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Background. The segmentation of the common carotid artery (CCA) wall is imperative for the determination of the intima-media
thickness (IMT) on B-mode ultrasound (US) images.The IMT is considered an important indicator in the evaluation of the risk for
the development of atherosclerosis. In this paper, authors have discussed the relevance ofmeasurements in clinical practices and the
challenges that one has to face while approaching the segmentation of carotid artery on ultrasound images. The paper presents an
overall review of commonly used methods for the CCA segmentation and IMTmeasurement along with the different performance
metrics that have been proposed and used for performance validation. Summary and future directions are given in the conclusion.

1. Introduction

Cardiovascular disease (CVD) is one of the leading causes
of deaths in the metropolitan cities. A recent survey by the
World Health Organization revealed that up to 17.3 million
people died from CVDs in 2008. Scientifically presaged
the upcoming 2030, almost 23.3 million human deaths are
resulting from CVDs [1]. CVD ailments are relative to
atherosclerosis (arterial disease). Atherosclerosis is responsi-
ble for the thickening of the artery walls, and the IMT is used
as a validated measure for the evaluation of atherosclerosis.
Prominently, the increase in IMT jeopardizes the brain
infarction or cardiac attack [2, 3].

Usually, the B-mode ultrasound scan of CCA in its
common tract is used for the evaluation of the artery status
and for the measurement of the IMT. Ultrasound method-
ology has manifest benefits of being real-time, noninvasive,
low-cost, reliable, and absolutely safe for the patients. The
essential drawbacks of this methodology are the B-mode
image having low signal-to-noise ratio and ultrasounds are
operator dependent [4]. Conventionally, the IMT ismanually
measured by the trained operator from the US scan images.
Thismethodology is highly user dependent, time consuming,
tedious, and infeasible in presence of large image databases

[5, 6]. During the past 20 years, several computerized tech-
niques have been developed for segmentation of CCA.These
methods can be broadly classified into two categories: first
category includes techniques that are completely automated,
whereas second category includes those that require user
interaction (semiautomated). This review will focus on the
techniques that have been developed to perform CCA wall
segmentation and IMT measurement in B-mode ultrasound
images in both automated and semiautomated manners.

2. Clinical Significance of Vessel
Wall Segmentation

2.1. Common Carotid Artery Intima-Media Thickness. The
CCA longitudinal section is shown in Figure 1. It is charac-
terized by a longitudinal tract (common carotid) that, after
an enlargement (carotid sinus) containing a flow divider,
bifurcates into two arteries, one internal and one external, on
the basis of their position in relation to neck skin [7].

The bifurcation and the internal carotid artery (ICA)
are more threatening to atherosclerosis, due to stronger
hemodynamic stresses in the bifurcation and branching
zones, but it is difficult to visualize the “double-line” pattern
in these locations. So an IMT measurement in the CCA is
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Figure 1: The carotid artery view with the interfaces: (1)
periadventitia-adventitia (NW), (2) adventitia-media (NW), (3)
intima-lumen (NW), (4) lumen-intima (FW), (5) media-adventitia
(FW), and (6) adventitia-periadventitia (FW) [7].

preferred in the development of segmentation algorithms and
in clinical practice [8].

Classically, IMT is defined as a double-line pattern
visualized by echotomography on both walls of the CCA in
a longitudinal image. It consists of two parallel anatomical
boundaries referred to as the lumen-intima and media-
adventitia interfaces [9]. US waves are reflected differently
by blood (vessel lumen) and wall layers because of their
differences in density and elasticity.USwaves are not reflected
by vessel lumen and tunica media, thus allow detection of the
lumen-intima (LI) and media-adventitia (MA) interfaces, as
depicted in Figure 2 B-mode ultrasound CCA image [10].

