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Psychiatric disorders, including depression and schizophrenia, affect millions of individuals 
worldwide. However, the precise neurobiology of psychiatric disorders remains unclear. 
Accumulating evidence suggests that various inflammatory processes play a key role in 
depression and schizophrenia, and that anti-inflammatory drugs exert a therapeutic effect 
in patients with psychiatric disorders. Epoxyeicosatrienoic acids (EETs) and 
epoxydocosapentaenoic acids (EDPs) have potent anti-inflammatory properties. These 
mediators are broken down into their corresponding diols by soluble epoxide hydrolase 
(sEH), and inhibition of sEH enhances the anti-inflammatory effects of EETs. Therefore, 
sEH may play a key role in inflammation, which is involved in psychiatric disorders. Recent 
studies have shown that abnormal levels of sEH may be involved in the pathogenesis of 
certain psychiatric diseases, and that sEH inhibitors exhibit antidepressant and antipsychotic 
activity. The present review discusses the extensive evidence supporting sEH as a 
therapeutic target for psychiatric diseases, and the clinical value of sEH inhibitors as 
therapeutic or prophylactic drugs.
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INTRODUCTION

Depression and schizophrenia are severe and chronic debilitating psychiatric diseases that 
affect millions of individuals worldwide, with >300 million individuals of all ages affected by 
depression and nearly 800,000 dying each year from suicide (World Health Organization, 
2018a). Similarly, schizophrenia affects >21 million individuals, and the probability of death 
in this patient population is 2 to 3 times higher than that in the general population (World 
Health Organization, 2018b). Although current clinical antidepressants and antipsychotics have 
been shown to be  effective in the treatment of depression and schizophrenia, at least one-third 
of individuals with depression do not fully respond to medications, and antipsychotics have 
no beneficial effects on negative symptoms and cognitive impairments (Hashimoto, 2014; 
Steinert et  al., 2014; Biesheuvel-Leliefeld et  al., 2015; Guidi et  al., 2016). These limitations 
highlight the need for a new class of antidepressants and antipsychotics, particularly for patients 
with treatment-resistant disease.
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There is ample evidence that inflammation plays a central 
role in the pathophysiology of depression and schizophrenia 
(Dantzer et  al., 2008; Potvin et  al., 2008; Girgis et  al., 2014; 
Gold, 2015; Hashimoto, 2015; Steullet et  al., 2016; Marques 
et al., 2018; Swardfager et al., 2018). In patients not undergoing 
antidepressant therapy, meta-analyses have reported that blood 
levels of proinflammatory cytokines, including tumor necrosis 
factor-α (TNF-α) and interleukin 6 (IL-6), are significantly 
higher than in healthy controls (Dowlati et  al., 2010; Young 
et  al., 2014; Haapakoski et  al., 2015; Strawbridge et  al., 2015). 
Moreover, studies of postmortem brain samples revealed increased 
proinflammatory cytokine gene expression in the prefrontal 
cortex (PFC) of individuals with a history of depression (Dean 
et  al., 2010; Shelton et  al., 2011). Studies using animal models 
of depression have reported lipopolysaccharide (LPS)-induced 
depression-like behavior and dendritic changes (Zhang et  al., 
2015, 2016). In studies investigating schizophrenia, the levels 
of proinflammatory cytokines, such as TNF-α, and IL-6, were 
significantly elevated in the serum and cerebrospinal fluid 
(Sasayama et al., 2013; Upthegrove et al., 2014; Schwieler et al., 
2015; Dickerson et  al., 2016). Postmortem studies and meta-
analyses have demonstrated increased microglia density and 
activity in patients with schizophrenia (van Kesteren et  al., 
2017; Marques et  al., 2018). Several studies have demonstrated 
that anti-inflammatory drugs exhibit antipsychotic activity in 
animal models of schizophrenia (Shirai et  al., 2012, 2015). 
Collectively, these investigations demonstrate that inflammation 
is likely closely related to depression and schizophrenia, and 
that anti-inflammatory drugs could effectively improve the 
symptoms of depression and schizophrenia.

