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Jukka JernvallID
1,2*

1 Institute of Biotechnology, University of Helsinki, Helsinki, Finland, 2 Department of Geosciences and

Geography, University of Helsinki, Helsinki, Finland

* rishi.dasroy@helsinki.fi (RDR); jernvall@fastmail.fm (JJ)

Abstract

Although most genes share their chromosomal neighbourhood with other genes, distribution

of genes has not been explored in the context of individual organ development; the common

focus of developmental biology studies. Because developmental processes are often asso-

ciated with initially subtle changes in gene expression, here we explored whether neighbour-

ing genes are informative in the identification of differentially expressed genes. First, we

quantified the chromosomal neighbourhood patterns of genes having related functional

roles in the mammalian genome. Although the majority of protein coding genes have at least

five neighbours within 1 Mb window around each gene, very few of these neighbours regu-

late development of the same organ. Analyses of transcriptomes of developing mouse

molar teeth revealed that whereas expression of genes regulating tooth development

changes, their neighbouring genes show no marked changes, irrespective of their level of

expression. Finally, we test whether inclusion of gene neighbourhood in the analyses of dif-

ferential expression could provide additional benefits. For the analyses, we developed an

algorithm, called DELocal that identifies differentially expressed genes by comparing their

expression changes to changes in adjacent genes in their chromosomal regions. Our results

show that DELocal removes detection bias towards large changes in expression, thereby

allowing identification of even subtle changes in development. Future studies, including the

detection of differential expression, may benefit from, and further characterize the signifi-

cance of gene-gene neighbour relationships.

Author summary

Development of organs is typically associated with small and hard to detect changes in

gene expression. Here we examined how often genes regulating specific organs are neigh-

bours to each other in the genome, and whether this gene neighbourhood helps in the

detection of changes in gene expression. We found that genes regulating individual organ

development are very rarely close to each other in the mouse and human genomes. We

built an algorithm, called DELocal, to detect changes in gene expression that incorporates
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information about neighbouring genes. Using transcriptomes of developing mouse molar

teeth containing gene expression profiles of thousands of genes, we show how genes regu-

lating tooth development are ranked high by DELocal even if their expression level

changes are subtle. We propose that developmental biology studies can benefit from gene

neighbourhood analyses in the detection of differential expression and identification of

organ specific genes.

Introduction

Temporal and spatial regulation of gene expression is important in development and differen-

tiation. During development, genes are expressed in a highly dynamic manner, and perturba-

tions of the expression dynamics underlie many diseases and developmental defects.

Regulation of gene expression through developmental time can be examined by quantifying

gene expression levels at two or more time points. However, because development is typically

a gradual process, detecting differential gene expression can be challenging due to the changes

being initially subtle. This challenge underscores the continuing need for different strategies to

identify biologically meaningful changes in gene expression.

The relationship between gene expression and genome organization is one aspect that has

attracted considerable research interest. In prokaryotes, the genome structure and the regula-

tion of gene expression are operationally linked. This is because the genes involved in the same

process are typically located in the same operons, forming multigene clusters that were origi-

nally read as single transcripts [1]. In eukaryotes, operons controlling multiple genes are rare

although nearly 15% of the 20,000 genes in C. elegans genome are located in operons [2,3].

Nevertheless, most eukaryotic genes are scattered throughout the genome without apparent

order related to expression or function [4]. Even though there does not appear to be any simple

logic in the distribution of eukaryotic genes, it is not entirely random as most genes cannot be

moved around in the genome without seriously disturbing their functionality [5]. Some non-

random distribution is found both at the small scale, relating to a limited number of genes,

and at the large scale, concerning large chromosomal regions [5,6]. Clustering has been

detected among co-expressed genes, such as the housekeeping genes, as also within functional

groups, such as interacting pairs of proteins or biological processes containing thousands of

genes [7,8]. Overall, factors contributing to the genome organization include at least evolution-

ary history and current evolutionary forces, mechanisms of rearrangement, mechanisms of

regulation of gene expression and control of chromatin composition. The main source of non-

random gene order in mammalian genomes has been suggested to be tandem duplications [9].

An additional factor in the eukaryote nucleus is the three-dimensional organization of the

genome [10,11]. During metazoan development, enhancers regulate the gene activity in differ-

ent cell and tissue types through dynamic three-dimensional hubs, in which enhancers and

promoters assemble in physical proximity to activate gene expression. Genome-wide analyses

of the spatial organization of chromatin have uncovered multiple topologically associating

domains (TADs) that form largely self-interacting regions of regulatory elements and promot-

ers [12,13]. Although there are cases where gene expression is co-expressed within TADs,

[14,15] current evidence points towards a more complex relationship between gene co-regula-

tion and TADs [16,17]. In addition, TADs appear to have multiple hierarchies [16], and ques-

tions remain on the degree of TAD-conservation across species [18].

