
Concise Review: Towards the Clinical Translation
of Induced Pluripotent Stem Cell-Derived Blood
Cells—Ready for Take-Off

KATHRIN HAAKE,a,b MANIA ACKERMANN,a,b NICO LACHMANN
a,b

Key Words. Induced pluripotent stem cells • Blood • Macrophages • Erythrocytes • Platelets •
Upscaling • Clinical translation • GMP

ABSTRACT

Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have opened up a world of
possibilities for regenerative medicine and novel cell-based therapeutics. Now, over a decade
later, robust reprogramming and expansion and differentiation protocols have been developed,
and iPSC-derived cells have been used in a wide variety of small and large animal models to
treat many different diseases. Furthermore, the first iPSC derivatives are on their way into clinical
trials. In this line, (i) GMP-compliant generation, cultivation, and differentiation, (ii) preclinical
efficacy and safety, as well as (iii) ethical and regulatory compliance of stem cell research repre-
sent important aspects that need to be evaluated for proper clinical translation of iPSCs and their
derivatives. In this review article, we provide an overview of the current advances and challenges
of the clinical translation of iPSC-derived blood cells and highlight the most pressing problems
that have to be overcome in the next years. STEM CELLS TRANSLATIONAL MEDICINE
2019;8:332–339

SIGNIFICANCE STATEMENT

Given the groundbreaking discovery of induced pluripotent stem cells (iPSCs), use of these cells
has been envisioned for future cell-based therapies. Nowadays, iPSCs have been differentiated
toward a variety of different effector cells, and iPSC derivates have also reached clinical transla-
tion. Although clinical transfer of iPSC-derived hematopoietic cells remains as of yet sparse, the
study describes the recent advances in hematopoietic differentiation of iPSC and provides a cur-
rent perspective on the GMP-compliant generation of suitable hematopoietic cells.

INTRODUCTION

Given their potential to continuously regener-
ate and differentiate into all cell types of an
organism, pluripotent stem cells (PSCs) such as
embryonic stem cells (ESCs) or induced PSCs
(iPSCs) represent a highly promising source for
new cell-based therapies. Following the pio-
neering studies by Takahashi and Yamanaka
[1], murine and human iPSCs have been used
to derive a multitude of therapeutically active
cell types, thus laying the foundation for new
treatment concepts in regenerative medicine
(Fig. 1). After over a decade of research, the
effectiveness and feasibility of iPSC-derivatives
have been proven in small and large animal
models, building the foundation for clinical
application [2]. In this review article, we will
give an overview of the ongoing efforts to
translate iPSC-derived blood cells toward clini-
cal use, with the main focus on hematopoietic

stem cells (HSCs) and macrophages, highlight-
ing some of the problems that have to be over-
come in the upcoming years.

PROMISES AND ETHICAL CONCERNS
OF HUMAN IPSC

To broaden the clinical use of iPSC-derived cell
types, current efforts focus on three corner-
stones, which are dedicated to (i) GMP-compliant
generation, cultivation, and differentiation of
human iPSCs, (ii) preclinical efficacy and safety,
as well as (iii) ethical and regulatory compliance
of stem cell research. Especially, the latter has
recently been considered in more detail, as
human iPSCs are derived from adult-type
somatic donor cells. Given the unique features
of iPSCs for unlimited self-renewal and indefi-
nite differentiation toward various cell types,
these cells can be used for research purposes or
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be translated into clinical practice many years after their gener-
ation. Furthermore, iPSCs contain the individual genetic finger-

print of the donor, which can be (mis)used for in depth
research of the personal genetic code. Although human iPSCs

can nowadays be generated within days or weeks from many

different donors, the history of Henrietta Lacks should act as a

memorial to follow certain national and international guidelines

on stem cell research. The International Society of Stem Cell

Research has also become aware of these prerequisites and has

published a compendium of “Guidelines for Stem Cell Research

and Clinical Translation” (see also [3]). Besides recent landmark
studies on the therapeutic success of iPSC-derivatives, such

guidelines are necessary to protect the rights of the cell donors

(e.g., by written informed consent) and to fulfill (pre)clinical

standards (e.g., by preclinical efficacy and safety studies) before

an iPSC-derived cell therapeutic reaches individual patients.

