed
by multivariate logistic regression analysis. The nomogram integrating the radiomic score, lesion
size, and BI-RADS 4 subcategories showed good discrimination between malignant and benign
BI-RADS 4 lesions in the training (AUC, 0.959) and validation (AUC, 0.925) cohorts. Moreover,
42.5% of unnecessary biopsies would be reduced by using the nomogram, but nine (4%) malignant
BI-RADS 4 lesions were unfortunately missed, of which 4A (77.8%) and small-sized (<10 mm) lesions
(66.7%) accounted for the majority. The ABVS radiomics nomogram may be a potential tool to reduce
unnecessary biopsies of BI-RADS 4 lesions, but its ability to detect small BI-RADS 4A lesions needs
to be improved.

Keywords: radiomics; nomogram; automated breast volume scanner; breast neoplasms

1. Introduction

Breast cancer is still the most common malignant tumor and the leading cause of
cancer-related death in females [1]. Early diagnosis and treatment of breast cancer can
significantly improve the survival rate and quality of life [2]. Conventional ultrasound
(US) plays an important role in breast cancer screening and the differential diagnosis of
breast lesions [3]. Breast lesions detected by US can be classified into seven categories
(categories 0–6) according to the fifth edition of the Breast Imaging Reporting and Data
System (BI-RADS) [4]. Among them, BI-RADS US category 4 (hereinafter referred to
as BI-RADS 4) represents possibly malignant lesions, and biopsy is recommended [5,6].
However, approximately 67–78% of biopsies are unnecessary for BI-RADS 4 lesions due to
the broad-range malignant potential (3% to 94%) [7–9]. Moreover, unnecessary biopsies
are associated with negative consequences such as pain, anxiety, direct financial burden,
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and related complications [10]. Therefore, in the era of precision medicine, improving the
assessment of BI-RADS 4 lesions and reducing unnecessary biopsies are clinical problems
that need to be solved.

Recently, a noninvasive, quantitative and objective image analysis method named
radiomic nomogram has attracted attention. It can extract high-throughput quantitative
features that may not be observed directly by the naked eye from single or multiple
medical images, and subsequently combine these features with clinical information to
improve disease diagnosis and prognostic evaluation [11]. A large number of studies have
reported the application of radiomic nomograms based on various imaging modalities,
such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography-computed tomography (PET-CT), and US, which have showed great potential
in the classification and prediction of breast cancer [12–16]. However, only a few studies
have focused on BI-RADS 4 lesions [15,16], and no studies have been based on automatic
breast volume scanner (ABVS).

As an emerging US technology, the ABVS automatically scans the breast based on a
special high-frequency broadband transducer and obtains standardized, repeatable, and
high-resolution US images [17]. In 2012, the Food and Drug Administration approved
the use of ABVS for breast screening, especially for asymptomatic women with dense
breasts [18], and some unique features of ABVS may provide additional information for
distinguishing benign and malignant breast lesions [19,20]. Specifically, the retraction
phenomenon on the coronal plane of ABVS presents as a stellate pattern around the lesion,
which has high sensitivity (80–89%) and specificity (96–100%) for breast cancer [20–22].
Furthermore, the standardized, reproducible and high-resolution characteristics of ABVS
images will be more suitable for radiomics analysis, according to the radiomics quality
score (RQS) proposed by Lambin et al. [23]. However, to our knowledge, whether ABVS-
based radiomic nomogram has potential to identify benign and malignant breast lesions,
especially BI-RADS 4 lesions, remains unknown.

Therefore, for bridging the gap and taking full use of ABVS images to promote
precision medicine, this prospective study aimed to investigate the ability of the ABVS
radiomic nomogram to distinguish benign and malignant BI-RADS 4 lesions, and evaluate
its potential value in reducing unnecessary biopsies of these lesions.

