
Data in Brief 39 (2021) 107635 

Contents lists available at ScienceDirect 

Data in Brief 

journal homepage: www.elsevier.com/locate/dib 

Data Article 

Human electrocortical, electromyographical, 

ocular, and kinematic data during perturb e d 

walking and standing 

Steven M. Peterson 

a , ∗, Daniel P. Ferris b 

a Department of Biology, University of Washington, Seattle 98195, USA 
b Department of Biomedical Engineering, University of Florida, J. Crayton Pruitt Family, Gainesville 32611, USA 

a r t i c l e i n f o 

Article history: 

Received 11 October 2021 

Revised 15 November 2021 

Accepted 22 November 2021 

Available online 25 November 2021 

Keywords: 

Mobile brain/body imaging 

Electroencephalography 

Electromyography 

Electrooculography 

Motion capture 

Independent component analysis 

a b s t r a c t 

Active balance control is critical for performing many of 

our everyday activities. Our nervous systems rely on mul- 

tiple sensory inputs to inform cortical processing, leading 

to coordinated muscle actions that maintain balance. How- 

ever, such cortical processing can be challenging to record 

during mobile balance tasks due to limitations in noninva- 

sive neuroimaging and motion artifact contamination. Here, 

we present a synchronized, multi-modal dataset from 30 

healthy, young human participants during standing and walk- 

ing while undergoing brief sensorimotor perturbations. Our 

dataset includes 20 total hours of high-density electroen- 

cephalography (EEG) recorded from 128 scalp electrodes, 

along with surface electromyography (EMG) from 10 neck 

and leg electrodes, electrooculography (EOG) recorded from 

3 electrodes, and 3D body position from 2 sensors. In addi- 

tion, we include ∼180 0 0 total balance perturbation events 

across participants. To facilitate data reuse, we share this 

dataset in the Brain Imaging Data Structure (BIDS) data stan- 

dard and publicly release code that replicates our previous 

event-related findings. 
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pecifications Table 

Subject Neuroscience: General 

Specific subject area Human mobile brain/body imaging 

Type of data Multidimensional time-series recordings from electroencephalography 

(EEG), electromyography (EMG), electrooculography (EOG), and motion 

capture, along with balance perturbation onset timings, output 

matrices from independent component analysis, and relevant 

descriptive metadata 

How data were acquired BiomSemi ActiveTwo system with gelled electrodes, Biometrics Ltd 

wired surface EMG sensors, multi-camera Vicon motion capture 

system, Omega Engineering LCM703 load cells, Lab Streaming Layer, 

Unity 5 software 

Data format Raw Processed 

Parameters for data collection The treadmill-mounted balance beam was 2.5 cm tall and 12.7 cm 

wide. During walking sessions, we set the treadmill speed to 0.22 m/s. 

Two sensorimotor perturbations were used: a 0.5 s, 20 ° visual field 

rotation and a 1 s mediolateral pull of ∼15 Newtons. EEG, leg EMG, 

EOG, and motion capture recordings were originally sampled at 512 

Hz, 10 0 0 Hz, 512 Hz, and 10 0 Hz, respectively. 

Description of data collection Thirty participants performed four 10 min sessions of standing or 

walking on a treadmill-mounted balance beam while having their 

balance perturbed by either virtual-reality-induced visual field 

rotations or side-to-side waist pulls. Each session includes 150 rotation 

or pull perturbations (75 in each direction). EEG, EMG, EOG, and 

motion capture were collected (149 total channels) and synchronized 

using a 2 s square wave signal. Each data file contains raw and 

minimally processed data, along with identified noisy electrodes, 

independent component analyses weight matrices, and perturbation 

event onset times. 

Data source location University of Michigan Ann Arbor, Michigan United States 

Data accessibility All data files are publicly available on OpenNeuro under data 

identification number ds003739 

( https://openneuro.org/datasets/ds003739/ ) [1] . Our Matlab analysis 

scripts are freely available at http://doi.org/10.5281/zenodo.5701797 [2] . 

Related research article S.M. Peterson, D.P. Ferris, Differentiation in theta and beta 

electrocortical activity between visual and physical perturbations to 

walking and standing balance, eNeuro e0207-18.2018 (2018) 1-20. 

https://doi.org/10.1523/ENEURO.0207-18.2018 

alue of the Data 

• Our dataset contains multiple human biosignals, including high-density EEG, that can be used

to further our understanding of how the human body adapts to unexpected balance pertur-

bations during a mobile beam-walking task. 

• This multi-modal dataset can benefit researchers interested in the neural correlates of bal-

ance control, the physiological effects of virtual reality headsets, sensory integration, cortico-

muscular connectivity, mobile neuroimaging, and noninvasive neural decoding. 

• Our data is formatted in the Brain Imaging Data Structure (BIDS) data standard to facilitate

data reuse, and we provide freely accessible code to replicate the findings from our related

research article. 