2.2. Importance of Carotid Arterial Intima-Media Thickness.
The increased IMT reflects early stages of atherosclerosis and
cardiovascular risk. Higher blood pressure and changes in
shear stress are the potential causes of intimal thickening.
Changes in shear stress and blood pressure may cause a
local delay in lumen transportation of potentially atherogenic
particles, which favors the accumulation of particles in the
arterial wall and consequent plaque formation [12]. It is
found that type 1 diabetes is a significant risk factor for
increased carotid IMT in children [13]. It is confirmed that
the increase in IMT is directly associatedwith an increase risk
of myocardial infarction and stroke in older adults without
a history of cardiovascular disease [14]. The assessment of
IMT in prediction of the degrees of atherosclerosis and the
risk of stroke and CVDs has been demonstrated by a lot of
studies [15–17]. It is found that obesity especially abdominal
obesity in childhood and adolescence is closely related to IMT
[18].The studies confirmed that the increase of the IMT value
above 0.9-1.0mm is indicative of a significant increase of
CVD risk when taking into account the population of healthy
elderly [4, 7]. In the following sections, we will discuss the
difficulties confronted in the intima andmedia detection and
review the recent advancements in CCA segmentation.

3. Difficulties of Intima and
Adventitia Detection

The difficulties encountered in detecting intima and adventi-
tia layers are as follows [19]:

(i) presence of speckles in US image;
(ii) the structure of IM complex or the intimal layer

changes due to diseases such as atherosclerotic
plaques;

(iii) variation in echo characteristic on intima and adven-
titia on images with the variation in sonographic
instrumentations.

4. Segmentation Techniques

Plethora of ultrasound-segmentation techniques have been
reviewed in recent surveys by Noble and Boukerroui [29] and
Molinari et al. [30].Thereby authors are steadfast in reporting
on recent techniques, used for the segmentation of the CCA
on US images. These studies on the segmentation of the
carotid artery boundaries include the application of dynamic
programming, deformable snakes, hough transforms, and
classification approaches to detect the carotid boundaries on
longitudinally oriented images [27, 31–33]. For each method-
ology, the authors have described principles, performance,
advantages, and limitations. Table 1 gives and summarizes the
technique that is mentioned below.

4.1. Dynamic Programming Techniques (DP). DP technique is
concisely used to solve optimization problems, where desired
segmentation minimizes the cost function defined by the
particular application. Local measurements of echo intensity,
edge strength, and boundary continuity are included as
weighted terms in a cost function. All possible set of spatially
consecutive points forming a polyline is being considered,
and favor is given to that which minimizes the cost function
[34].

The polylines are represented as a vector:

𝑃 = (𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑖−1
, 𝑃
𝑖
, . . . , 𝑃

𝑁
) , (1)

where 𝑖 is the horizontal pixel position, 𝑃
𝑖−1

and 𝑃
𝑖
are

neighbor points, and𝑁 is the horizontal length of the search
region. A vertical searchwindow of size𝑀×1 pixels is used to
scan the boundary from left to right at𝑁 horizontal positions
as shown in Figure 3. At scan position 𝑖, the boundary point,
𝑃
𝑖
, in (1) can be any pixel in this window. The optimized

connection is searched for each point in this window and the
cost accumulated. At the end of the scanning, the optimal
polyline is the one that minimizes the cost function:
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The local cost is a weighted sum of cost terms:
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Figure 2: B-modeCCA image.Themedia layer thickness (MLT) is defined as the distance between the intima-media and themedia-adventitia
interface [11].

where 𝑊
1
, 𝑊
2
, and 𝑊

3
are weighting factors, 𝐶

1
, 𝐶
2
, and

𝐶
3
are the echo intensity, intensity gradient, and boundary

continuity cost terms, respectively. Based on DP techniques
in 1994 Gustavsson et al. [28] introduced a procedure for
automatic ultrasonic measurements of the carotid artery,
and lumen diameter (LD) and IMT were computed. Inter-
method (auto versus manual) variability as well as inter-
and intraobserver variability was studied by computing the
conventional coefficient of variation (CV).Amajor advantage
of this methodology was complete automation and low
computational complexity, thus suitable for clinical purposes.
This method requires interactive tools for manual tracing in
order to correct the remaining detection errors. The major
limitation of this technique is the need for training of the
system. In 1997, Gustavsson et al. [34] have compared four
algorithms: the dynamic programming, the maximum gradi-
ent, the model-based, and the matched filter algorithm and
confirmed that the DP algorithm provides superior perfor-
mance in terms of accuracy and robustness. In 2008 Liu et al.
[35] proposed a segmentation method in which the energy
definition of active contour model was used and DP was
employed to search the shortest path. To reduce the effects
of speckle noise, anisotropic diffusion method was adopted.
It is advantageous as it requires less manual input. Holdfeldt
et al. [36] proposed a method based on DP for boundary
detection in ultrasound image sequences. According to the
author, this method gives favorable results on both synthetic
and real ultrasound data. Cheng and Jiang [37] proposed
a novel dual dynamic programming (DDP) technique that
detected intimal and adventitial layers of the CCA of the B-
mode US images. In this, the robustness against the speckles
was increased by embedding the anatomical knowledge into
its structure.Therefore, the researcher reported that the DDP
technique achieved a detection performance comparable to
manual segmentation.

