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Abstract: (1) Background: Neglected occupational health and safety aspects in batik industries cause
their workers to have an increased risk of lead exposure. The effect of occupational lead exposure
on neurocognitive performance is inconclusive. Therefore, we conducted an observational study to
examine the difference in simple reaction time between lead-exposed batik workers and non-exposed
referents. (2) Methods: This cross-sectional study was conducted in seven batik enterprises in Lendah
District, Indonesia, excluding workers with medical conditions impairing reaction time. Simple
reaction time tests were conducted using an online tool. Two-way model ANCOVAs examined
interactions between gender and job types on the mean differences in reaction time. (3) Results:
After controlling for age and body mass index, we observed longer reaction times among lead-
exposed batik workers than non-exposed referents with an adjusted mean difference of 0.19 (95% CI:
0.016–0.368) seconds. A more prominent detrimental effect of lead exposure on reaction time among
female workers than among male workers was observed. (4) Conclusions: Our results suggest that
occupational lead exposure could contribute to longer reaction time, notably among female workers.
Thus, occupational health and safety precautions are vital to protect batik workers and preserve their
important contributions to cultural heritage.

Keywords: batik industries; neurocognitive performance; occupational health; occupational lead
exposure; simple reaction time

1. Introduction

Batik has been recognized as an intangible cultural heritage of Indonesia [1]. In
addition to its cultural contribution, batik industries are artistic industries contributing to
Indonesia’s gross domestic product of more than 100,000 trillion rupiahs and employing
more than 5 million persons annually [2]. Furthermore, while there was a huge economic
decline during the COVID-19 pandemic, batik industries still contribute to maintaining
Indonesian profit-making by expanding their export value [3].
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The considerable contribution of batik industries to the economic sector is not followed
by attention to these industries’ occupational health and safety aspects. Several factors can
potentially harm batik workers’ health, including lead content in dyes, the un-ergonomic
position at work, and non-standard personal protective equipment. Previous studies found
that workers of the batik industry are prone to occupational chemical hazards [4,5]. Batik
dye contains several toxic heavy metal elements, including cadmium, lead, arsenic, cobalt,
and several essential elements required for maintaining human physiological functions,
including zinc, chromium, and copper [6,7]. Unfortunately, our prior study on air pollutants
in batik workplaces in Lendah, Yogyakarta, found that the lead concentration exceeded
occupational health standards [7]. Lack of regulation and monitoring of lead exposure and
unsafe work attitudes could contribute to chronic lead exposure among batik workers [4,8].
Chronic lead exposure among these vulnerable populations could result in a vicious cycle
between lead exposure and poor economic status as well as poor educational attainment [9].

Both short- and long-term exposures to lead can cause serious health problems [10].
Lead poisoning often goes unnoticed because the symptoms are nonspecific and can occur
slowly [11]. High levels of lead exposure can cause anemia, weakness, kidney damage, liver
damage, cardiovascular disease, and even neurocognitive disorders [10,12–14]. While very
high lead exposure can cause death, chronic low-level lead exposure could be associated
with an increased risk of all-cause mortality [15].

Several systematic reviews suggested the detrimental effect of occupational lead
exposure resulting in blood lead levels of lower than 70 µg/dl on neurocognitive perfor-
mance [16,17]. However, their results were inconclusive. In addition, a recent study found
that two years of same-level occupational lead exposure did not cause significant cognitive
decline, but the statistically insignificant findings caused by insufficient sample size in that
study could not be overlooked [18].

People exposed to lead often show impaired performance on a neurobehavioral test
involving attention, processing, speed, visuospatial abilities, working memory, and motor
function [19]. A simple test to observe neurobehavioral performance is a visual reaction
time test. Although categorized as an unsophisticated evaluation tool, its validity and
reliability are acceptable for monitoring changes in cognitive capacity by either pharmaco-
logical or non-pharmacological interventions in a productive work environment [20–22].
Therefore, we conducted an observational study to examine the difference in reaction time
between batik workers with lead exposure and non-exposure day jobs.