In this study we examine genome organization from the point of individual organ develop-

ment; the common focus of developmental biology and regeneration studies. We first review
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the spatial distribution of protein coding genes in the mammalian genome and quantify neigh-

bouring genes involved in development of the same organs. Next, our specific organ system for

in-depth analyses of gene neighbourhoods and gene expression is the mammalian tooth. Espe-

cially developing mouse molar teeth provide many well characterized genes to examine links

between gene neighbourhood and expression [[19] and references therein]. Our starting point

is 1 Mb chromosomal neighbourhood around each organ specific gene as these encompass the

majority of both regulatory regions and constrained architecture seen in the conservation of

large or very orderly gene clusters. The choice of 1Mb window is obviously somewhat arbitrary,

but it should provide a readily applicable framework to diverse taxa and data. This definition of

neighbourhood should be fairly compatible with TADs as they happen to be approximately

1Mb in the mouse (Dixon et al. Nature, 485, 2012; they say 880kb)[12]. Nevertheless, we also

test our inferences using TADs calculated for each neighbourhood. The 1Mb windows include

well known gene clusters such as Hox genes and immunoglobulin genes, whose spatial organi-

zation on the chromosome is crucial to their regulation and function. Still, this strict co-localiza-

tion of co-regulated genes is not the general pattern in mammalian genomes [9], and the

patterns of gene clustering related to gene function are delicate and complex.

Finally, for detection of differentially expressed genes in organ development, we developed

a new method, called DELocal. This method does not depend solely on the read counts from

transcriptome sequencing, but it includes in the analysis the expression data of the neighbouring

genes. This approach removes the emphasis on fold-changes that is common to other methods

and allows DELocal to identify relatively subtle gene expression changes during development.

Using embryonic mouse dental transcriptomes obtained with both microarray and RNAseq, we

show how DELocal provides an alternative ranking of differentially expressed genes.

Results

Majority of protein coding genes have neighbouring genes within 1 Mb

window

As our focus of interest is developmental regulation, we first obtained an overall pattern of dis-

tribution of developmental genes by tabulating how closely genes are located in the genome.

For example, the human genome (GRCh38.p13) is 4.5�109 base pairs long and has 20,449 pro-

tein coding genes, which means, on average, one gene for every 220,060 bases (Ensembl release

99). Similarly, for the mouse genome, this number is 154,290 (GRCm38.p6). Consequently, on

average, 5 to 6 genes should reside in each 1 Mb window in the mouse genome. To express

these statistics as a neighbourhood, we can state that each gene has 4 to 5 neighbouring genes

within a 1 Mb window. This observation is obviously a broad generalization, but it does indi-

cate that genes tend to have some neighbours within 1 Mb. To examine the neighbourhood

patterns in more detail, we examined the 1 Mb neighbourhoods of protein coding genes of the

mouse genome. For every gene, number of neighbouring genes within 1 Mb window was

counted (Figs 1A and S1). This simple calculation shows that, at the level of all protein coding

genes, majority of genes in mouse genome have more than 4 neighbours, the median number

of neighbours being 15 (S2 Fig). This tabulation indicates that there is some level of clustering

of genes in the eukaryotic genome, a pattern well established in the literature [20].

Majority of protein coding genes lack neighbours regulating the same

organ

To contrast the genome-wide pattern of gene neighbourhoods with that of a single organ sys-

tem, we first tabulated gene neighbourhoods associated with the development of the mouse
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tooth. This specific organ focus basically illustrates whether genes participating in the regula-

tion of the same organ are also located close to each other (which is not expected). Here mouse

molar development provides a good example because its gene regulation is relatively well

understood, and because tooth development itself is a relatively autonomous process [19,21].

We analyzed the 1 Mb neighbourhoods of the tooth developmental genes (S1 Table) and the

number of tooth genes that are sharing the same neighbourhood. The results show that tooth

genes are mostly located far from each other, suggesting that genes regulating this specific

developmental process are not co-localized (Fig 1B), a pattern that is in agreement with the

organization of eukaryotic genomes [10,11]. Taken together, although majority of protein cod-

ing genes are to some extent clustered in the mouse genome, tooth genes tend to be located far

from each other (Fig 1).

Next, we examined how representative the developing mouse tooth (Fig 1B) is of other

developmental systems. We used the gene ontology (GO) terms to provide an approximation

of the adjacency of genes involved in the same developmental process. Here we focused in the

genes belonging to mouse GO slims (a concise list of terms) of “biological process” [22,23].