2. Materials and Methods
2.1. Patient Selection

This study was approved by the Institutional Review Board of our hospital (KY2020163),
and written informed consent was obtained from all patients. Between April and August
2020, consecutive women with US-detected BI-RADS 4 lesions and scheduled for US-
guided core needle biopsy were invited to participate in the study. The inclusion criteria
were as follows: (a) each BI-RADS 4 lesion was confirmed by a senior radiologist (with
seven years of breast US experience), and ultimately assigned a subcategory (4A, 4B, or 4C)
according to the second edition of the ACR BI-RADS US atlas; (b) subjects aged 18–80 years;
and (c) subjects who voluntarily agreed to participate and signed informed consent forms.
The exclusion criteria were as follows: (a) women who were not suitable for ABVS, such as
pregnancy, breastfeeding, or breasts with implants; (b) women with previous breast surgery
or percutaneous biopsy during the preceding 12 months; (c) BI-RADS 4 lesions with unclear
ABVS images; and (d) absence of a definitive pathological diagnosis and incomplete clinical
data. Finally, all BI-RADS 4 lesions included in this study were randomly divided into a
training cohort and a validation cohort at a ratio of 8:2.

Information on menopausal status, oral contraceptives, smoking history, alcohol
consumption history, and family history of breast or ovarian cancer was obtained directly
from the patient. Breast density was assessed subjectively from digital mammography
and classified as A, B, C, or D accordance with the American College of Radiology. The
following US features were also recorded: lesion size, location of the lesion (left or right),
shape (regular or irregular), orientation (parallel or not), posterior echo (enhancement,
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shadowing, combined pattern or no posterior echo), echo pattern (hypoechoic, hyperechoic
or complex cystic and solid), and calcification (yes or no).

2.2. ABVS Examination

ABVS examination was performed by one of two well-trained radiologists using
the ACUSON S2000 Automated Breast Volume Scanner (Siemens Medical Solutions, Inc.,
Mountain View, CA, USA). ABVS consists of a US scanner and a special stationary device
with a linear array transducer (5–14 MHz bandwidth), which moves automatically in a
scan box. A replaceable membrane covers the transducer to facilitate sufficient contact with
the breast. Patients lay in the supine or lateral position with their arms above their head.
The medical gel was placed evenly on the breast, and then the scan box was placed on the
breast with appropriate compression to improve image quality. According to the size of the
breast and the location of the target lesion, the appropriate scan depth was selected. The
ABVS examination was continuous and automated, and the patient was asked to breathe
gently and not to move during the examination. After the examination, axial ABVS images
were sent to a dedicated workstation, and sagittal and coronal images were reconstructed
automatically. Finally, the axial, sagittal, and coronal ABVS images showing the largest
lesions were selected for further image segmentation and feature extraction.

2.3. Breast Biopsy

Within one week after ABVS examination, US-guided core-needle biopsy was per-
formed by experienced US interventional doctors. According to the standard biopsy
procedure, four to eight samples per lesion were acquired using an automatic biopsy gun
with a 14G or 16G needle [24]. Breast pathologists with at least 10 years of experience
performed histopathological analysis. The final pathological diagnoses were classified as
either benign or malignant, in which malignancy was defined as infiltrating carcinoma or
ductal carcinoma in situ, and all other diagnoses were considered benign. For lesions with
high-risk diagnosis (atypical findings, complex sclerosis, or papillary lesions) obtained by
percutaneous biopsy, the final diagnosis was based on the surgical pathology.

2.4. ABVS Radiomic Score

Image segmentation and radiomic feature extraction were performed using MaZda
software (version 4.6, www.eletel.p.lodz.pl/programy/mazda/, accessed on 1 January
2022), which was originally used for automatic texture analysis of MRI, and now has
been extended to the investigation of any kind of digital images [25]. ABVS images were
normalized using Mazda’s built-in normalization method before segmentation to minimize
the influence of contrast and brightness variation. The lesion was manually delineated on
the axial, sagittal, and coronal ABVS images by one trained radiologist (R1, with seven
years of breast US experience). Contouring was drawn within the border of the lesion, and
the adjacent parenchyma and fat were carefully avoided. In total, seven common radiomics
feature groups, such as histogram, geometry, absolute gradient, gray level cooccurrence
matrix, run matrix, autoregressive model, and wavelet transform, were automatically
extracted from MaZda (Supplementary Table S1). In addition, all radiomic features were
rescaled via Z-score normalization to facilitate subsequent statistical analysis.

The reproducibility of ABVS radiomic features extraction was evaluated based on
the intra-operator and inter-operator findings. A total of two weeks after extraction of
radiomic features in the training cohort, R1 repeated the extraction of ABVS radiomic
features to evaluate the intra-operator agreement. Another trained radiologist (R2, with
four years of breast US experience) performed the same procedure in the training cohort
for the evaluation inter-operator agreement on features extraction. The intra- and interclass
correlation coefficients (ICCs) greater than 0.75 were considered good agreement.