Given the rapid medical progress in the field of stem cell

research and regenerative medicine, national stem cell societies

(e.g., the German Stem Cell Network) also provide knowledge
on regulatory compliance, with the aim to use the iPSC technol-

ogy for disease modeling, drug discovery, and also clinical

translation.

SCALABLE GENERATION AND MAINTENANCE OF IPSCS AS A

PREREQUISITE FOR THE CLINICAL TRANSLATION

Since their discovery in 2006, the concept of “reprogramming”
was quickly transferred from the murine to the human system
[4] and then expanded toward different starting cell sources
with various different reprogramming techniques [5–11] (for a
more in depth overview, see [12]). The original protocol is based
on introducing the four transcription factors (TFs), OCT4, SOX2,
KLF4, and c-Myc, via viral vectors; although it remains the basis
of iPSC generation [1], other factors and methods have also
been explored. After their establishment, iPSCs were quickly
compared to the “gold standard” ESCs and it was found that
they are remarkably similar. However, subtle differences in tran-
scriptomic and epigenetic profiling were discovered [13, 14].
How critical these differences are, as well as the use of different
starting materials, the donor age, and reprogramming method
are still debated [13, 15–17] (for a more in depth overview of
the influence of donor age and of genetic variability, see [18]
and [19], respectively). Furthermore, the genetic integrity and
stability of iPSCs are of concern as the reprogramming process
and subsequent culturing are associated with DNA damages
including double strand breaks and other genomic aberrations

Figure 1. The clinical translation of induced pluripotent stem cell (iPSC)-derived cells. iPSCs and their derived progeny hold great poten-
tial for their use in regenerative and personalized medicine. To achieve this aim, mature cells, for example, blood cells or fibroblasts, are
collected from a patient (1) and reprogrammed into iPSCs using a GMP-compliant protocol (2). After this, the cells have to go through
several processes (3) including but not limited to: banking for future use and testing, expansion and differentiation in sufficient numbers
via upscaling, for example, in bioreactors, purification, and functional analysis. Cells also have to go through tests by regulatory agencies
regarding safety and compliance (4). Following certain cell release criteria, the cell products (5) can potentially be stored and infused back
into the patient (6).
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[20]. As such aberrations are passed down to any nucleated dif-
ferentiated progeny, they could present a major safety issue.
Despite these concerns, iPSCs are pushed toward clinical appli-
cation because of their great therapeutic potential. However,
the main difficulties still persist in GMP-compliant generation
and maintenance of iPSCs, translation of cultivation and differ-
entiation protocols toward industrial standards, and the defini-
tion of safety standards.

As the original reprogramming technique used viral vector
integration, the risk of genotoxicity and nonintegrating viral and
nonviral reprogramming methods have been successfully devel-
oped. For the viral reprogramming, adenovirus and sendai
virus have been predominantly used [6, 21], whereas for the
nonviral methods, mRNA, protein, plasmid, and transposon-
based methods have been successfully employed [12]. Most of
these methods, however, trade-off higher security for lower effi-
ciency in comparison to the traditionally used lenti- or gamma-
retroviral methods [22]. In hand with the nonintegrating
reprogramming, also GMP-grade generation and maintenance
protocols were developed [23]. This includes chemically defined
and xeno-free media but also feeder-free cultivation of iPSCs.
Many systems have been successfully developed so far, Wiley
et al., for example, used sendai virus-based reprogramming
and culturing on recombinant human laminin [24], whereas
Baghbaderani et al. used plasmid-based reprogramming and the
L7 matrix from Lonza [23, 25]. Both groups demonstrate fully
GMP-compliant protocols ready for clinical translation. As there
is no standardized method up until this point, much work is still
needed toward establishing robust and reliable protocols. The
next step after the GMP-compliant reprogramming and cultur-
ing is the translation toward industrial-scale production. The
aforementioned protocols work with traditional monolayer cul-
ture, but for a clinical application, up-scaling to bioreactor tech-
nology is required. Various groups have shown that cultivation of
iPSCs as pluripotent aggregates in bioreactors is possible [26, 27],
although the bioreactors were still inoculated with cells initially
derived from feeder-based cultivation, and continuous passag-
ing of the pluripotent aggregates remains problematic. The
most important hurdle that remains is the connection of all the
different parts to achieve a combined, all-in-one GMP-compliant
reprogramming and maintenance protocol that can be trans-
ferred to the bioreactor and ideally be linked to various differ-
entiation protocols. One of the few cell types for which robust
and combined protocols in a bioreactor system have already
been established are cardiomyocytes [28, 29], but for the major-
ity of other cell types including the blood cells robust protocols
remain sparse. Furthermore, the produced cells need to be
linked to clinical use: Even though protocols for cardiomyocytes
are already well established, the application of these cells in the
clinic is still in the very beginning [30]. In summary, both the
GMP-compliant reprogramming as well as the maintenance of
iPSCs have been established. However, main challenges remain
in connecting the protocols, up-scaling of the processes, and
achieving standards and guidelines for all steps involved.