• We include data from 30 participants, each with 149 data channels and ∼600 perturbation

events, which can be used to benchmark signal processing techniques for mobile tasks and

assess inter-participant variability across multiple recording modalities and tasks. 

http://creativecommons.org/licenses/by/4.0/
https://openneuro.org/datasets/ds003739/
http://doi.org/10.5281/zenodo.5701797
https://doi.org/10.1523/ENEURO.0207-18.2018
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• We have precisely synchronized all recording modalities in this dataset, enabling researchers

to explore how eye movements, head position, and neck muscle activity contribute to EEG

motion artifact during mobile tasks. 

• The multi-modal aspect of our dataset also provides an opportunity to explore sensor fusion

and multi-modal decoding strategies for robust, noninvasive brain-computer interfaces. 

1. Data Description 

Our dataset contains high-density electroencephalography (EEG), electrooculography (EOG), 

neck/leg electromyography (EMG), and motion capture recordings from 30 human participants

during sensorimotor balance perturbations. Participants either stood or walked on a treadmill-

mounted balance beam while experiencing brief visual field rotation or side-to-side pull pertur-

bations. For each participant, we recorded four 10 min sessions: (1) standing during pull pertur-

bations ( pull stand ), (2) standing during rotation perturbations ( rotate stand ), (3) walking at 0.22

m/s during pull perturbations ( pull walk ), and (4) walking at 0.22 m/s during rotation perturba-

tions ( rotate walk ) [3] . All data files are separated by session for each participant and formatted

in the Brain Imaging Data Structure (BIDS) data standard to facilitate data reuse [4,5] . 

All biosignal data recordings are saved as EEGLAB .set and .fdt files. The .fdt files contain the

time-series data, while the .set files include relevant metadata. Both data files can be loaded

into Matlab using EEGLAB [6] . Once loaded into EEGLAB, the data field will contain the time-

series data. The first 128 rows of this field contain EEG data, ordered according to BioSemi’s

128-channel layout ( https://www.biosemi.com/headcap.htm ). The next rows are neck EMG

(2 rows), EOG (3 rows), leg EMG (8 rows), three-dimensional position at the head and sacrum

(6 rows), and finally pull force recordings (2 rows). The specific label, data type, and units for

each row can be found in the _channels.tsv file in the same folder as the .set and .fdt files. In

addition, the _electrodes.tsv file contains precisely measured three-dimensional positions for all

EEG, neck EMG, and EOG electrodes in meters. 

During each 10 min recording session, participants were exposed to 150 perturbation events.

Only one type of perturbation (pull or rotation) occurred in each session. Event information

can be found in the event field after opening the .set / .fdt files or in the _events.tsv file in the

same folder. For each event, we provide the type of event, onset time, and duration. The type

of event includes both type of perturbation performed (pull or rotation) and which direction of

the perturbation (left or right for pulls, clockwise or counterclockwise for rotations). 

We also include relevant noisy electrode and source localization information in the etc field

after opening the .set / .fdt files. The etc.good_chans field contains the indices of all electrodes

identified as not noisy, based on the criteria listed in the next section. We additionally provide

the weight and sphering matrices from running adaptive mixture independent component anal-

ysis [7] , which can be found in etc.icaweights and etc.icasphere , respectively. The etc.good_comps

field includes the indices of the independent components that both authors agreed represent

neural sources based on visual inspection of power spectra shape (decreasing power with in-

creasing frequency [8] ) and position within the head. Finally, we include the estimated DIPFIT2

equivalent dipole information for each independent component in the etc.dipfit field [9] . 

2. Experimental Design, Materials and Methods 

We collected data from 30 healthy, young adults (15 females, 15 males; 22.5 ± 4.8 years old

[mean ± SD]). All participants self-identified as right hand/foot dominant and had normal or cor-

rected vision. We screened participants for any orthopedic, neurological, or cardiac conditions as

well as for motion sickness in virtual reality. All participants provided written informed consent.

Our protocol was approved by the University of Michigan Institutional Review Board. 

https://www.biosemi.com/headcap.htm
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Fig. 1. Experiment design and overview of recorded data streams. Our dataset was recorded from 30 participants during 

four 10 min sessions where participants were exposed to brief side-to-side pulls or visual field rotations while either 

walking or standing on a treadmill-mounted balance beam. Each session contains 150 perturbation events (75 in each di- 

rection). During each session, high-density electroencephalography (EEG), electrooculography (EOG), surface electromyo- 

graphy (EMG), three-dimensional body position (via motion capture), and pull force were recorded and synchronized at 

a 256 Hz sampling rate. 
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.1. Experimental design 

Participants underwent four 10 min recording sessions of either standing or walking on a

readmill-mounted balance beam. The balance beam was 2.5 cm tall and 12.7 cm wide, which

nforced tandem gait and tandem stance. In all sessions, participants wore a body-support har-

ess for safety and crossed their arms. We instructed participants to move only their hips side-

o-side while balancing and to avoid rotating across the longitudinal axis of their body [10,11] .

uring walking sessions, participants walked heel-to-toe at 0.22 m/s. For standing sessions, we

nstructed participants to stand with their right foot in front of their left foot. 