A three-step feature selection technique was used to select important radiomic features.
First, the ABVS radiomic features with ICCs less than 0.75 were eliminated. Second, the
minimum redundancy maximum relevance (mRMR) algorithm was used to select the

www.eletel.p.lodz.pl/programy/mazda/
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remaining features. Third, the least absolute shrinkage and selection operator (LASSO)
logistic regression method with 10-fold cross validation was applied to select the key
features from the training cohort. Then, the radiomic score was built through a linear
combination of the selected features weighted by the respective coefficients.

2.5. ABVS Radiomic Nomogram and Clinical Significance

Univariate logistic regression and multivariate logistic regression analyses were per-
formed to select the independent risk factors for malignant BI-RADS 4 lesions. The ABVS
radiomic nomogram was developed based on the independent risk factors in the training
cohort. The workflow of the study was shown in Figure 1. Calibration of the nomogram
was assessed with a calibration curve, and the goodness-of-fit was evaluated with the
Hosmer–Lemeshow test. The discrimination performance of the nomogram was evaluated
using the area under the receiver operator characteristic (ROC) curve (AUC). Other discrim-
ination metrics, including accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV), were also measured. In the validation cohort, the
calibration and discrimination performances of the nomogram were validated, respectively.
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Figure 1. Workflow of necessary steps in this study. BI-RADS 4 lesions are manually segmented on
axial, sagittal, and coronal ABVS images. Radiomic features are automatically extracted by MaZda
software. A three-step feature selection technique to identify key radiomic features and incorporate
them into the radiomic score was used. Combined with radiomic score and clinical-ultrasound factors,
the ABVS radiomic nomogram was constructed by univariate and multivariate logistic regression
analyses. The performance of the nomogram was assessed by the area under a receiver operating
characteristic (ROC) curve, calibration curve, and decision curve analysis.

Decision curve analysis (DCA) was performed to determine the clinical usefulness
of the ABVS radiomic nomogram by quantifying the net benefits at different threshold
probabilities in the training and validation cohorts. Furthermore, the malignant probability
(defined as the Nomo-score in this study) of each BI-RADS 4 lesion was calculated according
to the ABVS radiomic nomogram, and the optimal cutoff value was determined by the
maximum Youden index. If biopsy was performed when the Nomo-score of the BI-RADS
4 lesion was greater than the cutoff value, the reduction in the unnecessary biopsy rate and
the missed diagnosis rate of malignant lesions were calculated.



Diagnostics 2022, 12, 172 5 of 14

2.6. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics 24 software and R
software version 3.3.3. Continuous variables are expressed as the mean and standard
deviation (SD), whereas categorical variables are expressed as the frequency and proportion.
The chi-squared test or Fisher’s exact test was used to compare categorical variables.
The Kolmogorov–Smirnov test was used to check whether the variables were normally
distributed. Student’s t-test was used to compare continuous variables with a normal
distribution; otherwise, the Mann–Whitney U-test was used. R software was used to
develop and assess the radiomic score and the radiomic nomogram (see Supplemental S1).
Statistical significance was accepted at p < 0.05.

3. Results
3.1. Clinical Characteristics

Between April and August 2020, 215 women were recruited and 22 women were sub-
sequent exclusions: 11 retrieved consents (rejection of breast biopsy or ABVS examination);
seven acquired unclear ABVS images due to different artifacts; and four had indefinite
pathological diagnosis. Finally, 193 women (mean age, 49.4 ± 12.3 years; range 25 to
79 years) with 223 BI-RADS 4 lesions were enrolled in this study. The average size of the
lesions was 19.5 ± 10.2 mm (range, 5–59 mm). The subcategories of BI-RADS 4 lesions
were as follows: 104 lesions (46.6%) were BI-RADS 4A, 43 lesions (19.3%) were BI-RADS
4B, and 76 lesions (34.1%) were BI-RADS 4C. Histopathology analysis confirmed 103 of the
223 BI-RADS 4 lesions (46.2%) as malignant, and the malignancy rates of 4A, 4B and 4C
were 11.5% (12/104), 44.2% (19/43) and 94.7% (72/76).