SOLUBLE EPOXIDE HYDROLASE AND 
THE ARACHIDONIC PATHWAY

Extensive evidence suggests that biological substances in the 
arachidonate cascade, such as enzymes and eicosanoid metabolites, 

are involved in the etiology and pathology of inflammatory disease. 
Polyunsaturated fatty acids (PUFAs), such as arachidonic acid 
(AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid 
(EPA), are metabolized by cyclooxygenases (COXs), lipoxygenases 
(LOXs), and cytochrome P450s (CYPs) (Figure 1; Imig and 
Hammock, 2009; Imig, 2012, 2018; Morisseau and Hammock, 2013). 
The COX and LOX pathways lead to the production of prostaglandins, 
leukotrienes, and hydroxyeicosatetraenoic acids (HETEs). These 
lipid mediators are involved in pro-inflammatory processes, while 
lipoxins synthesized from AA by LOX play an important role in 
the resolution of inflammation (Serhan and Savill, 2005; Serhan, 
2017a,b). In contrast, the CYP pathway is involved in both 
the production of pro-inflammatory lipid mediators and 
anti-inflammatory lipid mediators. The CYP hydroxylases lead to 
20-HETE (pro-inflammatory mediator), and CYP epoxygenases 
lead to epoxyeicosatrienoic acids (EETs) (anti-inflammatory 
mediator). Through catalyzing the epoxidation of PUFAs, such as 
AA, the epoxygenase CYP enzymes generate four regioisomeric 
EETs, including 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. 
However, the EETs are metabolized by soluble epoxide 
hydrolase (sEH) and converted into their corresponding diols 
(dihydroxyeicosatrienoic acids [DHETs]), and these molecules are 
considered to be  less biologically active than their parent versions. 
Therefore, it is probable that sEH plays a role in the pathogenesis 
of several diseases caused by inflammation (Imig, 2005, 2012, 
2016, 2018; Iliff et  al., 2010; Morisseau and Hammock, 2013; 
Wagner et  al., 2014, 2017; Zhang et  al., 2014; Hashimoto, 2016).

ROLE OF sEH IN PSYCHIATRIC 
DISORDERS

As discussed above, inflammation is associated with psychiatric 
disorders such as depression and schizophrenia, and sEH 
plays a role in the pathogenesis of inflammatory-related 
diseases. Therefore, it is possible that sEH contributes to 
the pathophysiology of these disorders. Recently, our study 

FIGURE 1 | Brief overview of arachidonate cascade.
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of postmortem brains revealed that the protein levels of 
sEH in the parietal cortex of patients with major depressive 
disorder, schizophrenia, and bipolar disorder were significantly 
elevated compared with those in the parietal cortex of healthy 
individuals (Ren et  al., 2016). In studies involving mouse 
models, the brain, after inflammation or chronic social defeat 
stress, exhibited increased expression of sEH in the PFC 
and hippocampus. Meanwhile, after inflammation or social 
defeat stress, mice exhibited increased immobility time in 
tail suspension and forced swim tests, and decreased sucrose 
preference. These phenotypes were defined as depression-like 
behavior in mice (Duman and Monteggia, 2006; Dantzer 
et al., 2008). Studies involving behavioral tests in animal models 
have suggested that the sEH inhibitor 1-[1-propionylpiperidin-
4-yl]-3-[4-(trifluoromethoxy) phenyl] urea (TPPU) had 
antidepressant effects because the inflammation and chronic 
social defeat stress-induced depression-like behavior was 
prevented by oral administration or chronic intake of TPPU 
(Ren et al., 2016). As such, TPPU could produce antidepressant 
effects in inflammation model of depression because standard 
antidepressants, such as selective serotonin reuptake inhibitors 
and serotonin norepinephrine reuptake inhibitors, do not 
demonstrate therapeutic effects in such models (Zhang et al., 
2015). Moreover, the use of TPPU lowered serum TNF-α 
levels in LPS-treated mice but not control mice. Additionally, 
in these experiments, both TPPU and 14,15-EET potentiated 
nerve growth factor (NGF)-induced neuronal outgrowth in 
PC12 cells. Consistent with the pharmacological inhibition 
of sEH, despite experiencing chronic social defeat stress, 
sEH knockout mice did not exhibit depression-like behavior. 
It is likely that the deletion of the sEH gene conferred 
resilience to social defeat stress. Additionally, investigation 
of brain-derived neurotrophic factor-tropomyosin receptor 
kinase B (BDNF-TrkB) signaling protein expression in sEH 
knockout mice brains revealed that BDNF and p-TrkB-to-
TrkB protein ratios were elevated in the PFC and hippocampus. 
Consistent with BDNF-TrkB signaling, the protein levels of 
glutamate receptor subunit (GluA1) and postsynaptic density 
protein (PSD-95), which are synaptogenesis biomarkers, were 
elevated in the PFC and hippocampus of sEH knockout 
mice. This could infer that deletion of sEH resulted in 
resilience to chronic social defeat stress via increased BDNF-
TrkB signaling and synaptogenesis. Furthermore, data reported 
by other groups are in agreement with these results. Wu 
et  al. reported that the sEH inhibitor TPPU decreased 
depression-like behavior in the novelty-suppressed feeding 
test, which is a test of stress-induced anxiety/depression 
(Wu et  al., 2017). Moreover, treatment with TPPU elevated 
the expression of BDNF in the mouse hippocampus and 
PC12 cells, and the antidepressant effect of TPPU was blocked 
by a BDNF-TrkB signal pathway antagonist (Wu et  al., 2017, 
2019). This evidence suggests that BDNF is necessary for 
the antidepressant effects of TPPU. Collectively, these findings 
highlight a key function of sEH in the etiology and pathology 
of depression, and for its inhibitors as potential therapeutic 
or prophylactic drugs for depression (Ren et  al., 2016; 
Hashimoto, 2016).

