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Abstract
Background: The ability to monitor changes in expression patterns over time, and to observe the
emergence of coherent temporal responses using expression time series, is critical to advance our
understanding of complex biological processes. Biclustering has been recognized as an effective
method for discovering local temporal expression patterns and unraveling potential regulatory
mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem
is tractable, and efficient algorithms can be used. However, there is still a need for specialized
applications able to take advantage of the temporal properties inherent to expression time series,
both from a computational and a biological perspective.

Findings: BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing
expression time series. Gene Ontology (GO) annotations are used to assess the biological
relevance of the biclusters. Methods for preprocessing expression time series and post-processing
results are also included. The analysis is additionally supported by a visualization module capable of
displaying informative representations of the data, including heatmaps, dendrograms, expression
charts and graphs of enriched GO terms.

Conclusion: BiGGEsTS is a free open source graphical software tool for revealing local
coexpression of genes in specific intervals of time, while integrating meaningful information on gene
annotations. It is freely available at: http://kdbio.inesc-id.pt/software/biggests. We present a case
study on the discovery of transcriptional regulatory modules in the response of Saccharomyces
cerevisiae to heat stress.

Background
Extracting relevant biological information from expres-
sion data provides important insights into the relations
between genes participating in biological processes. This
information can be used to identify co-regulated genes
corresponding to transcriptional regulatory modules, thus

contributing to the challenging goal of regulatory network
inference.

Processing expression data is time and resource consum-
ing. In this context, the development of novel computa-
tional algorithms and tools for expression data analysis is
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primarily focused on efficiency and robustness. Clustering
techniques have been extensively applied to both dimen-
sions of expression matrices separately, focusing on either
gene or sample expression patterns. However, many pat-
terns are common to a subset of genes only in a specific
subset of experimental conditions. In fact, our general
understanding of cellular processes leads us to expect sub-
sets of genes to be coexpressed only in certain experimen-
tal conditions, but to behave almost independently in
other. These local expression patterns can only be discov-
ered using biclustering techniques [1,2], which may be the
key for uncovering many regulatory mechanisms that are
not apparent otherwise [3]. Although the majority of the
biclustering formulations are NP-hard [1], the bicluster-
ing problem becomes tractable when expression levels are
measured over time, restricting the analysis to biclusters
with consecutive time points [4-7].

BiGGEsTS (BiclusterinG Gene Expression Time Series) is a
free and open source graphical application using state-of-
the-art biclustering algorithms specifically developed for
analyzing gene expression time series. The current version
integrates the methods proposed by Zhang et al. [5] and
Madeira and Oliveira [6,7]. An alternative approach from
Ji and Tan [5] was not included due to complexity issues
[6]. The integration of additional algorithms pursuing
similar goals is straightforward. In addition, BiGGEsTS
offers well-known preprocessing techniques to filter
genes, treat missing values and to smooth, normalize, and
discretize expression data. A visualization module sup-
ports the analysis of both data and results. Graphical rep-
resentations include colored matrices (heatmaps),
expression and pattern charts, and dendrograms. Biclus-
ters can be studied using Gene Ontology (GO) annota-
tions. BiGGEsTS is also able to generate ontology graphs
representing enriched GO terms, and filter and/or sort
biclusters according to several numerical and statistical
criteria.

Related tools
Several applications are available for the analysis of gene
expression data using clustering [8-15], biclustering
[16,17] or both [18,19] approaches. For clustering we
highlight Genesis [8], which implements hierarchical
clustering, k-means, self-organizing maps (SOMs), princi-
pal component analysis and support vector machines,
together with filtering and normalization methods.

Expander [18] and BicAT [19] offer both clustering (hier-
archical and k-means) and biclustering techniques.
Expander also performs clustering using SOMs and CLICK
[18]. Regarding biclustering, Expander uses SAMBA [20],
and BicAT integrates the Cheng and Church approach [2],
the Iterative Signature algorithm (ISA) [21], the Order-
preserving Submatrix method (OPSM) [3], xMotif [22]

and BiMax [19]. Both tools include preprocessing meth-
ods such as filtering, normalization, log transformation
and discretization. Expander further evaluates the biolog-
ical relevance of clusters/biclusters by computing the
functional enrichment of GO terms and retrieves informa-
tion on promoter signals.