All 223 BI-RADS 4 lesions were randomly divided into a training cohort (n = 178) and
a validation cohort (n = 45) in this study. The clinical characteristics and US features of the
two cohorts are shown in Table 1. Between the two cohorts, there was no difference in the
frequency of malignant lesions (81/178, 45.5% vs. 22/45, 48.9%, p = 0.684). In addition,
significant differences in other clinical and US characteristics were also not observed in the
training cohort and validation cohort (p > 0.05). This suggests that the training cohort and
validation cohort were comparable in these characteristics. We also investigated the above
basic information between the malignant and benign lesions in the training and validation
cohorts (Supplementary Table S2).

Table 1. Clinical basic characteristics and ultrasound features in training and validation cohorts.

Characteristics Training Cohort (n = 178) Validation Cohort (n = 45) Statistic (χ2 or t) p

Age(year) 48.9 ± 12.3 51.3 ± 12.1 −1.206 0.229
BI-RADS 4 category

4a 84 (47.2%) 20 (44.4%) 1.044 0.593
4b 36 (20.2%) 7 (15.6%)
4c 58 (32.6%) 18 (40.0%)

Breast density
A (<25% dense tissue) 15 (8.4%) 3 (6.7%) 0.680 0.878

B (25–50% dense tissue) 64 (36.0%) 17 (37.8%)
C (51–75% dense tissue) 68 (38.2%) 19 (42.2%)
D (>75% dense tissue) 31 (17.4%) 6 (13.3%)

Menopausal
Pre-menopausal 106 (59.6%) 19 (42.2%) 3.703 0.054
postmenopausal 72 (40.4%) 26 (57.8%)

Oral contraceptives
Yes 22 (12.4%) 9 (20.0%) 1.752 0.186
No 156 (87.6%) 36 (80.0%)

Family history of breast cancer
Yes 16 (9.0%) 8 (17.8%) 2.046 0.153
No 162 (91.0%) 37 (82.2%)
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Table 1. Cont.

Characteristics Training Cohort (n = 178) Validation Cohort (n = 45) Statistic (χ2 or t) p

Smoking history
Yes 7 (3.9%) 5 (11.1%) 2.362 0.124
No 171 (96.1%) 40 (88.9%)

Alcohol drinking history
Yes 7 (3.9%) 4 (8.9%) 0.973 0.324
No 171 (96.1%) 41 (91.1%)

Location of lesions
Left 103 (57.9%) 26 (57.8%) 0.000 0.992

Right 75 (42.1%) 19 (42.2%)
Lesion size (cm) 1.9 ± 1.0 2.0 ± 1.1 −0.600 0.549

Shape
Regular 32 (18.0%) 13 (28.9%) 2.655 0.103
Irregular 146 (82.0%) 32 (71.1%)

Orientation
Parallel 105 (59.0%) 27 (60.0%) 0.015 0.902

Not parallel 73 (41.0%) 18 (40.0%)
Margin

Circumscribed 19 (10.7%) 9 (20.0%) 2.845 0.092
Not circumscribed 159 (89.3%) 36 (80.0%)

Posterior echo
No posterior echo 69 (38.8%) 21 (46.7%) 1.163 0.762

Enhancement 31 (17.4%) 8 (17.8%)
Shadowing 52 (29.2%) 11 (24.4%)

Combined pattern 26 (14.6%) 5 (11.1%)
Echo pattern *

Complex cystic and solid 14 (7.9%) 4 (8.9%) 0.051 0.822
Hypoechoic 164 (92.1%) 41 (91.1%)

Calcification
Yes 88 (49.4%) 28 (62.2%) 2.352 0.125
No 90 (50.6%) 17 (37.8%)

Radiomic score 0.185 ± 1.659 0.257 ± 1.689 0.255 0.799

BI-RADS = breast imaging reporting and data system; Lesion size was defined as the maximum diameter on
ABVS images. * The breast lesions in this study were only hypoechoic echo pattern and complex cystic and solid
echo pattern. The differences in characteristic variables (age, lesion size, radiomic score) between the two cohorts
were compared by two-sample t-test, whereas Chi-square tests was conducted to other variables. p < 0.05.