As mentioned above, patients with schizophrenia exhibit higher 
sEH protein levels in the parietal cortex than controls. Meanwhile, 
another study investigating alterations of eicosanoids in the serum 
of patients with schizophrenia reported that 11,12-DHETs and 
14,15-DHETs were increased in patients compared with controls 
and were decreased post-treatment (Wang et  al., 2018). This 
evidence suggested that EET and its metabolic enzyme sEH 
may play a role in schizophrenia, and studies using animal 
models have provided strong supportive data. Ma et  al. (2013) 
investigated the effects of AS2586114, a potent sEH inhibitor, 
in an animal model of schizophrenia. In a phencyclidine (PCP)-
induced model of schizophrenia, a single oral administration 
of AS2586114 attenuated PCP-induced hyperlocomotion in a 
dose-dependent manner. Furthermore, AS2586114 also improved 
PCP-induced prepulse inhibition deficits in a dose-dependent 
manner. In addition, AS2586114 exhibited a similar effect to 
the atypical antipsychotic drug clozapine in PCP-induced 
behavioral abnormalities (Ma et al., 2013). These studies suggest 
the therapeutic potential of sEH inhibitors for schizophrenia. 
However, the precise mechanism by which sEH inhibitors diminish 
PCP-induced acute behavioral effects in mice remains unclear. 
Nevertheless, some studies have provided valuable clues. Ribeiro 
et al. reported that omega-3 PUFAs (n3 PUFAs), but not clozapine, 
prevented polyinosinic:polycytidylic acid (poly I:C)-induced deficits 
in BDNF (Ribeiro et  al., 2019). Because decreased BDNF-TrkB 
signaling has been suggested to play a role in the pathophysiology 
of schizophrenia (Giovanoli et  al., 2015; Han et  al., 2016), and 
sEH inhibitors increase the level of BDNF, it appears that sEH 
may play a role in schizophrenia via regulation of the BDNF-
TrkB signaling pathway. There is ample evidence suggesting that 
oxidative stress also plays an important role in the pathophysiology 
of schizophrenia, and antioxidant agents have demonstrated 
antipsychotic effects in animal models of schizophrenia (Matsuzawa 
and Hashimoto, 2011; Reddy and Reddy, 2011; Yao and Keshavan, 
2011; Shirai et al., 2012, 2015). Moreover, abnormalities in striatal 
dopamine levels are a hallmark of schizophrenia pathophysiology 
(Brisch et  al., 2014; Nakao et  al., 2019). Recently, Ren et  al. 
(2018) reported that inhibition of sEH protected against 
MPTP  (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced 
endoplasmic reticulum (ER) stress and oxidative stress in the 
brain. The immunoreactivity of sEH is present almost exclusively 
in astrocytes throughout the brain (Marowsky et  al., 2009); 
however, deletion of the sEH gene suppressed MPTP-induced 
activation of microglia in the mouse striatum (Ren et  al., 2018). 
Additionally, inhibition of sEH attenuated MPTP-induced 
dopaminergic dysfunction in the striatum (Ren et  al., 2018). 
Other studies have consistently found that deletion of the sEH 
gene and pharmacological inhibition of sEH blocked MPTP-
induced heme-oxygenase (HO-1) elevation (a redox-regulated 
protein) and caspase 12 activation (a hallmark of ER stress) 
(Huang et  al., 2018). These findings indicate that sEH inhibitors 
are effective in attenuating MPTP-induced dopaminergic 
neurotoxicity, oxidative stress, and ER stress. Given the evidence 
described, there is a possibility that sEH inhibitors exert their 
antipsychotic properties by increasing EETs, modulating the 
BDNF-TrkB signaling pathway, protecting against oxidative stress, 
and improving dopaminergic dysfunction in the brain.
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DISCUSSION