2. Materials and Methods
2.1. Study Design and Setting

An observational cross-sectional study was conducted at seven batik enterprises in
Lendah District, Yogyakarta, Indonesia, from July–October 2020 in compliance with the
Declaration of Helsinki. The study registry was approved by the Medical and Health
Research Ethics Committee, Faculty of Medicine, Public Health and Nursing, Universitas
Gadjah Mada. The study protocol was written according to the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE) statement [23].

2.2. Participants

To be eligible for inclusion, adult participants (18–60 years old) had to be registered
as workers at the batik enterprises, and conveniently agreed to be respondents. Partici-
pants were excluded if they had one of the following conditions: consumed alcohol within
24 h [24], hypertension [25,26], type 2 diabetes mellitus [27], liver disease [28], renal dis-
ease [29], heart failure [30], and anemia [31], since those conditions could impair reaction
time. Exclusion processes were conducted by history-taking, physical examination, and
laboratory examination conducted by trained general practitioners. Older adults aged
60 or over were excluded because of their intraindividual reaction time performance [32].
Participant’s jobs were categorized as lead-exposed occupations if they reported conduct-
ing canting (a traditional hand-drawing method on fabric using liquid wax and dye),
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dipping the fabric in the dye, and washing the fabric after the coloring process because our
prior study found excessive lead concentration in batik workers’ inhaled air during these
processes at the workplaces [7]. A previous study found that participants who had these
jobs were found to have elevated blood lead levels because they were exposed to synthetic
dye-containing lead [33].

2.3. Outcome Measures

Simple reaction time was measured using online tools on preferred hands [34]. Partic-
ipants were given five tests as the familiarization process prior to measurement. The mean
of the five measurements was recorded as the reaction time. Research staff who conducted
simple reaction time measurements were blinded from participants’ job types and Nordic
scores to minimize observer bias.

Body mass index (BMI) and Nordic score were measured as potential confounders [35–41].
BMI was calculated by taking participants’ weight and height. Weight was measured
using a standard calibrated scale (©SECA, Hamburg, Germany), and height was measured
using a stadiometer (©SECA, Hamburg, Germany). The mean of three measurements of
weight and height were recorded. The Nordic score was measured by Nordic Body Map
questionnaire. The Nordic Body Map questionnaire is a standardized questionnaire to
measure complaints (pain, tenderness, and stiffness) in the body during work performed
in the recent three months. The Nordic score was categorized into seven segmental scores:
neck, shoulder, back, right upper limb, left upper limb, right lower limb, and left lower
limb [41].

Lead concentrations were analyzed using atomic absorption spectrophotometry (AAS)
from conveniently collected venous whole blood and urine samples. Five milliliters of
whole blood samples from each respondent were frozen at −4 ◦C, and five milliliters of
urinary samples were stored with the addition of HNO3. Due to the pandemic, the AASs
were conducted in the first week of November 2021 with the lowest threshold for lead
detected at 0.01 ppm.

2.4. Sample Size Considerations

A sample size calculation to detect the main effect of lead-exposed job and potential
confounding interaction on the reaction time as a primary outcome was conducted using
G*Power analysis [42]. A minimum sample of 244 was calculated using a power of 0.8, an
alpha level of 0.05, four covariates (age, BMI, years of service, and Nordic score), and an
effect size of 0.2 [16]. Because of the low population in small enterprises, we anticipated
the limited number of participants by conducting a post-hoc power analysis since we did
not reach the minimum sample size.

2.5. Statistical Analysis

Descriptive statistics and mean or median difference between sex, level of education,
and job status were used to report participants’ baseline characteristics, including age,
BMI, Nordic score, and years of service. Reaction time was presented utilizing box plots
based on gender, level of education, and job type. Then, Spearman correlation analysis
was conducted to measure the correlation between age, Nordic score, years of service,
and reaction time since the data was skewed. Pearson correlation analysis was conducted
to measure the correlation between BMI and reaction time. Variables with statistically
significant correlation using cut-off p-values of 0.25 were used as covariates in the analysis
of covariance (ANCOVA) to control confounders [43,44]. Two-way model ANCOVAs were
conducted to examine the interaction between gender and job type on the mean differences
in reaction time since the residuals were normally distributed [45].