3.2. ABVS Radiomic Score

A total of 1101 features were obtained from axial, sagittal, and coronal ABVS images
for each BI-RADS 4 lesion. The intra- and inter-operator reproducibility of ABVS radiomic
features extraction were further assessed. The intra-class correlation coefficient of R1
in two extractions ranged from 0.815 to 0.982. The inter-class correlation coefficient of
extraction by R1 and R2 ranged from 0.656 to 0.904. Then, 891 (80.9%) radiomic features
with favorable intra- and inter-operator reproducibility (ICC > 0.75) were reserved for
subsequent analysis. Of these features, 19 key features (six from coronal images of ABVS,
six from axial images, and seven from sagittal images) were screened out with the mRMR
algorithm and LASSO logistic regression in the training cohort (Figure 2). Based on the
19 features and the weighting by their respective coefficients, the radiomic score was
established, and the formula is presented in Supplemental S2. The AUC of ABVS radiomic
score was 0.875 (95% CI, 0.824–0.927) in the training cohort and 0.897 (95% CI, 0.835–0.936)
in the validation cohort.
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3.3. ABVS Radiomic Nomogram

Univariate and multivariate logistic regression analyses showed that the radiomic
score (OR: 0.206, 95% CI: 0.104–0.407, p < 0.001), lesion size (OR: 2.838, 95% CI: 1.468–5.485,
p = 0.002) and BI-RADS 4 subcategories (OR: 4.794, 95% CI: 0.803–8.624, p < 0.001) were iden-
tified as independent risk factors for malignant BI-RADS 4 lesions (Table 2). The ABVS ra-
diomic nomogram was established by incorporating the above risk factors (Figure 3). Com-
pared with the ABVS radiomic score, the performance of the ABVS radiomic nomogram
was significantly improved in both the training cohort [AUC, 0.959 (95% CI, 0.933–0.984)
vs. 0.875 (95% CI, 0.824–0.927); Z = 2.95, p = 0.002] and the validation cohort [AUC, 0.925
(95% CI, 0.824–0.971) vs. 0.897 (95% CI, 0.835–0.936); Z = 1.65, p = 0.04] (Figure 4A). The
calibration curves of the ABVS radiomic nomogram were close to the standard curves in
the training cohort and the validation cohort, which suggested that the nomogram was
well calibrated (Figure 4B). The optimal cutoff value of the ABVS radiomic nomogram
in this study was 0.4, and the accuracy, sensitivity, specificity, PPV, and NPV were 90.6%,
88.7%, 92.3%, 91.3%, and 90.0%, respectively. We also calculated the above performance
indicators in the training and validation cohorts (Table 3).

Table 2. Results of the univariate and multivariate logistic regression analyses based on the train-
ing group.

Variables
Univariate Logistic Regression Multivariate Logistic Regression

OR (95% CI) p-Value OR (95% CI) p-Value

Age (years) 1.085 (1.053, 1.118) <0.001 1.060 (0.965, 1.165) 0.226
BI-RADS 4 category

4A Ref. Ref.
4B 0.955 (0.459, 1.989) <0.001 NA NA
4C 4.978 (1.656, 5.963) <0.001 4.794 (0.803, 8.624) <0.001

Breast density
A (<25% dense tissue) Ref. Ref.

B (25–50% dense tissue) 2.283 (1.231, 4.234) 0.009 1.741 (0.460, 6.584) 0.414
C (51–75% dense tissue) 0.648 (0.355, 1.184) 0.158 NA NA
D (>75% dense tissue) 0.234 (0.091, 0.602) 0.003 0.526 (0.095, 2.902) 0.461

Menopausal (Pre-/post-menopausal) 0.244 (0.130, 0.456) <0.001 1.004 (0.143, 7.072) 0.997
Oral contraceptives (Yes/No) 1.227 (0.440, 3.423) 0.696 NA NA

Family history of breast cancer (Yes/No) 1.226 (0.439, 3.423) 0.696 NA NA
Smoking history (Yes/No) 1.637 (0.356, 7.532) 0.527 NA NA

Alcohol drinking history (Yes/No) 3.141 (0.593, 16.629) 0.178 NA NA
Location of lesion (Left/Right) 0.729 (0.402, 1.320) 0.296 NA NA
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Table 2. Cont.

Variables
Univariate Logistic Regression Multivariate Logistic Regression

OR (95% CI) p-Value OR (95% CI) p-Value

Lesion size (cm) 2.369 (1.636, 3.431) <0.001 2.838 (1.468, 5.486) 0.002
Shape (Regular/ Irregular) 1.785 (0.771, 4.133) 0.176 NA NA

Orientation (Parallel/ Not parallel) 0.458 (0.252, 0.8340) 0.011 0.448 (0.134, 1.499) 0.193
Margin (Circumscribed/Not circumscribed) 0.445 (0.167, 1.189) 0.106 NA NA

Posterior echo
Enhancement Ref. Ref.