For every gene belonging to these terms, its 1 Mb neighbourhood was investigated to tabulate

genes belonging to the same term. The tabulations show that most genes belonging to a certain

GO term are sparsely distributed in the chromosomes (Fig 2) which is in accordance with pre-

vious studies [5,24]. There are only few genes from broader, or high level, GO terms that are

densely located (more than 3 genes from the same GO term within 1 Mb neighbourhood).

However, these few GO terms represent very broad descriptions of biological functions. With

more precise GO terms (Fig 2, bottom row), genes tend to have no neighbours belonging to

the same GO term. For generality, we examined these patterns in human genome and they

remained largely the same (S3 Fig).

Fig 1. Although protein-coding genes typically have neighbours, tooth genes do not have other tooth gene

neighbours within 1 Mb windows around each gene. (A) The number of neighbouring genes within 1 Mb window

around each gene tabulated from the mouse genome for all protein coding genes and (B) genes involved in tooth

development. Majority of 21,971 protein coding genes have at least five neighbours whereas most of 302 tooth

developmental genes do not have tooth genes as neighbours. This pattern suggests that genes with specific functions

are sparsely distributed.

https://doi.org/10.1371/journal.pcbi.1008947.g001
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The scarcity of neighbouring genes in the precise GO term categories is not surprising con-

sidering the limited number of genes in each category. To test if the patterns are a simple func-

tion of group size, we performed simulations where genes were assigned randomly to artificial

GO terms containing different numbers of genes. For every group size, 10,000 simulations

were performed and the density of genes was calculated for each artificial GO term in the 1

Mb neighbourhood. A plot showing the percentage of genes lacking neighbours shows the

expected decrease as the number of genes increases in the artificial GO terms (Fig 3). The

empirical patterns largely follow the randomizations, although some real GO terms with small

number of genes (300 and less) show slightly lower percentages, indicating that there is a slight

tendency for higher spatial clustering of genes belonging to the same GO terms than in the

simulations. This may be partly due to GO terms having paralogous genes that are sometimes

located near each other in the genome. Nevertheless, up to GO term categories containing

1000 genes, 80% of genes have no neighbours belonging to the same GO terms. These patterns

indicate that the general expectation for the genes sharing the same genomic neighbourhood

(Fig 1A) is that they participate in the regulation of different systems and organs. To the extent

that this is the general rule of genomic organization, it provides opportunities for new compu-

tational approaches. Below we develop a method to detect differential expression using addi-

tional information from the neighbouring genes and test it using our data on the developing

mouse tooth.

Fig 2. The more specific the GO term is the fewer neighbours its genes have from the same GO term within 1 Mb.

Each pie represents the genes of one GO term under the root GO term ‘biological process’. The top three rows

represent GO slim terms. The GO terms in the box are children of the GO term ‘system development’. The color-

coding indicates the number of neighbours that a gene has from the same GO term. The number of genes in the GO

term is indicated under the GO term. Analysis was done for the mouse genome. See S2 Table for GO IDs.

https://doi.org/10.1371/journal.pcbi.1008947.g002
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Neighbouring genes do not show organ-specific changes in expression

Because genes linked to tooth development do not appear to be co-localized in the genome

(Fig 1B), we checked whether these genes differ in their expression dynamics compared to the

other genes in their neighbourhood. We examined differential expression of genes at the onset

of tooth crown formation, between mouse embryonic day 13.5 (E13) and 14.5 (E14) when

many of the tooth genes are known to be upregulated [19,25]. For example, in visual inspection

Ctnna1, Shh, Foxi3 and Sostdc1, all genes required for normal tooth development [26], show

upregulation between E13 and E14 (Fig 4). In contrast, the other genes in their neighbour-

hoods show no marked changes between E13 and E14, irrespective of their expression levels

(Fig 4). Therefore, the distribution of genes involved in the regulation of the tooth (Figs 1 and

4) is manifested also at the level of differential expression. Building from this observation, we

developed a new algorithm, DELocal, to identify differentially expressed genes based on their

neighbours’ expression dynamics (Materials and Methods). To evaluate its potential

Fig 3. Real GO terms with lower gene numbers are slightly more clustered in the genome than artificial GO terms

with the same gene numbers. Artificial GO terms with different numbers of genes were made with randomly selected

genes and their distribution across the genome was measured. For each group size, 10,000 simulations were executed

and for each simulation the percentage of genes with zero within-1Mb-neighbours with the same artificial GO term

were counted (black dots). Real GO terms are marked with blue dots. See S2 Table for GO IDs. The blue line is

median, and the shadow shows the observations between 1st and 3rd quartile.

https://doi.org/10.1371/journal.pcbi.1008947.g003
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performance, we used gene expression data from embryonic mouse dental tissues generated

by both microarray and RNAseq.

