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ABSTR ACT: Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with 
only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing 
cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and 
metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and 
gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for 
pancreatic cancers.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is characterized 
by a series of molecular aberrations.1 Due to the heterogeneity 
and the complex nature, it is hard to diagnose and treat this 
malignancy, which has only a 1%–3% survival rate in five years 
after the second stage.2 In most cases, diagnosis occurs in the 
later stages, with a well-developed, dense, desmoplastic stroma 
and metastasis to other organs. The spreading of the disease 
from the pancreas to multiple distant sites renders major sur-
gery impossible. The complexity of the disease manifests as 
different, patient-specific, aberrant biochemical pathways 
and makes the treatment challenging. The dense extracellular 
matrix (desmoplasia) in PDAC leads to early development of 
hypoxia, expression of inflammatory cytokines and other extra-
cellular components, and epithelial-to-mesenchymal transition 
(EMT). All of these incriminating factors make drug delivery 
complicated, resulting in drug resistance and disease relapse.3

Altered gene expression patterns and mutations are 
frequently observed in PDAC.1 Gene expression microar-
ray analysis has identified the following three main subtypes 
of PDAC: classical, quasimesenchymal, and exocrine like. The 
classical PDAC cells (BxPC3 and CaPan-2) have the char-
acteristic epithelial-like genes, while the quasimesenchymal 
cells (Panc-1 and MiaPaCa-2) express mesenchymal features. 
Exocrine-like primary tumor cells overexpress digestive 
enzymes.4 For example, tissue microarray analysis detected 

the expressions of ABCC3 and TLR2 in AsPC-1, CaPan-1, 
HPAFII, PSN-1, and SU86.86 pancreatic cancer cell lines. 
ABCC3 is an ATP-binding cassette mostly observed in 
the tumor tissues of pancreatic cancer and may be used for 
cell surface-targeted imaging and delivery of therapeutics.5 
Discovery of other biomarkers and aberrant biochemical 
pathways (contributing to tumorigenicity) has made tre-
mendous progress in recent years. Despite the considerable 
research and clinical studies, PDAC is still a lethal disease. In 
this review article, we summarize the biomarkers of PDAC 
and recent developments of targeting several pathways for 
treating the disease.

Epidermal Growth Factor Receptor
Epidermal growth factor receptor (EGFR), a transmem-
brane glycoprotein of the EGFR family, is overexpressed in 
40%–70% of patient samples with pancreatic cancer.1,6 The 
ErbB, also known as the human EGFR-1 (HER-1), belongs 
to the EGFR family. The glycoprotein EGFR has an intra-
cellular tyrosine kinase domain, a transmembrane domain, 
and an extracellular domain for ligand binding. Interactions 
of the tumor growth factor-α and EGF with the extracel-
lular domain lead to dimerization and autophosphorylation 
of EFGR protein, producing downstream signal transduc-
tion. Activation of the EGFR kinase stimulates the follow-
ing two signaling pathways: RAS-RAF-mitogen‐activated 
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ERK‐activating kinase (MEK)-mitogen-activated protein 
kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-
PTEN-Akt-mTOR-GSK3 (Fig. 1).7,8

The anticancer drugs erlotinib and gefitinib inhibit the 
autophosphorylation of EFGR tyrosine kinase by compet-
ing with adenosine triphosphate in the intracellular domain.7 
The US Food and Drug Administration (FDA) has approved 
erlotinib as a combination therapy (with gemcitabine) for 
PDAC. Boeck et al9 evaluated the overexpression of EGFR 
in tumor tissues treated with erlotinib from 181 phase III 
randomized patients by immunohistochemistry (49% showed 
EGFR overexpression). Cardnell et al reported that EMT 
leads to resistance to EGFR inhibitors and metastatic pro-
gression of PDAC.10 Recently, researchers have discovered 
the role of Na+/H+ exchanger protein NHE1 in promoting 
EGFR signaling pathway and pancreatic cancer metasta-
sis. The coadministration of cariporide (an NEH1 inhibitor) 

with erlotinib results in a decreased three-dimensional colony 
growth and invasion for both classical (BxPC3 and CaPan-2) 
and quasimesenchymal (Panc-1 and MiaPaCa-2) pancreatic 
cancer cell lines.11 Anti-EGFR monoclonal antibodies (eg, 
cetuximab and panitumumab) inhibit receptor dimerization 
at the extracellular domain. In a recent phase II clinical study, 
radiotherapy along with cetuximab increased radiosensitivity 
in locally advanced pancreatic cancer.12