In each session, participants were exposed to one of two sensorimotor perturbations: a

irtual-reality-induced visual field rotation or a mediolateral pull at the waist ( Fig. 1 ). We used

n Oculus Rift DK2 virtual reality headset to present visual field rotation perturbations by dis-

laying a passthrough view from a video camera mounted to the headset (Logitech C930e; Log-

tech, Lausanne, Switzerland), located near the participant’s nose. At the onset of each rotation

erturbation, this passthrough view was instantly rotated 20 ° clockwise or counterclockwise us-

ng Unity 5 software (Unity Technologies, San Francisco, USA). This rotated view lasted for 0.5 s

efore instantaneously reverting to the original, unrotated view. We performed mediolateral pull

erturbations using two electromechanical motors placed on either side of each participant. Each

otor was fastened to one end of a thin 30.5 cm-long metal bar, with a steel cable connected

t the other end. This cable was attached to the body-support harness close to the participant’s
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waist. At the start of each pull perturbation, one motor would be commanded (dSPACE GmbH,

Paderborn, Germany) to rotate the attached bar 90 ° away from the participant for 1 s, pulling

the participant towards their left or right. 

Participants were separately exposed to each perturbation type while either walking or

standing, resulting in four sessions total. During each session, participants were perturbed 150

times (75 in each direction) in a pseudo-random sequence. For each perturbation type, partic-

ipants always performed the standing session first, followed by the walking session. We ran-

domly selected half of the participants to perform the rotation sessions first while the other half

was exposed to the pull perturbations first. 

2.2. Data Acquisition 

We recorded multiple biosignals during each session, including high-density EEG, EOG, neck

and lower leg EMG, and motion capture ( Fig. 1 ). We performed EEG recordings with a 136-

electrode BioSemi ActiveTwo system with gelled electrodes (512 Hz sampling rate; BioSemi BV,

Amsterdam, Netherlands). All electrode positions were precisely measured using an ELPOS Digi-

tizer (Zebris Medical GmbH, Isny, Germany). We used two of the BioSemi electrodes to measure

posterior neck muscle activity. In addition, we placed three BioSemi electrodes around the eyes

to record EOG (see Fig. 1 for placement). We recorded surface EMG (10 0 0 Hz sampling rate; Bio-

metrics. Ltd, Newport, UK) from 4 lower leg muscles on each leg: tibialis anterior, soleus, me-

dial gastrocnemius, and peroneus longus. We selected leg muscles that were relevant to walking

and mediolateral balance. In addition, we recorded three-dimensional positions of the head and

sacrum using reflective motion capture markers, sampled at 100 Hz. We also attached tensile

load cells (10 0 0 Hz sampling rate; Omega Engineering, Norwalk, USA) in series with the both

cables to record pull perturbation force and onset times. Leg EMG, motion capture, and load cell

data streams were recorded synchronously using Vicon Nexus software (Vicon Motion Systems,

Oxford, UK). 

2.3. EEG, EOG, and neck EMG pre-processing 

We pre-processed EEG, EOG, and neck EMG together using custom EEGLAB scripts [6] . Data

were downsampled to 256 Hz, high-pass filtered at 1 Hz, referenced to the common median of

all electrodes, and processed with Cleanline to minimize line noise at 60 Hz and its harmonics

( https://github.com/sccn/cleanline ). We also identified noisy EEG electrodes that had abnormally

high standard deviation, had kurtosis > 5 standard deviations above the average electrode, or

were uncorrelated for > 1% of the time [12,13] . This process identified 17 ± 7 (mean ± SD) noisy

electrodes per participant. 

2.4. Data synchronization and alignment 

We synchronized all data streams using a 0.5 Hz square pulse sent to every recording device.

All data streams were aligned to the pre-processed EEG data with 256 Hz sampling. Prior to

alignment, we low-pass filtered the leg EMG and load cell data using a 4th order Butterworth

filter with a 250 Hz cutoff frequency to avoid anti-aliasing effects. We also identified and visu-

ally verified corresponding sync rising and falling edges across data streams. Next, we used the

timing of each rising and falling edge in order to segment the leg EMG, motion capture, and

load cell data streams such that each ∼1 s segment started and ended when the sync signal ei-

ther rose or fell. Because the sync rising and falling edges are aligned across all signals, these

segments are synchronized across data streams, but need to be resampled to match the EEG

sampling rate. To achieve this, we interpolated each segment to the number of EEG timepoints

https://github.com/sccn/cleanline
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etween the corresponding sync signal edges using MATLABs interp1 function. We chose this

nterpolation procedure to minimize alignment errors due to dropped frames in any of the data

treams. 

.5. Perturbation Event Timings 

We identified the onset times for both sensorimotor perturbation types. For visual field ro-

ations, we programmed virtual keyboard button presses to occur at the onset of each rota-

ion, with different keys distinguishing between clockwise and counterclockwise rotations. These

utton presses were automatically synchronized to the EEG recordings using Lab Streaming

ayer [14] . We estimated pull perturbation onset times by identifying the peaks in detrended

oad cell data and then finding when the load cell first went 3 standard deviations above base-

ine voltage before each peak. We visually inspected all peak detections and pull onset event

imes to ensure accuracy. 
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