The number of neighbours is not critical for detecting differential

expression

Our hypothesis of neighbouring genes being informative in the detection of differential

expression is dependent on the definition of ’neighbourhood’. Therefore, it is important to

determine the right number of neighbours to include in the analysis by the DELocal algorithm.

To define the optimal number of neighbours we tested different numbers (1–14) of closest

genes within a fixed window (1 Mb) surrounding the gene of interest. We evaluated the perfor-

mance of DELocal with different numbers of closest neighbours in identifying the genes

involved in tooth development. Again we contrasted the expression levels between E13 to E14

molar teeth (for 302 tooth genes), or so-called bud stage to cap stage transition in tooth devel-

opment, when many tooth genes are known to be active [19]. The Matthews correlation coeffi-

cient (MCC) scores were measured for different numbers of neighbours to examine the

strength of DELocal to identify tooth genes (true positive; TP) as well as non-tooth genes (true

negatives; TN). The MCC score was chosen to optimize the model due to very few TPs, or

imbalanced dataset. The results show that DELocal produces similar and stable MCC scores

on both microarray and RNAseq datasets, even though RNAseq data produces slightly higher

MCC scores than microarray (Fig 5). We note that only one nearest gene is enough to obtain

Fig 4. Only tooth developmental genes are differentially expressed within 1 Mb windows in the developing mouse

molar. Median expression levels of the tooth developmental genes Ctnna1, Shh, Foxi3 and Sostdc1 and their neighbouring

genes at developmental stages E13 and E14. Regardless of their expression level, the surrounding genes show little change

between the two stages whereas the tooth genes are upregulated. Egr1 in the 1 Mb window of Ctnna1 is also a tooth

developmental gene.

https://doi.org/10.1371/journal.pcbi.1008947.g004
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close to the highest MCC score. However, for RNAseq the best MCC score corresponds to 5

nearest neighbours. Because there are fewer genes available in microarray analyses compared

to RNAseq, in the rest of the analyses we used DELocal with 5 neighbours both for the RNAseq

and microarray data. It should be also noted that the distances of these 5 neighbours are differ-

ent for each gene and therefore the final neighbourhood windows are not constant in size.

Additionally to the 1 Mb window, median TAD boundaries were also used to define the neigh-

bourhoods and to evaluate DELocal. Although, TAD boundaries are different for each gene

there was no marked difference in the result compared to 1 Mb neighbourhood (S4 Fig).

DELocal shows increased precision compared to other methods

Microarray is one of the earliest successful high throughput technologies to measure a large

number of gene expressions, and consequently there are a good number of statistical methods

to identify differentially expressed genes from datasets generated by this platform. Hence, the

performance of DELocal can be evaluated by comparisons to these methods using a microar-

ray dataset. However, microarray is limited to only the genes that have been targeted by micro-

array probes. Therefore, the expression of all the genes cannot be accessed, resulting in fewer

neighbouring genes being sampled. To obtain a more comprehensive readout of differentially

expressed genes, RNAseq was also used to evaluate DELocal performance. The performance of

all these methods was measured by their ability to identify differentially expressed tooth genes.

For analysis of performance, we used the receiver operating curve (ROC) [27] depicting the

true positive rate against the false positive rate of differentially expressed genes. The analyses

show that DELocal outperforms other methods in identifying tooth genes using both microar-

ray and RNAseq (Fig 6). The performance is most similar to limma/DEMI (microarray) and

limma/DESeq (RNAseq). We used also other metrics like specificity, recall (sensitivity),

Fig 5. DELocal performance is not strongly dependent on the number of gene neighbours used in the analysis. Every

gene is evaluated in relation to its neighbouring genes. In the absence of any “gold standard” for the number of

neighbours, different numbers of nearest genes (within 1 Mb window) were used to identify the differentially expressed

genes. The overall performances were measured using MCC. The performance of DELocal using RNAseq data was

slightly better than with microarray data.

https://doi.org/10.1371/journal.pcbi.1008947.g005
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precision and MCC to evaluate and compare the different methods. DELocal shows high spec-

ificity and accuracy compared to other methods for microarray data (S5 Fig).

In RNAseq data, DELocal outperforms other methods except in recall (sensitivity) (Fig 7).