3. Results

Among the 250 registered workers in seven small enterprises in Lendah District,
Indonesia, 100 workers voluntarily agreed to participate. We excluded 39 participants: four
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subjects with anemia (two male subjects and two female subjects with average hemoglobin
concentration of 11.8 mg/dl and 11.6 mg/dl, respectively), nine subjects were elderly, and
18 subjects with abnormal liver function tests. Among the 59 eligible respondents, ten
subjects did not attend the reaction time measurement. Thus, this study’s recruitment,
eligibility, and completion rates were 40%, 69%, and 85%, respectively. Eight subjects were
excluded from the analysis because they had outlier values for reaction time. A post-hoc
power analysis showed that the power of our study was 58%.

Our respondents had already been working in this industry for a median of 5 years
(Table 1). They did not have an undergraduate degree. Most of them were female. Male
workers were younger, had less body mass index, had more musculoskeletal complaints,
and had fewer years of service. Four of twenty-one male workers were not smokers. There
were 15 urinary samples conveniently collected from 52 workers who were exposed to
lead during their work. Among them, eight samples contained lead below our machine
threshold detection, and seven samples contained lead with an average of 11.5 µg/dl (95%
confidence interval (CI): 8.2 to 14.7 µg/dl). Two urinary samples were collected among
seven workers who were not exposed to occupational lead, and none of them contained lead
beyond the detection threshold. None of the 59 blood samples contained lead beyond the
detection threshold. While differences in age, BMI, and several musculoskeletal complaints
between genders were statistically significant, differences in the years of service were
only marginally significant. We found neither differences in age, BMI, musculoskeletal
complaints, nor years of service between lead exposure status.

Table 1. Characteristics of subjects.

Total
(M (SD)/Mdn

(Min–Max)) N = 59

Male
(M (SD)/Mdn
(Min–Max))

N = 21

Female
(M (SD)/Mdn

(Min–Max)) N = 38

Difference
(M Diff (p)/Mdn

Diff (p))

Lead-Exposed
(M (SD)/Mdn
(Min–Max))

N = 52

No
Lead-Exposed
(M (SD)/Mdn

(Min–Max)) N = 7

Difference
(M Diff (p)/Mdn

Diff (p))

Age (years) 40 (18–59) 25 (18–55) 44 (21–59) 19.5 (p = 0.01) 41 (18–59) 36 (24–45) −1.5 (p = 0.506)

BMI (kg/m2) 22.45 (4.09) 20.75 (3.16) 23.64 (4.29) 2.89 (p = 0.012) 22.31 (4.18) 23.68 (3.17) 1.36 (p = 0.48)

Nordic score
neck complaints 0 (0–4) 0 (0–3) 0 (0–4) 0 (p = 0.019) 0 (0–4) 0 (0–2) 0 (p = 0.615)

Nordic score
shoulder

complaints
0 (0–4) 1 (0–3) 0 (0–4) −1 (p = 0.022) 0 (0–4) 2 (0–3) 2 (p = 0.206)

Nordic score
back complaints 1 (0–8) 2 (0–8) 0.5 (0–8) −1.5 (p = 0.052) 1 (0–8) 0 (0–3) −1 (p = 0.313)

Nordic score
right upper limb

complaints
0 (0–10) 2 (0–10) 0 (0–9) −2 (p = 0.001) 0 (0–10) 0 (0–4) 0 (p = 0.708)

Nordic score left
upper limb
complaints

0 (0–7) 0 (0–7) 0 (0–6) 0 (p = 0.194) 0 (0–7) 0 (0–0) 0 (p = 0.253)

Nordic score
right lower limb

complaints
3 (0–14) 0 (0–12) 0 (0–14) 0 (p = 0.185) 0 (0–14) 0 (0–12) 0 (p = 0.841)

Nordic score left
lower limb
complaints

0 (0–14) 0 (0–8) 0 (0–14) 0 (p = 0.145) 0 (0–14) 0 (0–8) 0 (p = 0.824)

Years of service
(months) 60 (2–360) 60 (2–144) 84 (2–360) 24 (p = 0.053) 73 (2–360) 60 (5–144) −13 (p = 0.634)

Bold font indicates statistical significance.

We found significant differences in reaction time between gender and lead-exposed
status in independent t-tests (Figure 1). Male workers had 0.14 s faster reaction times
than female workers (p = 0.02). In addition, we also observed faster reaction time among
non-lead exposure workers with a mean difference of 0.19 s (p < 0.001).
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Figure 1. Reaction time by gender and lead exposure status.