THE DIFFERENTIATION POTENTIAL OF HUMAN IPSCS INTO

HEMATOPOIETIC STEM CELLS

Considering their three-lineage (mesoderm, ectoderm, and
endoderm) differentiation potential, human iPSCs have been

shown to give rise to almost all cell types of the human organ-
ism, highlighting their attractiveness for the field of regenera-
tive medicine. This also holds true for the hematopoietic
lineage, in which the HSC gives rise to all mature blood cells in
a hierarchical process. Given the high therapeutic value of HSC
transplantation in clinical practice, great efforts have been put
into the generation of HSCs from PSC sources. And while sub-
stantial improvements have been made in the generation of a
variety of mature blood cells, the in vitro generation of HSCs
from PSCs is still fraud with problems. The main hallmarks
such as engraftment in secondary recipients and multilineage
reconstitution currently remain mostly unmet. Although many
protocols are published, they vary greatly in both methods
used and the outcome. So far, only genetic modification of the
original iPSC starting material allowed the generation of iPSC-
derived functional HSCs, whereas iPSC-derived HSC-like cells
from differentiation cultures employing “only” cytokine admin-
istration, small molecule-guided activation of signaling path-
ways, or cocultivation with endothelial/stromal cells are
missing critical functionality [31, 32]. One promising approach
to overcome this problem is the forced overexpression of
defined TFs during the differentiation process. In the human
system, Sandler et al. showed that the overexpression of FOSB,
GFI1, RUNX1, and SPI1 in endothelial cells together with a
coculture with E4EC vascular niche cells is able to produce
multipotent progenitor cells that can reconstitute primary and
secondary recipients [33]. An alternative approach comes from
the Daley lab, that used the inducible overexpression of the
TFs ERG, HOXA9, RORA, SOX4, and MYB (EARSM) in CD34+

CD45+ myeloid precursors derived from human PSCs (hPSCs).
Following this approach, they were able to generate engrafta-
ble multilineage progenitors with myeloid and erythroid differ-
entiation potential [34]. Of note, the additional knockdown of
the epigenetic modifier and polycomb group protein EZH1
unlocked lymphoid potential in vitro [35]. In addition, also the
overexpression of MLL-AF4 only has shown the generation of
engraftable iPSC-derived blood cells; however, transplanted
cells showed a myeloid bias and leukemic transformation at
later timepoints [36]. Similarly, a screen of 26 TF candidates
after hPSC differentiation in hemogenic endothelium discov-
ered seven TFs (ERG, HOXA5, HOXA9, HOXA10, LCOR, and
RUNX1) that were sufficient to generate hematopoietic stem
and progenitor cells that engraft in primary and secondary
recipients and generate myeloid, B and T cell lineages [37].
Here, the overexpression of these TFs is combined with a pre-
ceding morphogen-based differentiation protocol to first gen-
erate hemogenic endothelium, which is then converted into
HSCs. With similar success Rafii and coworkers converted
murine endothelial cells into HSCs via the transient overex-
pression of the TFs Fosb, Gfi1, Runx1, and Spi1 and coculture
with an inductive vascular niche [38]. Another approach is per-
formed by Suzuki et al. [39] and Amabile [40], for example,
who successfully generated HSCs via teratoma formation.
However, this approach has clear limitations with respect to clini-
cal translation. Even though great advances have been made, the
clinical translation of in vitro generated transgene-free HSCs
remains out of reach for the moment. This might be explained
by the complex hematopoietic embryonic development, which
proceeds through two distinct stages: a primitive and a definitive
hematopoietic program. Whereas these programs are spatially
and temporarily separated in the developing embryo, they are
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simultaneously induced during iPSC differentiation (also
reviewed in [41]). Certainly, specific factors and signaling path-
ways are still missing to instruct the developing HSPCs to a defin-
itive, long-term engraftable HSC. Because of these problems,
many researchers have turned their attention toward the gener-
ation of further differentiated cells instead. Here, our under-
standing of the ontogeny of these cells in vivo has been the
crucial guiding plan toward their in vitro generation.