The MCC scores remain equivalent to each other. The tooth gene dataset is imbalanced due to

the large number of non-tooth genes (true negatives), which hinders the evaluation of accu-

racy, but does not affect F1 or MCC. Considering that the objective of many experiments is to

find true positives, the F1 score, which is a compound-term of precision and recall, is an

important metric. The F1 score ranges from zero (bad) to one (good), and the F1 scores of all

of the methods remain suboptimal. Nevertheless, DELocal using RNAseq outperforms other

methods also in F1 score. Below we discuss the results from RNAseq only.

DELocal provides an alternative ranking of genes by removing bias towards

large changes in expression

Because DELocal quantifies expression changes in the context of neigbouring genes, genes in

the chromosomal regions having generally large changes in expression should not be as highly

ranked as they would be in other methods. We examined the rankings and expression changes

of tooth genes among predicted differentially expressed genes by all the methods. DELocal pre-

dicted tooth genes are enriched in top rank positions compared to the other three methods (S6

Fig). In experimental research, gene rankings are typically the first values to be examined in

validating the results biologically, and in practice high ranking is very influential when select-

ing candidate genes for new downstream analyses. The results show that whereas DEseq,

edgeR and limma emphasize in their rankings genes that show large changes in their expres-

sion, this bias is not present in the DELocal ranking (Fig 8A). These results also indicate that

the identity of highly ranked tooth genes is different between DELocal and the other methods

(Fig 8B). Thus, DELocal differs from the other methods more substantially than is apparent

based on the different performance measures alone (Figs 6 and 7).

Fig 6. Compared to other methods, DELocal is at least as powerful in detecting differentially expressed genes. Receiver operating characteristic (ROC) curves and

areas under the curves (within the parenthesis) show that DELocal outperforms other methods on both microarray and RNAseq data.

https://doi.org/10.1371/journal.pcbi.1008947.g006
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Fig 7. Comparison of DELocal with earlier methods to identify differential expression. Evaluation matrices show that, except for recall (sensitivity),

DELocal equals or outperforms earlier methods. However due to large number of true negatives, the significance scores of precision, F1 and MCC

remained negligible. The evaluation matrices are explained in Materials and Methods section. The analysis was done using RNAseq data. For

microarray data see S5 Fig.

https://doi.org/10.1371/journal.pcbi.1008947.g007

Fig 8. DELocal provides an alternative ranking of differentially expressed genes. (A) Unlike the other methods, DELocal rankings

of differential expression do not bias towards genes with large log-fold changes (1 denotes the highest rank). (B) Principal component

analyses of the rank orders of tooth developmental genes shows the ordering of the DELocal to be distinct from the ones provided by

the other three methods (using correlation matrix of top 500 tooth genes).

https://doi.org/10.1371/journal.pcbi.1008947.g008
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Differentially expressed genes missed by DELocal tend to have local

paralogues

The DELocal algorithm appears to efficiently identify the differentially expressed genes (having

high precision) as well as to filter out non-tooth genes (having high specificity). Still, DELocal

missed 60 differentially expressed tooth genes which are identified by all the other methods in

RNAseq dataset. DELocal is built on the hypothesis that every true differentially expressed

gene should have neighbours and none of them should be differentially expressed. Conse-

quently, DELocal may fail to identify those differentially expressed genes whose neighbours

are also differentially expressed. For instance, 2 out of 5 nearest neighbours of Bmp7 were dif-

ferentially expressed genes which could be the reason of failure of DELocal to detect Bmp7
(Fig 9). Additionally, the presence of paralogous genes in the neighbourhood may complicate

the detection of differential expression. Most notably, Dlx1 and Dlx2 in chromosome 11 (Fig

9), Dlx5 and Dlx6 in chromosomes 6, and Dlx1 and Dlx2 in chromosome 2, are co-regulated

as pairs and can compensate for the deletion of one another [28–31]. Additionally, the other

neighbouring paralogs in our set of tooth genes are Cyp26c1 with Cyp26a1, and Cdh1 with

Cdh3 [32]. Therefore, at least some of the genes missed by DELocal should be possible to detect

by incorporating information about gene paralogues into the algorithm.