Kirsten Rat Sarcoma Viral Oncogene
Kirsten rat sarcoma viral (KRAS) oncogene is a GTPase pro-
tein belonging to the RAS gene family.13 In 1982, the mutated 
human RAS gene was found to be activated in cancer.14 The 
KRAS proto-oncogene point mutation occurs in 75%–95% of 
PDAC.1 The most common mutation is the replacement of 
glycine with aspartate at position 12 (KrasG12D). KRAS in 
pancreatic cancer is characterized by the mutation type, allelic 
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Figure 1. signaling pathways stimulated by the activation of eGFr kinase.
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ratio, and tumor subtype.15,16 Tumors with high dependency 
on KRAS might have poor prognosis.4

KRAS oncogene mutation activates the P21 RAS protein 
and a series of signaling pathways.17 The RAS protein is located 
on the inner surface of the cell membrane and binds to gua-
nosine triphosphate (GTP)/guanosine diphosphate (GDP). 
In the presence of RAS mutation, GTPase cannot undergo 
transition from the GTP (active) form to GDP (inactive) 
form, and RAS remains in a permanently active state, result-
ing in a cascade of downstream activation.13 Figure 2 depicts 
the RAS protein regulation GTP/GDP cycle. Prenylation of 
the RAS protein increases its capability to interact with cell 
membrane and endoplasmic reticulum (ER) compartments 
via the hydrophobic C terminus.18 Farnesyltransferase and 
geranylgeranyltransferase I, respectively, attach the farnesyl 
(15 carbon) and geranylgeranyl (20 carbon) isoprenoid lipids 
to the cysteine residue of RAS protein with the C terminus 
of CAAX (C: cysteine, A: aliphatic amino acids, and X: usu-
ally serine or methionine).14,18 To inhibit the RAS protein, a 
farnesyltransferase inhibitor for posttranslational prenylation 
Tipifarnib (R115777) was investigated in conjunction with 
gemcitabine in a double-blinded phase III clinical study on 
advanced pancreatic cancer. However, the results did not show 
any statistically significant clinical benefit over gemcitabine 
and placebo.19 The lack of increased efficacy may be due to 
the presence of other RAS isoforms (such as non-farnesylated 
RAS) or the RAS-independent activity of tipifarnib.17,19

Pao et al20 investigated KRAS mutation and the devel-
opment of drug resistance to monotherapy by EGFR inhibi-
tors (erlotinib and gefitinib) in non-small lung carcinoma. 
Cotreatment of locally advanced pancreatic cancer with erlo-
tinib and gemcitabine did not significantly increase survival, 
even though 60% of the patients harbored EGFR expression.21 
Moreover, in a phase II clinical study, treatment with gem-
citabine along with cetuximab (an anti-EGFR monoclonal 
antibody) was not more effective than gemcitabine alone.22 Lee 
et al23 suggested an alternate mechanism for EGFR signaling 
in KRAS-mutated pancreatic cancer cells that does not fol-
low the canonical MAPK pathway. Moreover, inactivation 
of Akt might happen as a result of treatment with an EGFR 
inhibitor, such as erlotinib.24 Three major signaling pathways, 
PI3K-3-phosphoinositide-dependent protein kinase-1-Akt, 
Raf-Mek-Erk, and Ral-GEFs, are affected by the KRAS 

oncogene in PDAC.4,25,26 The PI3K-3-phosphoinositide-
dependent protein kinase-1 downstream pathway is mostly 
dominant in Kras-driven PDAC.26,27 Inhibition of tumor 
growth was demonstrated by blocking and deletion of Pdk-1 
in the PI3K pathway in a Kras-engineered mouse model.26 
Collins et al28 reported a mouse model of on and off Kras 
oncogene that developed metastatic PDAC. Inhibition of the 
MEK-ERK pathway using AZD-6224 in combination with 
glycosphingolipid synthesis inhibitor 1-Phenyl-2-decanoyl-
amino-3-morpholino-1-propanol (PDMP) induced apoptosis 
in human pancreatic cancer.29 Recently, Lindberg et al ruled 
out the effect of EGFR and HER-2 signaling pathways on 
the growth of patient-derived PDAC xenograft (PDX) using 
mice bearing wild-type and mutant Kras alleles. Coadmin-
istration of panitumumab (anti-EGFR antibody) and trastu-
zumab (anti-HRE2 antibody) synergistically enhanced the 
anticancer effect of trametinib (an MEK inhibitor) in PDX 
mouse models.1 Khvalevsky et al developed the biodegradable 
polymer matrix Local Drug EluteR (LODER) to encapsulate 
Kras G12D siRNA. LODER drug eluter inhibited tumor 
growth by decreasing the Kras expression in an orthotopic 
mouse model of PDAC.30

Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) are zinc-dependent 
endopeptidases of the metzincin superfamily and degrade 
extracellular matrix. Therefore, they have a significant role 
in tissue remodeling and tumor progression in pancreatic 
cancer. Overexpression of MMP-1 (collagenase), MMP-2 
(gelatinases-A), MMP-7 (matrilysin), MMP-9 (gelatinase-B), 
MMP-10, MMP-11 (stromelysin), and MMP-13 (collagenase) 
is observed in pancreatic cancer.31–33

Since MMPs play a key role in altering cell behavior, 
inhibition of MMPs is an attractive approach for anticancer 
therapy. Small synthetic metalloproteinase inhibitors showed 
promising results in preclinical studies but failed in phase III 
clinical trials due to lack of specificity.34 We recently reported 
MMP-9-triggered release of the anticancer drug gemcitabine 
from liposomes. The liposomes presented a layer of polyethyl-
ene glycol on the surface for long circulation and accumula-
tion in the tumor by the enhanced permeation and retention 
effect. At the tumor site, the enhanced concentration of the 
reducing agent glutathione reductively removed the polyeth-
ylene glycol layer and exposed the substrate peptides toward 
MMP-9-mediated hydrolysis. The loss of liposomal structural 
integrity led to the rapid release of encapsulated gemcitabine 
and reduction in xenograft pancreatic tumor volume in mice.35 
Munshi et al36 reported that increased collagen leads to the 
overexpression of MMP-14 (MT1-MMP) in the desmoplas-
tic regions of pancreatic cancer, causing tumor progression and 
gemcitabine resistance. Srivastava et al37 reported the inhibi-
tion of MMP-2, -7, -9, and -12 by epigallocatechin-3-gallate 
(extracted from green tea) in vitro and xenograft mouse model 
of pancreatic cancer.
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Figure 2. ras protein regulation through the GTP/GDP cycle.
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Receptor for Advanced Glycation Endproducts
The membrane-associated receptor for advanced glycation end-
products (RAGE) belongs to immunoglobulin-like receptor 
family. RAGE is present in normal cells, such as epithelial cells, 
neurons, smooth muscle cells, and hepatocytes. The expression 
is upregulated in cancers and diverse types of diseases, includ-
ing diabetes, Alzheimer’s, osteoarthritis, and cardiovascular.38 
Several signaling cascades (eg, PI3K-Akt, MAPK, and small 
GTPase) are activated upon stimulation by binding of the ligands 
S100P, S100A4, and S100A6 to the RAGE. Overexpression of 
the ligands S100P and S100A6 are reported in pancreatic can-
cer. In a recent study, the administration of 5-methyl cromolyn 
(an S100 inhibitor) resulted in the reduction of tumor growth 
and metastasis in an orthotopic mouse model of PDAC.39

Nuclear Factor Kappa B
The nuclear transcription factor kappa B (NF-kB) belongs to 
the Rel/NF-kB protein and has significant roles in targeting 
genes for encoding cytokines, cell growth, cell molecule adhe-
sion, apoptosis, and inflammatory responses.40 Overactivation 
of NF-kB pathway is observed in 70% of pancreatic cancer 
cell lines.41 In most cases, the noncanonical NF-kB pathway 
overexpression is present in PDAC.42 Small molecule inhibi-
tors for NF-kB have not yet progressed to the clinical trials. 
However, several researchers have studied the inhibitory 
effects of curcumin (extracted from turmeric) on the expres-
sion of NF-kB using in vitro and in vivo models of pancreatic 
cancer.43,44 Kurzrock et al45 reported the inhibition of NF-kB 
and reduced toxicity for advanced pancreatic cancer patients 
treated with 8 g of oral curcumin (phase II clinical trial).