GENERATION OF THERAPEUTICALLY ACTIVE MACROPHAGES

FROM HUMAN IPSC

Macrophages have become an increasingly interesting cell type
for in vitro generation and clinical translation, as insights into
their function and ontogeny have been unveiled. Several
recent publications have shown that macrophages from dif-
ferent organs (Fig. 2), also called tissue resident macro-
phages (TRMs), are of embryonic origin and originate from
progenitors, which seed the different tissues before birth. Fur-
thermore, many TRM populations have been shown to self-
maintain independent of monocyte influx as, for example, the
microglia in the brain, alveolar macrophages (AMs) in the lung,
or the Kupffer cells in the liver (as also reviewed elsewhere
[42]). Given their remarkable self-renewal and plasticity
combined with their crucial role in a wide variety of diseases
such as hereditary alveolar proteinosis [43] and mendelian

susceptibility to mycobacterial disease [44, 45], the in vitro
generation of macrophages can lead to new insights into
their role in pathophysiology [46, 47], while creating possible
clinical applications.

The generation of human macrophages from PSCs started
out with a variety of complex differentiation methods regularly
including coculturing with other cells such as mouse bone mar-
row cells, complex cytokine cocktails, and lengthy purification
steps. In 2008, however, the group of William James published
a more streamlined and efficient protocol to derive macro-
phages from ESCs. In short, embryoid bodies (EBs) are formed
and subjected to directed differentiation via M-CSF/IL-3, and
the subsequently produced cells can be harvested from the
supernatent [48]. The resulting cells are of high purity, tran-
scriptionally closely related to their in vivo counterparts, and
seem to be fully functional. Because of its simplicity and effi-
ciency, this protocol has since become a standard for differen-
tiating macrophages and meanwhile been further advanced to
generate macrophages and granulocytes from human iPSCs
[49, 50]. In addition, similar techniques have been developed
to also generate microglia-like cells from human iPSCs, further
demonstrating the potential to produce various macrophage
subsets [51, 52]. With a well-established protocol in hand, cur-
rent efforts are mainly focused on defined, GMP-compliant,
and large-scale production of these cells, to push their use
toward the clinical application. Here, additional steps have
often been introduced to the original protocol, mainly a meso-
derm priming step after EB formation, which often includes