Discussion

Only seven protein-coding genes in Ensembl mouse annotation lack neighbours altogether

within their 1 Mb windows (Fig 1A). Hence, the overwhelming majority of mouse genes have

neighbours, and this pattern of organization is likely to apply to all mammals, if not beyond. In

the genomic scale of thousands of genes, neighbouring genes can be co-expressed in eukary-

otes [33]. Our analyses, focused on individual organ development, suggest that the neighbour-

ing genes are very rarely involved in the regulation of the same organ or tissue (Fig 2), and that

this is also reflected in the lack of co-expression of neighbours (Fig 4). The lack of co-expressed

neighbours is partly explained by the limited number of genes that are associated with individ-

ual organ regulation (Figs 2 and 3). In contrast, more general processes, such as cell prolifera-

tion or cell death, are linked to many thousands of genes (Fig 2), increasing the likelihood of

neighbourhood co-expression. Indeed, an analysis using high-level GO terms containing thou-

sands of genes found that functionally related genes are often located close to each other [8]. It

Fig 9. Differentially expressed genes in the same neighbourhood interfere with the detection of differentially

expressed genes by DELocal. DELocal failed to identify Bmp7 due to differential expression patterns of its neighbouring

genes (top). Dlx1 and Dlx2 are paralogous tooth genes which are in the same neighbourhood (bottom). Only tooth

developmental genes are labelled here.

https://doi.org/10.1371/journal.pcbi.1008947.g009
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is plausible that evolution of organs such as teeth may have co-opted genes from multiple

high-level clusters, perhaps further explaining the rarity of co-expressed neighbours in organ

regulation.

A distinct advantage of the rarity of co-expressed neighbours in organ development is that

this information can be used to detect even subtle changes in gene expression. To this end,

here we developed the DELocal algorithm to identify differentially expressed genes by incorpo-

rating expression information from chromosomal neighbourhood. DELocal provided highly

precise detection of differentially expressed genes in mouse tooth development (Figs 6 and 7),

suggesting that this method can provide additional benefits in the analysis of developmental

systems. Specifically, DELocal is distinct from the previous methods of determining differen-

tially expressed genes by not relying on large fold-changes in gene expression (Fig 8A). The

ability of DELocal to identify biologically significant but more subtle changes is based on its

special feature: it can track a change in gene expression that is unique among the surrounding

genes in the chromosomal location. Thus, DELocal can pinpoint genes which are being

actively and specifically regulated between two developmental stages, regardless of whether the

change of expression is large or small. Taken together, DELocal can complement other meth-

ods by providing alternative rank listings of potential genes of interests (Fig 8B).

More technically, the developed DELocal algorithm is based on linear models that have

been successfully implemented and used in limma, DESeq2 and many other methods to identify

differentially expressed genes [34,35]. With linear models, gene expression can be modelled in

two or more biological conditions and thereafter differentially expressed genes of different con-

trasts of interest can be found. Linear models are advantageous compared to other methods in

that they can model complex experimental conditions with multiple factors. Here we used

DELocal to determine the genes that are differentially expressed between bud and cap stage in

the developing mouse tooth. The extensive list of genes active in tooth development [19,21]

allowed us to optimize and evaluate the performance of DELocal. Considering that the in vivo
bud and cap stage differences in gene expression are relatively subtle, the high specificity and

accuracy of DELocal is promising. Obviously, the optimization requires a list of genes of inter-

est. However, DELocal can also be run without any prior knowledge of genes that are active in a

particular developmental process. Fig 3 shows that in relation to the number of neighbours, the

performance of DELocal is very stable and even only one nearest neighbour could be sufficient

to build the models. The implication of this is that DELocal could be used with only a single

neighbour contrast in the absence of any reference/training gene set. In this context it will be

interesting to test whether the optimum number of neighbours is the same for different organs.

Another future direction is to examine different TAD classifications using DELocal.

It remains to be explored whether the rarity of neighbouring genes regulating the same pro-

cess is related, for example, to the requirements of spacing required for folding of the DNA, or

whether it is the result of historical processes of genome rearrangements or co-option of genes

in the evolution of organs. Regardless, our results on the developing mouse tooth suggest that

the lack of organ specific neighbours is also manifested at the level of differential expression.

We further show that it is possible to develop computational approaches to detect even subtle

changes in gene expression using the additional information from the neighbouring genes.

Materials and methods

Ethics statement

All mouse studies were approved and carried out in accordance with the guidelines of the

Finnish national animal experimentation board under licenses KEK16-021, ESAVI/2984/

04.10.07/2014 and ESAV/2363/04.10.07/2017.
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Gene sets and gene neighbourhood analyses

The start position, chromosome name and gene biotype (protein coding, lncRNA, ncRNA,

pseudogene) of every gene of mouse and human genomes were downloaded from Ensembl

database using R package biomaRT [36] in February, 2020. Further analysis was limited to pro-

tein coding genes. 302 genes linked to tooth development were marked as tooth developmental

genes (S1 Table and refs [19,37]). Throughout the study, the gene start coordinates are used as

the position of the gene in the chromosome. The same coordinates are used to measure the

distances between genes. The GO slim terms were acquired from AmiGO [38] and they are

listed in S2 Table. For each GO term, the corresponding genes were downloaded again from

Ensembl using biomaRT. The artificial GO terms of different sizes for simulation were created

by randomly sampling protein coding genes from genome using custom R scripts. For every

group size, 10,000 simulations were performed and for each simulation density of genes from

the same artificial GO term in neighbourhood was calculated.