Mammalian Target of Rapamycin
Mammalian target of rapamycin (mTOR) is a serine/
threonine-associated PI3K signaling pathway responsible for 
cell proliferation, growth, and survival. The mTOR path-
way is deregulated in several cancers, including PDAC.46 
Moreover, the mTOR pathway activation has been observed 
in pancreatic cancer stem cells (PCSCs).47 The FDA has 
approved an mTOR inhibitor (Afinitor) to treat subependy-
mal giant cell astrocytoma (SEGA) associated with tuberous 
sclerosis (TS) and renal cancer carcinoma. Morran et al48 dem-
onstrated that the FDA-approved mTOR inhibitor rapamycin 
along with gemcitabine decreased the tumor size and prolif-
eration in a PTEN-deficient, mouse strain with KRasG21D 
mutation (KC model) of pancreatic cancer. Coadministration 
of rapamycin and the PI3K inhibitor LY294002 impeded the 
proliferation and growth of PCSCs by blocking the PI3K-
mTOR signaling pathway.49

Proto-oncogene Serine/Threonine-protein Kinase
Proto-oncogene serine/threonine-protein kinase (PIM) pro-
teins belong to serine/threonine kinase family and are upreg-
ulated in several tumors, eg, sarcoma, hepatocellular cancer, 
prostate cancer, and PDAC. Specifically, PIM1 and PIM3 

are overexpressed in pancreatic cancer.50 Moreover, hypoxia 
and Kras oncogene regulate the PIM proteins. The PIM 
regulates several signaling pathways in cell cycle regulation 
and apoptosis. The shRNA-mediated knockdown of PIM1 in 
MIAPaCa-2 and Capan-1 pancreatic cancer cell lines revealed 
that the PIM1 protein plays a significant role in anchorage-
dependent and anchorage-independent growth, invasion, and 
radioresistance for pancreatic cancer cells.51

V-MYC Avian Myelocytomatosis Viral Oncogene
V-MYC avian myelocytomatosis viral oncogene (MYC) 
protein is a transcriptional factor and has an important role 
in genetic and epigenetic regulations of PDAC.52 The over-
expression of Myc was observed in 32% of primary and 29% 
of metastatic pancreatic tumors.53 Myc accelerates metabo-
lism and proliferation of tumor cells and angiogenesis.52 
Zhou et al54 demonstrated the expression of Myc in multipo-
tent progenitor cells during differentiation into the exocrine 
and endocrine cells in pancreatic organogenesis. Impeding 
the c-Myc in pdx1+ multipotent progenitor cells resulted in 
altered differentiation and reduced proliferation of exocrine 
and endocrine pancreatic cells in a mouse model.55 Several 
signaling pathways, such as PI3K-Akt, RAS-MAPK, cyclin-
dependent kinase 2, and NF-kB, have a role in posttransla-
tional alteration of Myc.52

Platelet-Activating Factor
Platelet-activating factor (PAF) is involved in the phospholipid-
regulating MAPK signaling pathway. PAF overexpression in 
pancreatic cancer leads to cell proliferation and tumorigenesis. 
Jun et al56 demonstrated that the PAF ectopic activation of the 
MAPK signaling occurred via the activation of LAM TOR3 
pathway, causing neoplasia in pancreatic cancer.

Cell Surface Antigen CD109
CD109, a glycophosphatidylinositol-anchored glycoprotein, 
was recognized as a cell surface antigen on some normal 
hematopoietic and metpoietic tumor cells.57 CD109 engages 
in the EGF signaling in SK-MG-1 glioblastoma cells.58 The 
cell surface glycoprotein CD109 was identified in BxPC3 
cells from primary pancreatic cancer. CD109 glycoprotein is 
expressed in the BxPC3, MIACaPa-2, and Panc-1 cell lines. 
Also, CD109 overexpression was observed in PDAC. The 
expression of CD109 was evaluated in normal pancreatic tis-
sues and PDAC samples by cell-surface capture technique and 
immunohistochemistry.59