Few applications actually address the problem of analyz-
ing time series and they typically apply clustering [11-14].
CAGED [11] and GQL [12] model expression profiles
using Markov chains. CAGED applies agglomerative clus-
tering to group genes with similar expression profiles,
while GQL combines the individual Markov models into
a mixture model. STEM [13] uses a greedy clustering algo-
rithm.

TimeClust [14] offers hierarchical clustering and SOMs,
together with Bayesian and temporal abstraction
approaches. To our knowledge, only PAGE [17] provides
a biclustering algorithm specifically designed for expres-
sion time series, which is a modified version of the
approach of Ji and Tan [4]. Most of these applications
miss essential preprocessing steps useful to clean and pre-
pare data for analysis.

Methods
This section describes the functionalities of BiGGEsTS
from a biology/medical researcher's perspective, provid-
ing further insight into the underlying methods [see Addi-
tional file 1] [see Additional file 2] [see Additional file 3].
The graphical user interface (GUI) includes a set of tabs
and three panels (Figure 1). Main functionalities are
directly selected in the tabs and guide the researcher
through a complete process of analysis: 1) input and pre-
processing of expression data, 2) identification of coex-
pressed genes in specific subsets of time points using
biclustering (biclusters), 3) post-processing of biclusters
in order to rank the results, 4) usage of exploratory analy-
sis tools (visualization options, GO annotations and func-
tional enrichment of GO terms).

Input and preprocessing of time series gene expression 
data
The input of expression time series is straightforward (Fig-
ure 1(a)) and is usually followed by a set of preprocessing
steps (Figure 1(b)). These handle occasional and system-
atic errors, reduce noise, and prepare data to be analyzed.

Occasional errors may occur when measuring the abun-
dance of mRNA in cells, leading to missing values, not
always supported by biclustering algorithms. This can be
addressed by filtering all genes with missing values, thus
eliminating all rows with at least one missing value, and
may be regarded as a good strategy to reduce noise. How-
ever, when analyzing a small number of genes, removing
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Input and preprocessing modulesFigure 1
Input and preprocessing modules. This figure shows: (a) The main window of BiGGEsTS and its input module for loading 
time series gene expression data. The graphical user interface (GUI) includes a set of tabs, for functionality selection, and three 
panels: a top-left panel displaying the dataset tree, where expression matrices and biclusters are organized; a bottom-left panel 
displaying a box with information about the selected node in the dataset tree; and a right panel, whose content depends on 
both the selected node and functionality tab. The navigation on the dataset tree, as well as on the tabs, is intuitive and straight-
forward. A session can be saved anytime to keep record of data and results. Saved sessions can be loaded later enabling 
researchers to recover previous stages of their analysis. The input of expression time series is performed using a standard text 
file. The file contains the elements of the gene expression matrix delimited by a specific character (usually tab), together with 
additional information about the data, including the organism, and the row and column specifying the names of the time points 
and the genes, respectively. When the names of the genes used in the biological experiments and their corresponding symbol 
approved by the Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) differ, the researcher may 
want to provide an additional file. This input file is optional, since it is only required for retrieving the gene annotations and 
assessing the biological relevance of the biclusters. (b) The preprocessing module for filtering genes, filling missing values, nor-
malizing, smoothing and/or discretizing gene expression data. Available preprocessing techniques are described in the Quick-
start Guide [see Additional file 2].



BMC Research Notes 2009, 2:124 http://www.biomedcentral.com/1756-0500/2/124
some of them can lead to a significant reduction in the
dimension of the dataset, potentially compromising fur-
ther analysis. The tradeoff between the elimination of
missing values and the dimension of the dataset is usually
mitigated by establishing an upper bound for the percent-
age of missing values allowed per gene. Genes with per-
centages higher than a user-defined threshold are filtered.
The remaining missing values must be filled.