No posterior echo 0.815 (0.447, 1.483) 0.502 NA NA
Shadowing 1.173 (0.620, 2.218) 0.624 NA NA

Combined pattern 0.368 (0.147, 0.921) 0.033 NA NA
Echo pattern

Hypoechoic Ref. Ref.
Complex cystic and solid 1.224 (0.411, 3.642) 0.717 NA NA

Calcification (Yes/No) 0.780 (0.435, 1.397) 0.403 NA NA
Radiomic score 0.269 (0.186, 0.341) <0.001 0.206 (0.104, 0.407) <0.001

Lesion size was defined as the maximum diameter on ABVS images. Ref = reference; NA = values were not
available; CI = confidence interval.
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score, lesion size and BI-RADS 4 subcategory to distinguish benign and malignant BI-RADS 4 lesions.

3.4. Clinical Value of The ABVS Radiomic Nomogram

The decision curve analysis was used to assess the clinical significance of ABVS
radiomic nomogram (Figure 4C). Results showed that when the threshold probability was
more than 5% in the training cohort and 2% in the validation cohort, using the nomogram
provided more benefit than either assuming that all BI-RADS 4 lesions were malignant or
assuming that all BI-RADS 4 lesions were benign.

To evaluate the value of the ABVS radiomic nomogram in reducing unnecessary
biopsy of BI-RADS 4 lesions. We divided all BI-RADS 4 lesions into a follow-up group
(Nomo-score ≤ 0.4; n = 117) and a biopsy group (Nomo-score > 0.4, n = 106), and plotted a
Nomo-score bar diagram (Figure 5). If biopsies were only performed in the biopsy group,
the unnecessary biopsy rate would be reduced from 53. 8% (120/223) to 11.3% (12/106),
but 4.0% (9/223) of malignant BI-RADS 4 lesions were unfortunately missed. Among the
nine missed malignant BI-RADS 4 lesions, 77.8% (7/9) were BI-RADS 4A lesions, and 22.2%
(2/9) were BI-RADS 4B lesions. Except for one BI-RADS 4A lesion (complex cystic and
solid) with a size of 54 mm, the size of other eight lesions ranged from 5 to 16 mm (mean
size, 9 mm), and six of them were smaller than 10 mm. Histopathology confirmed that
seven of the nine missed malignant BI-RADS 4 lesions were invasive ductal carcinoma and
two were ductal carcinoma in situ.



Diagnostics 2022, 12, 172 9 of 14

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 3. Radiomic nomogram. The radiomic nomogram was developed by combining the radiomic 
score, lesion size and BI-RADS 4 subcategory to distinguish benign and malignant BI-RADS 4 le-
sions. 

 
Figure 4. Receiver operating characteristic curves (ROC), calibration curves and decision curve anal-
ysis of the ABVS radiomic nomogram in training and validation cohort. (A) In the training and 
validation cohort, the AUC of the radiomic nomogram (red lines) were 0.959 and 0.925, and the 
AUC of the radiomic score (blue line) were 0.875 and 0.897, respectively. (B) The calibration curves 
of the nomogram were close to the standard curves in the training and validation cohort, which 
suggested that the nomogram was well-calibrated. (C) Decision curve showed that when the thresh-
old probability was more than 5% in the training cohort and 2% in the validation cohort, using the 
nomogram had more benefit than either assuming all BI-RADS 4 lesions were malignant or assum-
ing all lesions were benign. 

3.4. Clinical Value of The ABVS Radiomic Nomogram 
The decision curve analysis was used to assess the clinical significance of ABVS radi-

omic nomogram (Figure 4c). Results showed that when the threshold probability was 

Figure 4. Receiver operating characteristic curves (ROC), calibration curves and decision curve
analysis of the ABVS radiomic nomogram in training and validation cohort. (A) In the training
and validation cohort, the AUC of the radiomic nomogram (red lines) were 0.959 and 0.925, and
the AUC of the radiomic score (blue line) were 0.875 and 0.897, respectively. (B) The calibration
curves of the nomogram were close to the standard curves in the training and validation cohort,
which suggested that the nomogram was well-calibrated. (C) Decision curve showed that when
the threshold probability was more than 5% in the training cohort and 2% in the validation cohort,
using the nomogram had more benefit than either assuming all BI-RADS 4 lesions were malignant or
assuming all lesions were benign.