PCSC Biomarkers
Cancer stem cells (CSCs) are inherently immortalized, can self-
renew, asymmetrically divide, and differentiate into stem cells. 
Discovery of PCSCs was first reported in 2007.60 PCSCs con-
tribute to tumor progression, metastasis, and resistance to com-
mon chemotherapy.61 Although several cell surface markers, 
such as CD133, C-Met, aldehyde dehydrogenase 1 (ALDH1), 
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and “side population cells and the triplet combination 
CD44+CD24+ESA+,”62 have been reported, none is unique 
to the PCSCs (Table 1).61 Molejon et al63,64 reported the 
high expression of the cell surface marker CD44 in recur-
rent PDAC. Maeda et al65 reported that high expression of 
the cell surface marker CD133 reduced patient survival to 2.1 
months, in contrast to 23.5 months when the marker is not 
expressed at a high level. Pancreatic cancer cells characterized 
by CD44+CD24+ESA+ on their surface showed resistance to 
gemcitabine and radiotherapy.66 Hong et al67 reported that 
CD44 has a key role in gemcitabine resistance in PCSCs.

Various cellular signaling pathways, such as Notch, Wnt, 
and hedgehog, can facilitate the formation of stem cells in 
pancreatic cancer.68 Sonic hedgehog is usually overexpressed 
in pancreatic tissues and PCSCs. Deregulation of sonic 
hedgehog pathway causes pathogenesis and desmoplasia in 
PDAC.69 Cyclopamine, IPI-269609, and GDC-0449 are 
hedgehog inhibitors. Cyclopamine inhibits PCSCs and 
reduces endothelial-to-mesenchymal transition and metastasis 
in vitro and in vivo.69 Moreover, expression of the cell surface 
biomarkers CD133 and CD44 decreases in gemcitabine-
resistant cells after cyclopamine therapy.70 Feldmann et al71 
reported that in an orthotopic xenograft model of PDAC, 
treatment with cyclopamine and gemcitabine decreased the 
expression of ALDH, resulting in reduced invasion of PDAC.

The Notch signaling pathway has important roles in 
cellular differentiation, apoptosis, stem cell regeneration, 
EMT, drug resistance, and tumorigenesis.72 The Notch 
signaling pathway proteins are overexpressed in pancreatic 
cancer cells and PCSCs.68,73 Notch acts as the tumor sup-
pressor in the skin and small cell carcinomas but as an onco-
genic protein in pancreatic cancer.73 Notch signaling pathway 
is activated through g-secretase. The g-secretase inhibitor 
MRK-003 can be used to block the Notch signaling path-
way in pancreatic cancer. Coadministration of MRK-003 
and gemcitabine resulted in reduced tumor size in PDAC 
xenograft model.74

Another cell surface biomarker of CSCs is the tyrosine 
kinase C-Met. Cabozantinib, a C-Met inhibitor, impedes 
sphere formation and escalates apoptosis via downregulation 
of C-Met, CD 133, and SOX2 in PCSCs.75 Cotreatment 
of XL184 (a C-Met inhibitor) with gemcitabine or XL184 
alone reduced cell proliferation and growth of PCSC in 

NOD-SCID mice.76 Recent research by Singh et al77 reported 
that PAK4 (p-21 activated kinase 4, serine/threonine kinase 
family) activates the STAT3 signaling pathway, resulting in 
a stemness phenotype. In addition, they demonstrated that 
the PAK4 overexpression in PCSCs compared to the non-
CSCs is associated with chemotherapy resistance and sphere 
formation.

Epithelial-to-Mesenchymal Transition
Through the process of EMT, epithelial cells lose their normal 
characteristics, such as apical–basal polarity, cell–cell tight 
junctions, and transition to spindle-like, motile, and invasive 
mesenchymal cells.78 EMTs can be of the following three types: 
Type I (embryogenesis), Type II (wound healing and organ 
fibrosis), and Type III (cancer).79 In addition to embryogenesis 
and wound healing,80 EMT plays pivotal roles in metastasis 
and drug resistance in pancreatic and other cancers.81 Due 
to the EMT in pancreatic cancer, epithelial cells downregu-
late E-cadherin and upregulate vimentin, N-cadherin, and 
fibronectin.78 For pancreatic cancer patients with EMT in the 
primary tumor, 75% showed metastasis to the lungs and liver.82 
Tumor microenvironmental factors, such as hypoxia, inflam-
matory cytokines, extracellular components, and mechanical 
characters contribute to EMT progression.3 The inflamma-
tory cytokines’ transforming growth factor-β (TGFβ), tumor 
necrosis factor-α, interleukin-1, and interleukin-6 cause pro-
gression of EMT in PDAC.3 The TGFβ signaling pathway 
can act either as a tumor suppressor or as a tumor promoter, 
depending on the stage of PDAC.83 The TGFβ signaling 
pathway leads to apoptosis in the early phases of the tumor 
but in later stages contributes to tumor progression and inva-
sion via EMT.84