Systematic errors, on the other hand, affect every measure-
ment action and are associated with the differences
between the experimental settings of each trial. Sources of
this kind of errors include the different incorporation effi-
ciency of dyes, and the different scanning and processing
parameters of distinct experiments. Normalization is a
widely used technique, which attempts to compensate for
these systematical differences between time points and
highlight the similarities and differences in the expression
profiles. Additionally, a smoothing algorithm acts as a
low-pass filter, attenuating the effect of outliers. Depend-
ing on the biclustering algorithm, it may be necessary to
discretize data, reducing the range of expression values to
an adequate set of discrete values.

Biclustering
Three biclustering algorithms are available: CCC-Biclus-
tering [6], e-CCC-Biclustering [7] and CC-TSB [5] (Figure
2(a)). The first two process discretized matrices, while the
third uses real-valued data. CCC-Biclustering uses a gener-
alized suffix tree to identify, in time linear on the size of
the expression matrix, all maximal biclusters with contig-
uous columns that exhibit coherent expression evolutions
over time. In a CCC-Bicluster, all genes have exactly the
same discretized expression pattern.

e-CCC-Biclustering extracts all maximal CCC-Biclusters
with approximate expression patterns in time polynomial
on the size of the expression matrix. The expression pat-
terns in an e-CCC-Bicluster may vary from one gene to
another, as long as the number of errors between each pat-
tern and the pattern profile does not exceed a predefined
value. Two kinds of errors are supported: general and
restricted. General errors identify measurement errors and
allow symbols to be substituted by any other symbol in
the discretization alphabet. Restricted errors identify dis-
cretization errors and only consider as valid the substitu-
tions of symbols by a predefined number of neighbors in
the discretization alphabet.

Both CCC-Biclustering and e-CCC-Biclustering are pro-
vided with three additional extensions that identify
biclusters with shifted/scaled, anti-correlated and time-
lagged patterns [23]. Sometimes, distinct genes exhibit
similar expression evolutions at different expression lev-
els, thus not reflecting a similar pattern after discretiza-
tion. This problem is addressed by identifying biclusters

with shifted patterns. Anti-correlation allows genes with
opposite expression patterns, in a set of consecutive time
points, to be included in the same bicluster. The time-
lagged approach identifies genes that exhibit similar
expression patterns starting at different time points, ena-
bling the identification of activation/inhibition delays.

CC-TSB is an adaptation of the biclustering algorithm pro-
posed by Cheng and Church [2]. This heuristic approach
uses the mean squared residue (MSR) as merit function
and iteratively alternates the addition/removal of genes/
time points, forcing the MSR to reduce. The addition/
removal of time points is restricted to discover only
biclusters with contiguous columns.

Post-processing
Applying biclustering to expression data often yields a
large number of biclusters. Since analyzing all is usually
prohibitive, post-processing techniques are performed in
order to rank biclusters according to their relevance. Sev-
eral methods are available to filter and sort biclusters
based on numerical and statistical criteria (Figure 2(b)).

Biological analysis
Biclustering groups genes and conditions based on rela-
tions inferred from data, relying strictly on computational
methods. Researchers are usually interested in analyzing
the results looking for statistically significant biological
phenomena. This significance can be assessed using
Ontologizer's term-for-term analysis [24], which com-
putes the functional enrichment of the genes in the biclus-
ters by identifying the overrepresented GO terms. In a first
step, GO annotations are extracted requiring two distinct
files (downloadable from the GO repository if not availa-
ble) containing the complete ontology and organism-
dependent annotations. Term-for-term analysis is then
applied to compute a p-value for each GO term. Such p-
value is calculated with respect to the null hypothesis that
the inclusion of genes follows a hypergeometric distribu-
tion, and measures the statistical significance of each term
by computing the ratio of the frequencies of annotated
genes in the bicluster and in the complete dataset. The
Bonferroni correction for multiple testing is applied. The
lower the p-value, the more significant the term is. Accord-
ing to standard statistical practice, terms with a corrected
p-value lower than 0.05 and 0.01 are considered signifi-
cant and highly significant, respectively.