Table 3. Performance of the radiomic nomogram in training cohort, validation cohort and com-
bined cohort.

Training Cohort
(n = 178)

Validation Cohort
(n = 45)

Combined Cohort
(n = 223)

AUC (95% CI) 0.96 (0.93 to 0.98) 0.92 (0.82 to 0.97) 0.95 (0.92 to 0.98)
Accuracy (%) 91.6% 86.7% 90.6%
Sensitivity (%) 90.2% 83.3% 88.7%
Specificity (%) 92.7% 90.5% 92.3%

PPV (%) 91.4% 90.9% 91.3%
NPV (%) 91.8% 82.6% 90.0%

AUC = area under the curve; CI = confidence interval; PPV = positive predictive value; NPV = negative predic-
tive value.
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Figure 5. Bar diagrams of BI-RADS 4 lesions according to the optimal cutoff value of nomogram
score. Vertical axis refers to the nomogram score minus the optimal cut-off value (i.e., Nomo-score
−0.40). Up and down bars refer to the biopsy group (Nomo-score > 0.4, n = 106) the follow-up group
(Nomo-score ≤ 0.4; n = 117), respectively. Black and grey bars refer to actual malignant and benign
lesions, respectively.

4. Discussion

In this study, we first developed and validated a radiomic nomogram that combines
ABVS radiomic score, lesion size and BI-RADS 4 subcategories for noninvasive, individ-
ualized distinction benign and malignant BI-RADS 4 lesions. The radiomic nomogram
demonstrated favorable discrimination in both the training and the validation cohorts
as well as good calibration and usefulness. Moreover, 42.5% of unnecessary biopsy of
BI-RADS 4 lesions would be reduced by using the optimal cutoff value (0.4) of the ABVS
radiomic nomogram.

To date, only few studies have investigated a predictive model for breast cancer with
radiomic in BI-RADS 4 lesions, and no studies based on ABVS. Luo et al. [16] reported
that using radiomic nomogram based on conventional US for predicting breast malignancy
in BI-RADS 4 or 5 lesions, and yield an AUC of 0.928 in the validation group, which is
comparable to our ABVS radiomic nomogram (0.928 vs. 0.925). Although the performance
only in BI-RADS 4 lesions has not been reported by Luo et al., we speculate that our
ABVS radiomic nomogram may superior to them in distinguishing benign and malignant
BI-RADS 4 lesions. Since BI-RADS 5 lesions have typical signs of malignancy, and almost
all lesions are malignant (>95% risk of malignancy), the inclusion of BI-RADS 5 lesions may
improve the prediction performance of the radiomic nomogram to some extent. Similarly,
Hu et al. [15] developed and validated an MRI radiomic nomogram for differentiating
benign and malignant BI-RADS 4 lesions with an AUC of 0.79 in the testing set, which
was significantly lower than that of our ABVS radiomic nomogram (AUC, 0.925), and
the possible reasons are as follow. First, we included a larger sample size of BI-RADS
4 lesions (223 vs. 86), which may be the main reason. Since larger datasets could provide
larger training samples, thus better accuracies for radiomic models [26]. Second, Hu et al.
only extracted radiomic features from the largest long-axis cross-section image, while
we extracted multiplanar (axial, coronal, and sagittal) radiomic features of the lesion,
thus better reflecting the biological behavior and tumoral heterogeneity, providing higher
performance in predicting malignant BI-RADS 4 lesions. In our study, in addition to
radiomic scores, the lesion size and BI-RADS 4 subcategories were also included in the
nomogram based on the results of multivariate logistic regression analysis. The AUC of
the nomogram was significantly higher than that of the radiomic score in the training
and validation cohorts (p = 0.002 and p = 0.04), which implies that lesion size and BI-
RADS 4 subcategories also play important roles in the differential diagnosis of benign and
malignant BI-RADS 4 lesions. Therefore, in routine clinical practice, we need to assess the
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subcategories and size of BI-RADS 4 lesions as accurately as possible, which is consistent
with previous studies [27].