4.2. Hough Transform (HT). HT technique used to detect
straight lines. A straight line at a distance 𝑠 and orientation
𝜃 can be represented by

𝑠 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃. (4)

The HT of this line is just a point in the (𝑠, 𝜃) plane; that is
all the points on this line map into a single point. This fact
is utilized to detect straight lines in a given set of boundary
points. If given boundary points are (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑁

for some selected quantized values of parameter 𝑠 and 𝜃,
map each (𝑥

𝑖
, 𝑦
𝑖
) into the (𝑠, 𝜃) space and count 𝐶(𝑠, 𝜃), the

number of edge points that map into the location (𝑠, 𝜃); that
is, set

𝐶 (𝑠
𝑘
, 𝜃
1
) = 𝐶 (𝑠

𝑘
, 𝜃
1
) + 1

if 𝑥
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cos 𝜃 + 𝑦

𝑖
sin 𝜃 = 𝑠
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for 𝜃 = 𝜃

𝑖
.

(5)

Then the local maxima of 𝐶(𝑠, 𝜃) give the different straight
line segments through the edge points. Generalized HT can
be used to detect curves other than the straight lines [38].
Segmentation algorithm based on the HT was demonstrated
by Golemati et al. [39] in 2007 to segment both longitudinal
and transverse images. The HT is effective in detecting lines
(longitudinal images) or circles (transverse images), but it
may fail in detecting curved vessels. In 2008, Stoitsis et al. [40]
proposed the HT-initialized active contour methodology. In
2010, Petroudi et al. [41] proposed a fully automated method
that was proposed for the delineation of the intima-media
complex (IMC). In this technique after speckle removal
and HT used for boundary detection followed by image
normalization, the corresponding results were used to pro-
vide the initial statistical information needed for a Markov
random field (MRF). In 2011, Matsakou et al. [42] proposed
a method in which an HT-based methodology was used for
the definition of the initial snake followed by a gradient
vector flow (GVF) snake deformation for the final contour
detection.The author reported that the sensitivity, specificity,
and accuracy were 0.97, 0.99 and 0.98, respectively, for both
diastolic and systolic cases. Recently Xu et al. [21] proposed a
segmentation method using HT and dual snake model; two
contours are initialized from line segments generated by HT.
Author admits that the technique is not suitable for irregular
boundaries and decimate minor details.

4.3. Nakagami Mixture Modelling. In 2009, Destrempes et
al. [25] introduced a segmentation technique based on
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Figure 3: Detecting interfaces I2 and I7 in an artery image.

Nakagami mixture modeling and stochastic optimization.
The echogenicity of the region of interest (ROI) comprising
the intima-media layers, the lumen, and the adventitia in
an ultrasonic B-mode image is modeled by a mixture of
three Nakagami distributions. In a first step the expectation
maximization (EM) algorithm was used to compute the
maximum A posterior (MAP) estimator of the proposed
model, then computes the optimal segmentation based on
the estimated distributions as well as a statistical prior for
disease-free IMT using a variant of the exploration/selection
(ES) algorithm. This method requires minimal manual ini-
tialization. Destrempes et al. [43] proposed a method for
segmentation of plaques in sequences of ultrasound B-mode
images of carotid arteries based on motion estimation and
Nakagami distributions. In it, a local geometrical smoothness
constraint and an original spatiotemporal cohesion con-
straint were incorporated, envisaging the segmented plaque
based on motion field estimation. In 2011, Destrempes et al.
[23] proposed a method for the segmentation of plaques in
the sequence of ultrasound B-mode images of carotid arteries
based on motion estimation and a Bayesian model. Authors
have reported that the algorithm was not sensitive to the
degree of stenosis or calcification.