In this minireview, we  highlighted recent studies that have 
demonstrated the potential of sEH as a therapeutic target in 
psychiatric disorders. Crucial data from Ren et  al. (2018) and 
Ma et  al. (2013) demonstrate that protein levels of sEH in the 
brains of depressed and schizophrenic patients are higher than 
in controls. Additionally, sEH protein levels are elevated in the 
brains of mice with a depression-like phenotype. These data 
suggest that increased levels of sEH in the brain cause enhanced 
metabolism of anti-inflammatory PUFA epoxides, such as EETs, 
EDPs, and epoxyeicosatetraenoic acids (EEQs), eventually leading 
to depressive symptoms. Furthermore, a single administration 
of sEH inhibitor has been reported to prevent depression-like 
phenotypes in the inflammation and chronic social defeat stress 
models of depression. These important findings indicate that 
sEH inhibitors may have a rapid onset of antidepressive action, 
which is similar to the rapid-acting antidepressant ketamine, 
but without any observable side effects (Hashimoto, 2016). 
Moreover, a single administration of sEH inhibitor has also 
been reported to rescue PCP-induced behavioral abnormality 
in mice. These antipsychotic effects of sEH inhibitor are similar 
to those of the atypical antipsychotic drug clozapine. This is 
noteworthy because sEH inhibitors also may have a rapid onset 
of antipsychotic action without any observable side effects.

Several hypotheses have postulated that inflammation may 
play a causative role in depression and schizophrenia (Schiepers 
et  al., 2005; Brown and Derkits, 2010; Brown and Meyer, 2018; 
Chen et  al., 2019). However, how do inflammatory cytokines 
influence behavior? In the brain, inflammatory cytokines, such 
as TNF-α, IL-6, and IL-1β, are elevated in the brain during 
inflammation or chronic stress (Strawbridge et al., 2015; Menard 
et  al., 2017). These cytokines have been implicated in the 

activation of indoleamine-2,3-dioxygenase (IDO) and tryptophan 
dioxygenase (TDO), and promote the metabolization of tryptophan 
into formylkynurenine, a precursor of kynurenine. Furthermore, 
the metabolites of kynurenine, such as kynurenic acid and 
quinolinic acid, are involved in modulation of N-methyl-D-
aspartate receptor and α-amino-3-hydroxy-5-methyl- 
4-isoxazolepropionic acid receptor, and can also activate 
monoamine oxidase. Subsequently, these metabolites are implicated 
in dopamine synthesis, behavioral abnormalities, and regulation 
of neurotrophic and metabolic signaling through BDNF and 
mTOR (Schiepers et  al., 2005; Calcia et  al., 2016; Ghasemi 
et  al., 2017; Lima Giacobbo et  al., 2018; Price et  al., 2018; 
Chen et  al., 2019).

Collectively, these studies described a potential mechanism 
for sEH in the pathophysiology of depression and schizophrenia. 
This evidence suggests that sEH inhibitors exert an antidepressant 
and antipsychotic effect, and may attenuate the appearance of 
oxidative and ER stress, dysregulation of neurotrophic and 
dysfunction of dopaminergic neurons in the brain (Figure 2). 
Nevertheless, the precise mechanism of action of sEH inhibitors 
remains largely unknown, thus warranting more in-depth studies 
in the future.
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