Figure 2. Localization of different macrophage subsets in different organs. Tissue macrophages play an important role in tissue homeo-
stasis and can act as regulators in the innate immunity. Prominent examples for macrophages in different tissues are microglia in the
brain, Kupffer cells in the liver, alveolar macrophages in the lung, and the intestinal macrophages. Considering the individual turnover and
the ontogeny of the different macrophage subsets, generation and transplantation of induced pluripotent stem cell-derived macrophages
might be a future therapeutic approach for different diseases in which tissue macrophages are impaired.
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the addition of Stem Cell Factor (SCF), Vascular Endothelial
Growth Factor (VEGF), Bone morphogenetic protein 4 (BMP-4)
[53]. This step seems to be made necessary when using a
feeder-free cultivation of the iPSCs as either a monolayer or as
aggregates. Further modifications often include single EB forma-
tion with a defined cell numbers to make the process more
reproducible and a switch to media that are suitable for clinical
translation such as X-Vivo, E8/E6 or mTeSR medium. With large
parts of the GMP compliant and defined production of these
cells established, further efforts are now concentrated on the
large-scale production of these cells and establishing a link to
the GMP-compliant cultivation and maintenance of iPSCs to
have an all-in-one large-scale production protocol. Regarding
the function of the iPSC-derived macrophages, the question
remains whether they rather resemble an adult-type monocyte/
macrophage or a primitive embryonic-type macrophage pheno-
type. Some evidence seems to be pointing toward the latter
[52, 53], but how important this is for future clinical application
of the cells still has to be shown. As of yet, the connection of
the ontogeny and function of different macrophage subsets is
poorly understood, and the question persists whether adult and
embryonic macrophages have the same functionality. Further-
more, macrophages are one of the few known cell types that
exist both from embryo and adult origin in the adult organism.
Given the tendency of most PSC-derived cells to be more of
primitive (embryonic/fetal) than definitive origin, macrophages
are an interesting cell type to study the functional differences
between these cells. In fact, recent studies suggest a more
primitive origin of murine and human iPSC-derived macro-
phages [53–55]. Given the MYB-independent origin of murine
TRMs [56], a MYB-independent and RUNX1-dependent develop-
ment has been shown for human iPSC-derived macro-
phages [53].

First in vivo data of how these cells could be used in the
clinical application came, for example, from macrophage trans-
plantation in the context of hereditary pulmonary alveolar pro-
teinosis (herPAP) [57, 58]. Because of the absence of AMs and
therefore an empty niche, it has been shown that pulmonary
macrophage transplantation of human iPSC-derived macro-
phages can also lead to stable long-term engraftment, adap-
tion toward an AM phenotype, and thereby improvement of
disease parameters in a humanized mouse model of herPAP
[54]. Although very much similar, the concept of HSC-derived
macrophage transplantation is now on its way toward clinical
translation and might also be a useful application in other
macrophage-related diseases and even infectious diseases.

CLINICAL TRANSLATION OF HUMAN IPSC AND FUTURE
DIRECTIONS

As introduced before, human iPSCs have been differentiated
into a multitude of different blood cells; however, the clinical
translation of iPSC-derived cell products is still impeded. One
major hurdle is our insufficient knowledge about the in vivo
functionality of iPSC-derived blood cells as well as the lack of
scalable differentiation protocols allowing to generate therapeu-
tically relevant quantities of effector cells. Another potential
concern relates to the contamination of the cell product with
residual undifferentiated iPSCs, which can form unwanted tera-
tomas. To circumvent this problem, improved differentiation

protocols in combination with rigorous purification strategies
are currently underway. As an alternative, the addition of safety
switches, which are based on suicide genes, for example, the
herpes simplex virus thymidine kinase or the inducible Caspase
9 system, may be used to efficiently deplete tumor (including
teratoma)-forming cells [59, 60]. Application of such a system
has recently shown to eradication approximately 95% of iPSCs,
making this system an attractive safety-backup option [59].
Although current preclinical lab work relates to GMP-compliant
generation, maintenance, and differentiation as well as safety
concerns, one major question remaining is which iPSC line(s)
should be used to generate the therapeutic cell product. First
studies promised iPSC technology to provide autologous cell
products and tissues for patient-specific cell-based therapies;
however, this scenario is extremely labor and cost intensive,
suggesting the clinical use of allogenic iPSCs. To provide suitable
target cells, either genetically modified “universal” iPSCs, which,
for example, expresses artificial HLA molecules [61], or the use
of human iPSCs, which can be obtained from iPSC-banks, is
interesting approache. Indeed, S. Yamanaka has started recently
to establish a GMP-grade iPSC-bank in Japan (CiRA’s iPSC bank
for regenerative medicine), preferentially using material from
HLA-homozygous donors. This approach offers the advantage
that 5 to 10 allogenic donor lines would be sufficient to match
30%–50% of the Japanese population [62, 63]. Using HLA-
homozygous donors greatly reduces the numbers of iPSC lines
needed to cover a given population, but potential donors would
have to be identified performing large screenings or using
established data from HSC donors/cord blood banks. While
this scenario may be applicable for Japan, more diverse popula-
tions (e.g., Brazil, United States, or India) are expected to
require more iPSC lines to match the majority of their popula-
tion [64, 65]. As an alternative approach, a single iPSC line, previ-
ously genetically manipulated to escape immune rejection would
allow for a universal iPSC-based cell therapy approach, which
can in principle be applied for all patients and thus drastically
reduce the costs for cell therapy. Going this line, recent studies
could already demonstrate feasibility by disrupting the beta-2
microglobulin gene-locus and introducing a single-chain HLA-E
molecule into PSCs. Derivatives from these iPSCs were able to
escape T cell-mediated rejection and were resistant to NK-cell
lysis, highlighting their potential as allogenic alternatives [61].