4.4. Active Contour. The basic concept of active contour
model is to fit a contour to local image information, for
example, gradient. There exist several implementations of
this basic idea such as snakes [44], discrete dynamic contour
model [45], and level sets [46]. Based on the involved feature
image, they can be categorized as edge based [47], region
based [48, 49], and higher level knowledge based [50, 51].
Several studies have adopted the traditional snake model as
proposed by Williams and Shah [52]. Snakes are also called
active parametric contours, which have been widely used in
medical image segmentation. The major limitations of this
method are sensitive to noise, depends on the initial contour
that is provided by the user, need for optimization of the
parameters. In 2008, Moursi and El-Sakka [53] proposed
an active contour-based segmentation technique, in which
user only requires to place seed points in the ROI with

the aim of reducing user interaction. Author admitted that
the computational time depends on the size of the carotid
artery and the location of the seed point. In 2010, Bastida-
Jumilla et al. [54] used geodesic active contours for IMC
detection. In 2011, Petroudi et al. [24] proposed the fully
automated segmentation algorithm based on active contours,
and active contours without edges were proposed in which
anatomical informationwas incorporated to achieve accurate
segmentation. The segmented regions were used to auto-
matically achieve image normalization, which is followed
by speckle removal. The resulting smoothed LI boundary
combined with anatomical information provides an excellent
initialization for parametric active contours that provide the
final IMC segmentation. No information about an inter- and
intraobserver variability and its effect on segmentations was
given by author.

4.5. Edge Detection and Gradient-Based Techniques. The edge
detection methods could detect the variation of gray levels,
but it is sensitive to noise and may suffer from the focusing
artifact. In 2001, Liguori et al. [7] proposed the segmentation
technique based on an edge detection, in which image
gradient was used. In this method, for each column of the
image the gradient of the intensity profile has been computed.
It was assumed that pixels belonging to lumen were black and
that the carotidwall layers originate with gradient transitions.
It is a semiautomatic method; ROI is selected by the user.
The pattern recognition, edge detection (PRED) algorithm,
and the measurement algorithm were used for carotid IMT
measurement. Its main task is to find out all the pixels
belonging to the two required interfaces (LI and MA) for
each wall. The measured intensity gradient was different
from the theoretical one, due to noise. In order to reduce
the effect of noise, a statistical thresholding was adopted
before computing the image gradient. Robustness of the
edge detection algorithm had been evaluated with respect
to the ROI. The gradient-based segmentation mainly suffers
from the problem of superimposed noise, which precludes
a proper individuation of the LI and MA transitions. In
2008, Faita et al. [26] proposed a method in which the
gradient performance was improved by the use of a first-
order absolute moment edge operator (FOAM) and a pat-
tern recognition approach. The overall performance of this
methodology was very high: IMT measurement error was
equal to 10.0 ± 38.0 𝜇m. Moreover, FOAM operator and
intelligent procedure determines maxima, ensuring a good
robustness to noise. As the technique is real-time, it suits
well to clinical application. It is a semiautomatic technique.
Recently, Mahmoud et al. [55] introduced a method, which
employs a multistep gradient-based algorithm. This method
principally uses intensity, intensity gradient, and interface
continuity of pixels to determine the ultrasound interface.
Author reported that this technique eliminates subjectivity
associated with conventional manual tracing and semiauto-
mated gradient methods that employ seed point selection.