Visualization
A visualization module provides different graphical repre-
sentations of expression time series, enhancing their most
important features: tables of values, colors and symbols;
dendrograms; expression charts; pattern charts; tables of
GO terms and functional enrichment; and graphs of
enriched terms.
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Biclustering and post-processing modulesFigure 2
Biclustering and post-processing modules. This figure shows: (a) biclustering and (b) post-processing modules. The 
biclustering module is used to select the biclustering algorithm to be applied to the expression matrix. Additional extensions 
enabling shifted, anti-correlated and time-lagged patterns are available in CCC-Biclustering and e-CCC-Biclustering. Different 
types of errors are supported in e-CCC-Biclustering. The post-processing module enables the researcher to select and apply 
filtering and sorting techniques to groups of biclusters. Biclusters can be filtered by setting a threshold for the number of genes 
and/or conditions, size, average column variance, average row variance, mean-squared residue score, and overlapping percent-
age of genes and/or conditions. It is also possible to remove biclusters with constant or statistically non significant patterns. 
Biclusters may additionally be sorted using their best functional enrichment p-value, statistical significance of expression pat-
tern, average column or row variance, mean-squared residue score and a number of other measures available for selection. 
Details on biclustering and post-processing techniques are described in the Quickstart Guide [see Additional file 2].
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Expression matrices and heatmaps
Expression matrices are displayed as tables of values (Fig-
ure 3(a)). Tables of colors are commonly known as heat-
maps. They resemble tables of values, although each cell
is given a different color according to the expression value
it contains (Figure 3(b)). Tables of symbols are heatmaps
for expression matrices with discrete values. Each cell is
given a different color depending on the discretization
symbol (Figure 3(c)). Expression tables share additional
functionalities. They can be sorted by the values of a given
column by clicking on the corresponding table header,
provide access to the GO terms that annotate each gene by
clicking on its row, and be exported as PNG or JPEG image
files by clicking the right button of the mouse over the
table and selecting the "Export as image" menu item. GO
terms annotating a given gene are displayed in a popup
(Figure 3(d)). Since this information is automatically
parsed from the GO files (using Ontologizer), no annota-
tions are shown if the GO files are not available. In the lat-
ter case, GO files can be downloaded from the GO
repository when an Internet connection is available.

Dendrograms
Dendrograms are branching tree-like diagrams used for
representing similarity relationships between the genes/
time points in the expression data (Figure 3(e)). The sim-
ilarity hierarchy is obtained using agglomerative hierar-
chical clustering to group genes and/or time points. At
each step, the cluster pairwise similarity is used to decide
which clusters to merge. For single element clusters, this
similarity is computed using a distance measure (Eucli-
dean or cityblock) or a correlation coefficient (uncen-
tered, Pearson's, absolute uncentered, absolute Pearson's,
Spearman's or Kendall's correlation). Otherwise, a single-
linkage, complete-linkage, average-linkage or centroid-
linkage approach is used. Java TreeView [25] is used to
interpret hierarchical clustering results and display the
dendrograms.

Expression and pattern charts
Expression and pattern charts show the evolution of the
expression level of the genes in the biclusters over time,
using the corresponding submatrices. Expression charts
are obtained using real-valued matrices, while pattern
charts are generated from discretized matrices (Figure 4).

Expression charts can be displayed using either the subset
of time points in the bicluster, or all the time points in the
dataset. The latter are particularly suitable for highlighting
the coherent behavior of the genes in the bicluster time
points as opposed to the uncorrelated behavior in the
remaining time points. Both expression and pattern charts
provide a context menu with extra functionalities, includ-
ing displaying and modifying chart properties, saving
chart to an image file, printing, and zooming in or out.