For most of the analyses, we used the 1 Mb windows as a neighbourhood measure for each

focal gene as these are relatively straightforward to determine for different genomes and genes.

Additionally, we analyzed neighbourhoods using TADs. Although TADs are considered to be

conserved across different mammalian cell types, multiple TADs surrounding a gene with dif-

ferent boundaries can be delineated [39]. For a robust consensus of TAD boundaries, we

downloaded four different mouse cell-lines and three different algorithms (with 10 kb and 50

kb resolutions, June 2021 [40]). A consensus TAD boundary for each gene was defined by

selecting a median start and end co-ordinates from all TADs surrounding that gene. The

median size of these consensus TAD boundaries was 990kb (within the range of 185kb to

6Mb, standard deviation = 547813.8) which is roughly similar to previous report of 880kb

[41]. TAD boundaries for more than 1500 genes (mostly from Y chromosome) were not

determined.

RNAseq library preparation

Developing mouse molar teeth from embryonic days 13.5 (E13) and 14.5 (E14) were dissected

from wild type C57BL/Ola embryos. For RNAseq, five biological replicates were used. The

samples were stored in RNAlater (Qiagen GmbH, Hilden, Germany) in -75˚C. RNA was

extracted first twice with guanidinium thiocyanate-phenol-chloroform extraction and then

further purified using RNeasy Plus micro kit (Qiagen GmbH, Hilden, Germany) according to

manufacturer’s instructions. RNA quality of representative samples was assessed with 2100

Bioanalyzer (Agilent, Santa Clara, CA) and the RIN values were 9 or higher. The RNA concen-

trations were determined by Qubit RNA HS Assay kit (Thermo Fisher Scientific, Waltham,

MA). The cDNA libraries were prepared with Ovation RNAseq System V2 (Nugene, Irvine,

CA), and sequenced with NextSeq500 (Illumina, San Diego, CA).

Microarray library preparation

Mouse E13 and E14 teeth were dissected from wild type NMRI embryos. Five biological repli-

cates were used. The amount of RNA available in each sample was measured with 2100 Bioa-

nalyzer (Agilent, Santa Clara, CA). Only the samples showing a RIN value above 9 were used

for the microarray analysis.

Gene Expression analysis

Gene expression was measured both in microarray (platform: GPL6096, Affymetrix Mouse

Exon Array 1.0) and RNAseq (platforms GPL19057, Illumina NextSeq 500). The microarray
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gene signals were normalized with aroma.affymetrix [42] package using Brainarray custom

CDF (Version 19, released on Nov 13, 2014) [43]. The RNAseq reads (84 bp) were evaluated

and bad reads were filtered out using FastQC [44], AfterQC [45] and Trimmomatic [46]. This

resulted in on average 63 million reads per sample. Then good reads were aligned with STAR

[47] to Mus_musculus.GRCm38.dna.primary_assembly.fa genome and counts for each gene

was performed by HTSeq [48] tool using Mus_musculus.GRCm38.90.gtf annotation. On aver-

age 89% reads were uniquely mapped to Mus musculus genome. Additionally, RNAseq count

values were normalized using DESeq2 [34]. All the transcriptomic data are available in NCBI

Gene Expression Omnibus under the accession number GSE142201.

DELocal

In DELocal, it is hypothesized that differentially expressed genes have different expression

dynamics compared to their neighbouring genes. Specifically, we want to find genes whose

expression changes, while that of the surrounding genes do not. To calculate this, we used a

similar logic to ESLiM [49], an algorithm that detects changes in exon usage. Whereas ESLiM

is suitable for detection of alternative splicing (exon usage), DELocal is applicable for identify-

ing differentially expressed genes in the chromosomal neighbourhood. Note that in principle

one could choose the neighbouring gene or genes randomly across the genome, but this would

result in different results in each randomization.

In this algorithm, gene’s expression is modelled as a linear relationship with median expres-

sion of neighbourhood genes, such as,

bg ij ¼ si � N~gwij þ bi; ðiÞ

Where bg ij is expected expression of i-th gene in j-th sample, Ncgwij is median expression of

N nearest neighbouring genes within 1 Mb window of the i-th gene from j-th sample and bi is

base line expression level of gene gi. The slope si of every gene gi depends on its neighbouring

genes. Therefore, the difference between expected and observed values or residual,

rij ¼ gij � bg ij ðiiÞ

where gij is observed value. For differentially expressed genes, these residual values will be sig-

nificantly different in different biological conditions.