4.6. Combined Approaches. Delsanto et al. [6] proposed
a combined approach for classification and a snake-based
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segmentation to perform IMT measurement. Completely
user-independent layer extraction based on signal analysis
(CULEXsa) is a completely user independent algorithm for
IMTmeasurement. Firstly ROI is identified automatically fol-
lowed by gradient-based initial segmentation, and then active
contour technique is used for segmentation refinement. For
improving segmentation performance, Molinari et al. [56]
have combined the three IMT segmentation methods: (i)
signal processing approach, combined with snakes and fuzzy
clustering, (ii) integrated approach based on seed and line
detection, followed by probability-based connectivity and
classification, and (iii) morphological approach and fused
the resulting boundaries using a greedy method described
by the “ball and basket” to minimize the system error. In
2010, Molinari et al. [57] proposed a completely automated
layer extraction technique (named CALEXia). The IMT
measurement error was equal to 0.87 ± 0.56 pixels (0.054 ±
0.035mm). Author admitted that CALEXia showed limited
performance in segmenting the LI interface. Meiburger et
al. [58] introduced the Carotid Automated Double-Line
Extraction System based on the Edge Flow (CADLES-EF). It
is characterized and validated by comparing the output of the
algorithm with CALEXia and CULEXsa. Validation was per-
formed on a multi-institutional database of 300 longitudinal
B-mode carotid images with normal and pathologic arteries.
CADLES-EF showed an IMT bias of 0.043 ± 0.097mm
in comparison with CALEXia and CULEXsa that showed
0.134 ± 0.088mm and 0.74 ± 0.092mm, respectively. The
system’s Figure of Merit (FoM) showed an improvement
when compared with CALEXia and CULEXsa, leading to
values of 84.7%, 91.5%,while CADLES-EF performed the best
with 94.8%. In 2011, Molinari et al. [59] proposed a method
called CARES 3.0 (a patented technology). CARES 3.0 is
completely automated and adopts an integrated approach for
segmentation of carotid artery in the image frame. The FoM
ofCARES 3.0was 97.4%. In 2012,Molinari et al. [22] proposed
completely automated multiresolution edge snapper (named
CAMES). In it carotid artery is recognized automatically
using a scale-space and statistical classification in a multires-
olution framework. Recently, Ilea et al. [20] proposed a fully
automated segmentation and tracking of the intima-media
thickness in ultrasound video sequences of the CCA. For
the video tracking procedure, a spatially coherent algorithm
is introduced, which prevents the tracking process from
converging to wrong arterial interfaces. Author reported that
method can deal with inconsistencies in the appearance of the
IMC over the cardiac cycle.

5. Validation/Quantitative Performance
Assessment

Validation experiments are necessary in order to quantify
the performance of a segmentation method. Validation is
usually performed using truth models such as phantom
studies, animal model studies, simulation, comparing the
automated segmentation method with manually obtained
segmentations. Following are the most used performance

metrics to validate IMT measurements and computer traced
boundaries [30]:

(i) Mean absolute distance (MAD),
(ii) Hausdorff distance (HD),
(iii) Polyline distance metric (PDM),
(iv) Percent statistic test,
(v) Reproducibility of manual procedures. It is assessed

by calculating intraoperator and interoperator vari-
ability using either of CV, MAD, HD, regression
analysis, and Bland-Altman statistics,

(vi) Manual and computer-measured IMT (intermethod).
Comparison between the two sets was done using
correlation or Bland-Altman plot.

6. Conclusion

This paper reports an extensive review of ultrasound
carotid artery IMT segmentation techniques. Active con-
tours, dynamic programming, and integrated approaches
have been presented to segment the carotid wall and trace
the boundaries of the LI and MA interfaces. None of the
existing techniques were overwhelmingly good in all aspects.
Characterization and validation studies will be required in
order to carefully assess the effect of such variability on
segmentation performance. Finally, we recognize that in the
future, more work is likely to be done in segmentation
based on adaptive segmentation for determination of IMT
in ultrasound images of CCA with high IMT measurement
accuracy, robustness, automation and reducing processing
time.

As in the case of fully automatic techniques, detection
is not reliable, since it may detect the jugular veins edges.
In addition performance of semiautomatic segmentation
techniques is better than fully automatic segmentation tech-
niques. Therefore, in future we will develop techniques in
which human operator will select an ROI manually, and
methodology will be based on adaptive segmentation with
the aim of high accuracy, great robustness, and with reducing
processing time. The proposed accuracy of detection of IMT
algorithm falls within the inter- and intraobserver variability
for the manual determination.
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