Although no clinical trials employing iPSC-derived hemato-
poietic cells have been conducted so far, two other iPSC-derived
products have been used to treat the first patients. The world-
wide first clinical trial using an autologous iPSC-derived cell
product has been launched in 2014 in Japan. Here, the team of
Masayo Takahashi from RIKEN and Kobe City Medical Center ini-
tiated a clinical trial to treat neovascular age-related macular
degeneration by transplanting iPSC-derived retinal pigment epi-
thelial (RPE) sheets (UMIN-CTR #, UMIN000011929). To achieve
this aim, the team generated a GMP-grade autologous iPSC line
from patient’s fibroblasts using nonintegrating episomal vectors.
After vigorous safety testing of the iPSCs and the iPSC-derived
cell product, the first patient has been treated in September
2014, with an intact RPE cell sheet 1 year post transplantation
[2]. However, given new regulations in Japan`s regenerative
medicine law [66], the team of Takahashi has changed the strat-
egy, aiming to use allogeneic donor cells instead [67, 68]. Unfor-
tunately, one adverse event was reported for one of the
patients earlier this year, which, however, was most likely

© 2018 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by
Wiley Periodicals, Inc. on behalf of AlphaMed Press

STEM CELLS TRANSLATIONAL MEDICINE

336 Clinical Translation of iPSCs



related to the surgical procedure and not the iPSC product itself
[69]. Besides this pioneering trial, only one more interventional
trial using allogeneic iPSC-derived mesenchymal stem cells
(MSCs) is currently being conducted by the Australian Company
Cynata Therapeutics. In this trial, the investigator aims to use
mesenchymoangioblast-derived MSCs for the treatment of
steroid-resistant acute graft-versus-host disease (Clinical Trials.
gov: NCT02923375). Currently, all eight patients treated so far
have demonstrated at least a partial response, while no
treatment-related serious adverse events or safety concerns
have been observed [70]. The outcomes of these two trials will
certainly be helpful for further clinical translation of iPSC-based
therapies.

CONCLUSION

Given the pioneering work of the aforementioned clinical trials
and long-standing expertise of transfusion medicine in cell-
based therapies, iPSC-derived hematopoietic cells represent a
promising cell type for the initiation of further iPSC-based clini-
cal trials. Especially, the recent advances in GMP-compliant gen-
eration and differentiation of human iPSCs in combination with
upscaling approaches of hematopoietic differentiation put iPSC-
derived blood cells on the right path toward possible clinical
translation. While various preclinical studies could already dem-
onstrate the efficacy and safety of various iPSC-derived blood
cells, more work is still needed to generate transgene-free HSCs
for clinical application. Here, maybe the transplantation of mac-
rophages into different tissues could be the forefront of clinical
translation (Fig. 1). As mentioned earlier, dysfunction of macrophages

has been associated with a variety of diseases entities, and for
some, macrophage transplantation has been proven feasible
and long lasting. Also highlighting recent efforts in the genera-
tion of other mature and immature cells, it will be a fascinating
time to see when and how iPSCs will be translated into clinical
application and furthermore which hematopoietic cell types
will be applied first.
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