Age and body mass index had weak positive correlations with reaction times (Table 2).
Years of service and the Nordic scores had very weak correlations with the reaction time,
but their correlation was not statistically significant. Thus, we only include age and body
mass index as confounding factors in examining the difference of reaction time between
lead-exposure and no lead-exposure jobs.

Table 2. Correlates of reaction time.

Correlation Coefficient (p)

Age 0.47 (p < 0.001)

BMI 0.25 (p = 0.06)

Nordic score neck complaints −0.092 (p = 0.52)

Nordic score shoulder complaints −0.003 (p = 0.98)

Nordic score back complaints 0.059 (p = 0.68)

Nordic score right upper
limb complaints −0.189 (p = 0.18)

Nordic score left upper limb
complaints −0.055 (p = 0.70)

Nordic score right lower
limb complaints −0.018 (p = 0.89)

Nordic score left lower limb
complaints −0.027 (p = 0.85)

Years of service 0.158 (p = 0.27)

Since age and body mass index could impede the effect of lead exposure during
work on reaction time, two-way ANCOVA was performed by controlling for age and
body mass index (Table 3). A greater detrimental effect of lead exposure on reaction time
among female workers than among male workers could be observed (Figure 2). However,
two-way interaction between gender and lead-exposed status on reaction time could not
be observed, F(1,45) = 0.036; p = 0.85, partial η2 = 0.001. While there was a statistically
significant main effect of lead exposure status, F(1,45) = 4.820; p = 0.033, partial η2 = 0.097,
the main effect of gender on reaction time could not be observed, F(1,45) = 0.018; p = 0.895,
partial η2 = 0.000. The adjusted marginal mean reaction time of the no lead-exposed work-
ers (0.775 s) was faster than the lead-exposed workers (0.967 s), resulting in a statistically
significant difference of 0.192 (95% CI: 0.016 to 0.368) seconds.
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Table 3. Reaction time difference between gender and chemical exposure on occupation.

Reaction
Time

No Lead-Exposed Lead-Exposed

All
(N = 7)

Male
(N = 3)

Female
(N = 4)

All
(N = 52)

Male
(N = 18)

Female
(N = 34)

M 0.772 0.774 0.769 0.970 *** 0.888 1.023 +

(SD) 0.052 0.068 0.036 0.206 0.192 0.201

Madj a 0.775 0.777 0.772 0.967 * 0.952 0.981

(SE) 0.083 0.103 0.129 0.027 0.047 0.037
Note. Reaction time measured in seconds. a Adjusted for age and body mass index * p < 0.05 compared to no
lead-exposed group, *** p < 0.001 compared to no lead-exposed group, + p < 0.05 compared to male.
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4. Discussion

This study found a longer reaction time among lead-exposed batik workers than
non-exposed batik workers. Our findings could add further support to previous studies re-
porting detrimental effects of occupational lead exposure captured in the recent systematic
reviews [16,17]. While their overall metanalysis result was inconclusive, Goodman et al.
suggested a significant difference of cognitive function examined by the digit symbol
test, a more sensitive test than the simple reaction time, to detect a change in cognitive
function [16,46]. Our results call for workplace intervention to protect batik workers from
chronic lead exposure considering their contribution to cultural heritage.

The mechanism of chronic lead toxicity during adulthood in the cognitive domain has
just started to be explored in detail [47]. Several previous studies have demonstrated the
effect of occupational lead exposure with executive functions decline [48], slowed decision-
making abilities, and reaction times [49]. A recent animal study found detrimental effects
of chronic lead exposure on neurotransmitters in adult rats’ prefrontal cortex, representing
chronic lead exposure during adulthood [50]. Lead can substitute for calcium in several
regulatory events that involve calmodulin [51], interfering with energy metabolism and
calcium release from mitochondria, resulting in priming activation of programmed cell
death process [52,53]. These neurophysiological changes disrupt synaptic connectivity and
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neurogenesis, which have an essential role in neural plasticity. The most commonly used
approach to monitoring neural plasticity is the measurement of reaction time (RT). Any
increase in the RT to visual or auditory stimuli may indicate impairment or disruption in
the cognitive processing, sensory information processing, or motor behavior initiation [54].