Go terms and functional enrichment
The GO terms that annotate the genes in the dataset can
be displayed in a table, where each row corresponds to a
GO term and contains: the GO term ID, the term name,
and the total number of genes annotated with it. In the
case of a bicluster (Figure 5(a)), each row in the table fur-
ther includes the number of genes in the bicluster anno-
tated with the term, the p-value computed using the term-
for-term analysis, and its Bonferroni corrected p-value.
Enriched terms, given a threshold (default value is 0.01),
are highlighted. Additionally, the list of genes annotated
with each term is displayed in a popup window by click-
ing the corresponding row using the left button of the
mouse.

Graphs of enriched terms
Term-for-term results can be used to generate tree struc-
tured graphs highlighting the enriched terms in each of
the three GO ontologies (Figure 5(b)). Graphs of enriched
terms are generated using Ontologizer [24], which out-
puts the structure of the graph into a text file. Graphviz
[26] is used to convert the text file into an SVG file describ-
ing the same graphical structure using the XML standard.
Finally, the Batik SVG Toolkit [27] is used to interpret the
SVG file and display the corresponding image. The graph
with the enriched terms can be zoomed in or out and
saved as a raster (PNG) or vector (SVG) image file.

Conclusion
BiGGEsTS is a software for analyzing gene expression time
series using biclustering. It was designed to comply with
the broad specifications of a software tool, essentially
focused on user-friendliness, platform independence,
modularity, reusability and efficiency.

Additional material includes a case study describing how
to use the software to discover transcriptional regulatory
modules in a dataset containing the response of Saccharo-
myces cerevisiae to heat stress [28], reproducing the results
published in [6] [see Additional file 4] [see Additional file
5] [see Additional file 6].

Availability and requirements
• Project name: BiGGEsTS – BiclusterinG Gene Expres-
sion Time Series

• Project home page: http://kdbio.inesc-id.pt/soft
ware/biggests/

• Operating systems: Platform independent

• Programming language: Java

• Other requirements: Java 1.5 or higher, 1024 MB of
RAM, Graphviz (in OSs other than Windows and Mac
OS)
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Expression matrix, heatmaps, GO annotations, and dendrogramsFigure 3
Expression matrix, heatmaps, GO annotations, and dendrograms. This figure shows: (a) tables of values, (b) tables of 
colors, (c) tables of symbols, (d) list of GO terms annotating a gene, and (e) dendrograms. In the tables of values, the names of 
the experimental conditions appear in the first row and usually correspond to consecutive instants in time. The first column 
displays the names of the genes. Each remaining cell in the table contains the expression value of a given gene in a specific con-
dition. In the tables of colors, cells with high expression values are, by default, colored red, while the ones with low expression 
values are given a green color. Cells holding the mean value are colored black. The intensity of the color is set according to the 
actual expression value of each cell, thus generating a scale of reds and greens for all possible expression values. Cells with no 
expression value, that is, a missing value, are given a yellow color. Tables of symbols resemble tables of colors and are com-
puted using a discretized version of the expression matrix. The GO terms listed as annotations of a given gene correspond to 
the most specific GO terms (before applying the true path rule). Dendrograms are visualized using Java TreeView [25] in a sep-
arate window. They are displayed together with the expression matrix and enable the researcher to individually select clusters, 
which are then displayed in a separate panel. The researcher may further change the settings of the dendrogram, search for 
genes or conditions within the data, compare with other hierarchical clustering results and export both the dendrogram and 
the gene expression matrix as vector (PS) or raster (PNG, PPM, JPG) image files.
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Expression and pattern chartsFigure 4
Expression and pattern charts. This figure shows examples of expression and pattern charts of (a) CCC-Biclusters, (b) 
CCC-Biclusters with anti-correlated patterns, and (c) CCC-Biclusters with time-lagged patterns. In expression charts, expres-
sion values can be normalized on the fly by checking the "Normalize to mean 0 and std 1" checkbox.
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Term-for-term analysis and graph of enriched GO termsFigure 5
Term-for-term analysis and graph of enriched GO terms. This figure shows: (a) A summary of the results of the term-
for-term analysis applied to a given bicluster. The list of genes annotated with GO term highlighted in blue is displayed at left. 
The GO terms highlighted in green correspond to highly significant terms. (b) A graph displaying the distribution of the biolog-
ical terms in the ontology of GO terms. Enriched terms are colored in purple, yellow or green whether they specialize from 
cellular component, molecular function or biological process, respectively. The intensity of the color depends on the Bonfer-
roni corrected p-value of the corresponding term: the lower the p-value, the more intense the color of its node. Arrows define 
specialization relations: each arrow goes from a more general term to its specialization(s).
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• License: GNU GPL version 3 or higher
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Additional file 1
Multi-platform distribution of BiGGEsTS. A multi-platform distribu-
tion of BiGGEsTS. The archive biggests.zip contains a directory with sev-
eral files, including installation files, the application, sample datasets and 
sessions, the Quickstart Guide to the software ("BiGGEsTS Quick-
start.pdf") and a simple text file with installation instructions 
("readme.txt"). In Windows (or Mac OS X) run the "install.bat" (or 
"install.sh" in Mac OS X) file, for installing the Graphviz dot application 
and the GO files, and then the "biggests.bat" ("biggests.sh") file, for run-
ning the software. For Linux and other operating systems, please install 
the Graphviz dot application first and edit the "install.sh" file to append 
the path of the dot executable file (typically /usr/bin/dot) to the last line. 
Then run the "install.sh" script followed by "biggests.sh". Detailed instruc-
tions on how to install and use BiGGEsTS are also available in the Quick-
start Guide [see Additional file 2]. The latest version of the software is 
available at the official website.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-124-S1.zip]