The TGFβ signaling pathway upregulates TWIST1, 
SNAIL1, and SNAIL2 transcription factors.3 TGFβ path-
way inhibitors, such as trabedersen (AP12009) and galu-
nisertib (LY2157299), decreased metastasis and invasion in 
animal model studies and clinical trials.85,86 In contrast, the 
TGFβ inhibitors SB431542 and galunisertib showed opposite 
effects when the Panc-1 cells and normal fibroblasts (VI-38) 
were cocultured in a three-dimensional collagen gel. The 
Panc-1 cells showed rapid invasion, changes in morphology, 
and EMT after treatment with TGFβ inhibitors. It is possible 
that the secreted hepatocyte growth factor from the fibroblasts 
and the cancer cells (in response to TGFβ inhibitors) cause 
invasion and cell proliferation of the Panc-1 cells into the col-
lagen gel.87

MicroRNAs in Pancreatic Cancer
MicroRNAs (miRNAs) are small, single-stranded, noncod-
ing, 20–25 nucleotide RNA sequences with regulatory effects 
on gene expressions and in several physiological and patho-
logical processes.88 miRNAs behave as tumor suppressors and 
oncogenes in pancreatic adenocarcinoma. Overexpression of the 
oncogene miRNAs (oncomir) increases in tumor progression, 

Table 1. surface markers of pancreatic cancer stem cells.

CELL SURFACE  
MARKER 

PERCENTAGE CHARACTERISTICS

CD133 1.09–3.21% Tumorigenicity and metastasis

C-met 2–16% Tumor growth and metastasis

aLDH-1 16% Tumorigenicity and tumor-initiation

CD44+CD24+ 
esa+

0.2–0.8% Tumorigenicity and self-renewal
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while tumor suppressors inhibit cell proliferation and induce 
apoptosis.89 The miRNAs are expressed selectively in the 
tumor tissues90 and inactivate the tumor suppressor genes p53, 
p16, and SMAD4 in pancreatic cancer.91

The miR-21 is upregulated in pancreatic cell lines and 
tissue and decreases survival rate significantly.92 The miR-21 
overexpression is reported as the lesion initiator, causing tumor 
progression in a KRAS (G12D) mouse model.92 The miR-155 is 
also upregulated in pancreatic cancer and contributes to tumor 
progression. Knockdown of miR-155 downregulates EGFR, 
KRAS, and MT1-MMP expressions, leading to inhibition of 
cell proliferation.93 The upregulation of miR-221 in pancreatic 
cancer leads to distant metastasis and unresectable tumors.94

Point mutation of p53 is present in 50%–70% of human 
pancreatic cancers.95 The p53 facilitates transcription of a vast 
number of miRNAs. Stress signaling in cells induced by hypoxia 
and starvation upregulates p53 and activates the expressions 
of several genes, such as miR-107, -34a/b/c, and miR-34. The 
expressed miRNAs modulate apoptosis and inhibit hypoxia in 
PDAC.91,96 Mutation of p53 mediates transcription of miR-130b 
and miR-155, modifies the expressions of the corresponding 
target genes (ZEB1 and ZNF652), and leads to cell prolifera-
tion and invasion in several cancers.97,98 In addition, p53 muta-
tion impairs maturation of miR-145 and miR-16-1 causing cell 
proliferation, invasion, and migration in PDAC.91

Hypermethylation of the DNA regions coding for the 
miRNAs suppresses their expressions. For example, the 
miRNA-124 genes in pancreatic cancer tissues are silenced via 
hypermethylation, resulting in cell proliferation, invasion, 
metastasis, and decreased survival rates. Silencing of miRNA-
124 occurs via downregulation of Rac1, proceeding to the 
inactivation of the MKK4-JNK-c-Jun pathway.99 miRNA-
200a and miR-205 are downregulated during EMT in PDAC 
in response to TGFβ. Expression of the miR-200 family 
mediates regulation of the E-cadherin and suppresses tran-
scriptions of ZEB1 and SIP1.100 Wellner et al101 demonstrated 
that ZEB1 inhibits the expression of the miRNA-200 family 
and regulates the activation of EMT in PCSCs. The down- 
and upregulated miRNAs in pancreatic cancer are summa-
rized in Tables 2 and 3.