The mechanism of the detrimental effect of lead exposure during adulthood could
be different from the effect of chronic lead exposure during prenatal development and
childhood. During these early life phases, robust evidence has demonstrated detrimental
effects of chronic lead exposure on hippocampus development and myelin synthesis
during brain development [10,47,55] because lead disrupts the key molecules for neuronal
migration and differentiation [56], decreasing the production of neuronal sialic acid for
synapse formation [57], and premature differentiation of glial cells [58].

A more pronounced effect of lead exposure on reaction time among female workers
than male workers might be assumed. Mansouri et al. also found different behavioral
effects of chronic lead exposure between male and female rats [50]. Distinct hippocampus
development and the differences in lead concentration and metabolism between male and
female was suggested to be responsible for the sex-dependent effect of chronic lead toxicity
on cognitive function [59]. On the contrary, a previous study found that men experienced a
higher blood lead level than females in a similar occupational context [60]. While our study
supports the gender-specific threshold of occupational lead exposure, the sex-dependent
effect of chronic lead toxicity on reaction time needs further investigation.

Several studies suggested that musculoskeletal problems and complaints such as leg
pain, low back pain, upper limb pain, and neck pain could result in delayed reaction time,
but our study could not find a correlation between musculoskeletal complaints and reaction
time [35–40]. In addition to the small sample size, no correlation between musculoskeletal
problems and reaction time could be explained by the nature of the Nordic Body Map
questionnaire, which assessed historical musculoskeletal pain complaints. When the light
stimuli during the simple reaction time test arrive at the same time as the pain stimuli,
faster processing of pain, rather than the processing of other stimuli by the human brain,
could explain the dampening effect of pain on reaction time [61,62]. Consequently, battery
tests of current pain complaints could be recommended for future research to control pain
effects as confounding factors.

A previous systematic review found that most studies examining the correlation
of occupational lead exposure and reaction time did not control premorbid states [16].
Our study tried to control the premorbid state by doing a comprehensive history-taking
and physical examination by trained general practitioners and laboratory examination
to exclude subjects based on excluding criteria. Nevertheless, by adjusting the result for
age and BMI, our study still failed to control other interpersonal variabilities confounding
the simple reaction time results. In addition to the strength of our study in controlling
confounding factors, our study also informed recruitment, eligibility, and completion rates
which will help plan future research.

A small sample size could be a limitation of our study. However, in our underpowered
study, we could demonstrate a statistically significant main effect of lead exposure on
reaction time. Thus, type II error should not be a matter of concern in our study. We
also found that the average urinary lead concentration of workers exposed to lead during
their work was close the upper limit of the guideline threshold [63]. However, we did
not find lead concentration beyond the limit of detection in blood samples among our
respondents. In addition to the variability of lead concentration in urine, this could be
due to the instability of lead level in storage at −4 ◦C for more than 12 months [63,64].
Our study only measured blood and urinary lead level which represented acute lead
intoxication and varied between individuals because of its dependence on kidney excretion
and exposure time [18,65,66]. In the future, we could use lead bone level considered as
cumulative lead storage in the bone during chronic lead exposure [18,65,66].

The influence of gender and lead exposure on reaction time in our study should be cau-
tiously interpreted because of the cross-sectional design and confounding by co-exposures
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of tobacco smoking and other neurotoxic metals contained in batik dye, especially copper
and cadmium [67–70]. Longitudinal studies on newly lead-exposed non-smoker workers
are needed to establish the causal relationship between chronic lead exposure and reaction
time. The level of education could moderately affect the correlation between age and
health status on reaction time [71]. While our respondents did not have a college degree,
findings from our study should not be directly generalized into other industries with
college/university workers.

5. Conclusions

Our study contributes to the growing evidence of the effect of lead exposure during
adulthood on the cognitive domain by showing a longer reaction time among lead-exposed
batik workers than non-lead exposed workers. In addition to controlling for age, BMI,
medical conditions, and other interpersonal variances which affect cognitive function,
future longitudinal studies should utilize multiple cognitive function assessment tools
and lead biomarkers. Workplace intervention considering health and safety precautions
among batik workers should be implemented to protect them and to preserve their essential
contributions to cultural heritage.
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