According to the latest edition of the ACR BI-RADS-US lexicon, biopsy is recom-
mended for lesions classified as BI-RADS 4. In our study, 53.8% (120/223) of BI-RADS
4 lesions were pathologically confirmed to be benign, meaning that more than half of BI-
RADS 4 lesions received unnecessary biopsies. Recently, as a supplement to conventional
US, elastography and contrast-enhanced ultrasound (CEUS) have provided more diagnos-
tic information for BI-RADS 4 lesions, and 32.6–44.3% of unnecessary biopsies could be
eliminated by these supplement methods [28,29]. However, elastography has technical
limitations such as artefacts and lack of reproducibility, while CEUS is more expensive
and requires intravenous injection of contrast agents. Moreover, both elastography and
CEUS require complex operations and considerable operator expertise [28]. In our study,
we used the ABVS radiomic nomogram, which is a convenient, objective and low-cost
method to achieve a similar performance (42.5%) in reducing unnecessary biopsies for
BI-RADS 4 lesions. However, special care should be taken when using the ABVS radiomic
nomogram in small BI-RADS 4A lesions. In our study, 4.0% (9/223) of malignant BI-RADS
4 lesions were unfortunately missed, of which 4A lesions (7/9, 77.8%) and small-sized
(<10 mm) lesions (6/9, 66.7%) accounted for the majority. The possible reasons for missed
diagnosis are as follows. First, integrating the lesion size and BI-RADS 4 subcategories
into the ABVS radiomic nomogram indeed improves the identification performance of
the nomogram, but small 4A lesions are also easily identified as benign due to their low
score (Figure 6). Secondly, the boundaries of some characteristics between benign and
malignant 4A lesions are indistinct or even inverted, especially small size lesions [30]. In
addition, the small proportion (12/223, 5.4%) of malignant 4A lesions in this study may
also impair the performance of ABVS radiomic nomogram in these lesions. Therefore,
the ABVS radiomic nomogram may be a potential tool to reduce unnecessary biopsies
of BI-RADS 4 lesions, but its ability in small BI-RADS 4A lesions needs to be improved.
Additionally, the performance of the ABVS radiomic nomogram in some rare malignant
breast tumors (such as fibromatosis-like spindle cell carcinoma, myofibroblastic sarcoma,
etc.) is unknown [31], since all malignant BI-RADS 4 lesions are invasive cancers in our
study. Future research should include more types of malignant lesions to promote the
clinical application of this method.

In recent years, ABVS has received increasing attention from researchers because it
overcomes some of the major limitations of conventional US and has good performance
in both the screening setting and the diagnostic setting of breast cancer [18,32]. However,
some inherent characteristics of ABVS may affect its promotion and application in the clinic.
For one patient, approximately 2000 images were typically generated by ABVS examination,
and the sheer volume of images poses a great challenge for radiologists to interpret these
images [18]. A study showed that the mean interpretation time of ABVS examination for
one patient is approximately 9 min, and the time will increase significantly when abnormal
or malignant lesions are detected [33]. Additionally, the detection and classification of breast
lesions by ABVS depends on the experience of radiologists [34], and limited experience
will reduce diagnostic sensitivity and specificity of ABVS in breast cancer [35]. However,
in our research, the ABVS radiomic nomogram can distinguish benign and malignant
BI-RADS 4 lesions without dependence on the experience of radiologists, and only three
ABVS images of the lesion are required, which may simplify the diagnostic workflow and
extend the clinical application of ABVS to the treatment and prognosis of breast cancer [36],
since ABVS-based radiomics may also be useful in predicting the molecular subtypes of
breast cancer, axillary lymph node metastasis, or response to neoadjuvant therapy.

There are still several limitations in this study. First, the small sample size from a single
center and the lack of an external validation set may limit the robustness and reproducibility
of the radiomic nomogram. Therefore, multicenter studies with considerably large datasets
are needed in future research. Second, although we extract radiomic features from the axial,
sagittal, and coronal ABVS images of each lesion, the three-dimensional radiomic features
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may contain more tumor information to identify the benign and malignant lesions, which
is our future research direction. Third, manually segmentation may have inter-operator
variability, and semiautomatic or automatic segmentation methods should be combined in
further research.
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be missed diagnosis.

5. Conclusions

In conclusion, the ABVS radiomic nomogram showed satisfactory discrimination
performance between benign and malignant BI-RADS 4 lesions as well as good calibration.
It may be a potential tool to reduce unnecessary biopsies of BI-RADS 4 lesions, but its ability
in small BI-RADS 4A lesion identification needs to be improved. Large-scale multicenter
studies are warranted to further promote the performance of ABVS radiomic nomogram.
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