Additional file 2
BiGGEsTS Quickstart Guide. This document introduces users to BiG-
GEsTS, providing instructions on how to install and use this software, to 
analyze time series gene expression data using biclustering.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-124-S2.pdf]

Additional file 3
Source code of the BiGGEsTS software. The source code of BiGGEsTS. 
The archive contains two directories, named "biggests" and "smadeira", 
inside a main directory, named "src". Each of the directories contained in 
"biggests" and "smadeira" contains the source files of the classes included 
in the packages identified by the same names. The Javadoc documentation 
of the source code is available at the official website.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-124-S3.zip]

Additional file 4
Sample expression dataset (from Gasch et al. [28]). This file contains 
a sample time series gene expression matrix corresponding to a short subset 
of a real dataset from Gasch et al. [28], concerning the yeast response to 
heat shock. The original dataset analyzes 6142 genes from Saccharomy-
ces cerevisiae in 8 time points (5', 10', 15', 20', 30', 40', 60', 80'). The 
gasch_ yeast_hs1_short.txt file is also included in the multi-platform dis-
tribution. To load this dataset into BiGGEsTS, run the software and use 
the "Browse..." button on the panel on the right to browse the file in the 
file system. Once it is found, press the "Open" button followed by the 
"Load" button (a detailed description of the parameters is available in the 
Quickstart Guide [see Additional file 2]).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-124-S4.txt]

Additional file 5
Archive of a sample BiGGEsTS session. This file contains a BiGGEsTS 
session with matrices and biclusters obtained by manipulating the time 
series gene expression data also provided as additional material [see Addi-
tional file 4], using BiGGEsTS. The session was exported into this file also 
using BiGGEsTS. To load the session into BiGGEsTS and explore its con-
tents, run the software, select the "Session" menu, and then the "Load ses-
sion" menu item from the menu bar (on the top of the window). You will 
be prompted to provide the path to the session file, this file 
(gasch_yeast_hs1_short.zip). Click the "Open" button. Once the data is 
loaded into BiGGEsTS, you can see that the dataset tree (on the panel on 
the left) has grown and that it has new items. Read the Quickstart Guide 
[see Additional file 2], for details on how to use BiGGEsTS.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-124-S5.zip]

Additional file 6
Case study: discovering transcriptional modules using BiGGEsTS. 
Case study describing how to use BiGGEsTS to discover transcriptional 
regulatory modules using the transcriptional response of Saccharomyces 
cerevisiae to heat stress. The results published in [6] are reproduced.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-124-S6.pdf]
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