Furthermore, with the aid of the residuals rij observed gij could be formulated as follow,

gij ¼ si � N~gwij þ bi þ rij ðiiiÞ

Noticeably, this relationship Eq (iii) is independent of experimental condition and only

dependent on neighbouring gene. Therefore, differentially expressed genes are detected

through significantly deviated residual values between the desired contrasts using Empirical

Bayes statistics, available from limma package [35]. We tested the performance of DELocal

using from 1 to 14 neighbouring genes (N in Eq (iii)). The log-normalized and normalized

count values were used in DELocal respectively for microarray and RNAseq data. There are

334 protein coding genes in mouse genome which do not have any other protein coding gene

in their 1Mb neighbourhood. Therefore, we also used available non-protein coding genes

from the neighbourhood in DELocal analysis. However, after the inclusion of non-protein

coding genes there are still 17 protein coding genes without any neighbours within 1 Mb.
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Performance measures

DELocal was compared with different publicly available tools applicable both for microarray

or RNAseq: RankProd [50], SAM [51], DEMI [52], limma [35], edgeR [53] and DESeq2 [34].

All these programs were executed with default parameters. Genes reported with p-value < =

0.05 by these tools were marked as differentially expressed and used to evaluate the perfor-

mance of each tool using the following metrics and receiver operating characteristic (ROC)

curves.

• Sensitivity (Recall), true positive rate TPR = TP/ (TP + FN)

• Specificity, true negative rate SPC = TN/ (TN + FP)

• Precision, positive predictive value PPV = TP/ (TP + FP)

• Accuracy, ACC = (TP + TN) / (TP + FP + FN + TN)

• F1 score, F1 = 2TP/ (2TP + FP + FN)

• Mathews correlation coefficient, MCC = TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ�
p

where TP, true positive; FP, false positive; TN, true negative; FN, false negative.

Tooth developmental genes were used to find the true and false positive rate for the analyses

(S1 Table and refs [19,37]). Rest of the genes (in thousands) were considered as true negatives.

Due to the large number of these, very high accuracy can be achieved by predicting all genes as

non-differentially expressed. Therefore, because our objective was to find true tooth genes, we

focused on Recall, Precision, F1, MCC and area under the ROC curves rather than only Accu-

racy for evaluating the methods. The areas under the ROC curves were calculated with ROCR

[27] package. Additionally, we compared differences in rank and log-fold changes in the genes

ranked high by the different methods (Fig 8).

Supporting information

S1 Fig. Distribution of genes across mouse chromosomes (x-axis) and number of “neighbour-

ing genes” (y-axis) within 1 Mb window around each gene.

(TIF)

S2 Fig. Genes with 5–9 neighbouring genes are most frequent in the mouse genome. Each

point represents the number of genes with the same number of neighbouring protein coding

genes in 1 Mb window.

(TIF)

S3 Fig. The more specific the GO term, the fewer neighbours its genes have. Each pie repre-

sents the genes of a GO term under the root GO term ‘biological process’. The GO terms are

arranged from top to bottom following their proximity to the root term ‘biological process’.

The color coding indicates the number of neighbours that a gene has from the same GO term.

Analysis was done for the human genome. See S2 Table for GO IDs.

(TIF)

S4 Fig. Performance comparisons of DELocal calculated using neighbourhoods with 1 Mb

windows and with TAD boundaries (with RNAseq data).

(TIF)

S5 Fig. Comparison of DELocal with earlier methods to identify differential expression.

Evaluation matrices for microarray data. DELocal has lower performance in microarray data
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compared to RNAseq data (Fig 7), likely to be due to limited number of genes and neighbour-

hood data in microarrays. The evaluation matrices are explained in Materials and Methods

section.

(TIF)

S6 Fig. Distribution of ranks of tooth developmental genes. DELocal predicted tooth devel-

opmental genes are significantly (Wilcoxon rank test; p-value < = 1.0e-06) enriched in top

ranked positions compared to the other three methods. Although other methods identified

more of the genes (numbers listed next to the box plots), this improved recall is sacrificing

specificity. DELocal balances both which is also reflected in F1, MCC and ROC curves (Figs 6

and 7).

(TIF)

S1 Table. List of tooth developmental genes.

(XLSX)

S2 Table. List of GO terms analysed in Figs 7, 8 and S4.

(DOCX)
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