Treatment of Pancreatic Cancer
Diagnostic staging of pancreatic cancer is the key to the treat-
ment of the disease. Computed tomography is routinely used 
to determine the tumor stage and the resectability. Tumor 
characteristics, such as size, vascularity, lymphatic node, loca-
tions, and degree of metastasis, ascertain the success of the 
surgery.102 The carbohydrate antigen 19-9 in body fluids is a 
biomarker for diagnosis, prognosis, and determining chemo-
therapy response for pancreatic adenocarcinoma, albeit not 
specific for the disease.103,104 Table 4 shows the validated serum 
biomarkers for pancreatic cancer.103 Chemotherapy and radia-
tion still are the primary treatment for advanced pancreatic 
cancer. Surgical removal of the tumor followed by six months 
of gemcitabine treatment increased the median patient survival 
to 22.8 months and the one-year survival to 70%.105 Locally 
advanced pancreatic cancer is treated with an initial chemo-
therapy and subsequent 5-fluorouracil chemoradiation.106 
Several clinical trials also show promising results (Table 5). 
In the CONKO-001 randomized, multicenter trial, patients 
with completely resectable tumors were treated for six months 
with gemcitabine (following surgery). The gemcitabine treat-
ment showed the median disease-free survival of 13.4% (con-
fidence interval 95%) compared to 6.7% (confidence interval 
95%) for the nontreated group.105 Clinical trials also sug-
gest that the combination of gemcitabine and fluorouracil 
derivatives (CAP/S-1) improve the one-year survival rates 
compared to monotherapy with the drugs.107 Gemcitabine, 
FOLFIRINOX (FOL: folinic acid, F: 5-fluorouracil, IRIN: 
irinotecan hydrochloride, OX: oxaliplatin) and gemcitabine 
plus nab-paclitaxel are the suggested treatments for metastatic 
pancreatic adenocarcinoma.108–110

Table 2. Downregulated mirna genes in pancreatic cancer.

miRNA TARGET PATHWAY REFERENCE

mir-96 kras, akT kras, Pi3k-akT 113

mi-126 kras, Crk kras 114

mi-217 kras, akT kras, Pi3k-akT 115

Let-7 kras, rreB1 kras 114

mir-144 notch-1 notch 116

mir-148 maPk Cell cycle 116

mir-34a CDk6 Cell cycle 117

mir-3548 Gli-1 Hedgehog 118

Table 3. Upregulated mirna genes in pancreatic cancer.

miRNA TARGET PATHWAY REFERENCE

mir-21 PTen, PDCD4 kras 119

mi-210 nPTX-1, eFna3 angiogenesis 120

mi-155 HiF-1a, VeZF1 angiogenesis 121

mir-222 c-kit, VeZF2, anGPTL2 angiogenesis 121

mir-203 epha2, ephB7 angiogenesis 121

mir-132 rb1 Cell cycle 122

mir-212 rb1 Cell cycle 122
 

Table 4. serum biomarkers in pancreatic adenocarcinoma.

TUMOR MARKERS SPECIFICITY SENSITIVITY REFERENCE

Ca19-9 70–90% 70–95% 104

Ca-50 34–90% 65–95% 123

Ca-242 65–95% 65–82% 123

m2-Pk 64–95% 71–79% 123

Cea 50–59% 40–92% 124
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Conclusion
PDAC is a sequence of complex deviations at the molecular 
levels.111 Cell signaling pathway alterations, pancreatic stem 
cells, and EMT led to resistance to conventional chemo-
therapy. In this review, we summarize the primary molecular 
changes, biomarkers, and small molecule inhibitors for block-
ing different pathways of PDAC. Although several inhibitors 
are reported for most of the molecular aberrations, extensive 
efforts need to be made to bring the research to the clinics. 
Targeted delivery reduces toxicity and enhances the efficacy 
of the anticancer drugs.112 The knowledge of biomarkers 
and small molecule inhibitors is expected to promote fur-
ther research and development of targeted therapies, allevi-
ating the severe side effects of pancreatic cancer therapy and 
increasing the survival rates.
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