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ABSTRACT

Chromosomes are not randomly disposed in the
nucleus but instead occupy discrete sub-nuclear
domains, referred to as chromosome territories.
The molecular mechanisms that underlie the for-
mation of chromosome territories and how they
are regulated during the cell cycle remain largely
unknown. Here, we have developed two different
chromosome-painting approaches to address how
chromosome territories are organized in the fission
yeast model organism. We show that condensin fre-
quently associates RNA polymerase III-transcribed
genes (tRNA and 5S rRNA) that are present on
the same chromosomes, and that the disruption of
these associations by condensin mutations signif-
icantly compromises the chromosome territory ar-
rangement. We also find that condensin-dependent
intra-chromosomal gene associations and chromo-
some territories are co-regulated during the cell cy-
cle. For example, condensin-directed gene associa-
tions occur to the least degree during S phase, with
the chromosomal overlap becoming largest. In clear
contrast, condensin-directed gene associations be-
come tighter in other cell-cycle phases, especially
during mitosis, with the overlap between the different
chromosomes being smaller. This study suggests
that condensin-driven intra-chromosomal gene as-
sociations contribute to the organization and regula-
tion of chromosome territories during the cell cycle.

INTRODUCTION

Global territorial arrangement of chromosomes is observed
in a variety of eukaryotic organisms ranging from yeast to
humans, and individual chromosomes are stably separated
during interphase (1–8). This territorial chromosomal orga-
nization is tightly linked to gene regulation, as it has been

shown that genes loop out from chromosome territories
upon transcriptional activation (9,10).

Recent genomic studies have revealed that genomes are
highly ordered by a hierarchy of organizing events, rang-
ing from gene associations to topologically associating do-
main (TAD) formation (11–14). The condensin and co-
hesin complexes consisting of the structural maintenance
of chromosomes proteins are known to function in mitotic
chromosome assembly and in holding sister chromatids
together, respectively (15–17). These complexes are also
deeply involved in many aspects of the genome-organizing
processes. For instance, it has been proposed that condensin
and cohesin direct gene associations, enhancer–promoter
interactions, and TAD formation in different species (18–
23). Moreover, condensin has recently been implicated in
the organization of chromosome territories in Drosophila
melanogaster and Caenorhabditis elegans (24,25). A critical
question that remains is how condensin mediates and regu-
lates the territorial organization of chromosomes.

Using fission yeast as a model system, we have previously
reported on condensin-mediated genome organizations and
demonstrated that RNA polymerase III-transcribed (Pol
III) genes, such as tRNA and 5S rRNA genes dispersed
across the chromosomal arms, associate with centromeres
(19,26). We now show that condensin preferentially asso-
ciates Pol III genes present on the same chromosomes, and
that the inhibition of these intra-chromosomal gene asso-
ciations by condensin mutations disrupts the territorial ar-
rangement of chromosomes. We also show that condensin-
directed gene associations are coordinated with the chro-
mosome territory organization throughout the cell cycle.

MATERIALS AND METHODS

Culture conditions

Fission yeast cells were cultured in yeast-extract adenine
(YEA) medium. Strain constructions were performed us-
ing conventional genetic crosses. The cdc25-22 mutant was
used for the cell-cycle synchronization as previously de-
scribed (27). Alternatively, exponentially growing cells were
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arrested in S phase by culturing in YEA medium containing
11 mM hydroxyurea (HU) for 4 h.

Microscopic analysis

Fluorescent in situ hybridization (FISH) experiments were
performed as previously described (28). Fission yeast chro-
mosomes (Bio-Rad) were separated on 0.8% low melting
point (LMP) agarose gel (Life Technologies) using CHEF
Mapper XA Pulsed Field Electrophoresis System (Bio-
Rad). Electrophoresis was performed at 14◦C for 48 h in
1× Tris-acetate EDTA (TAE) buffer at 1.5 V/cm and 120◦
angle with a 20-min switch time. The respective chromo-
somes were purified using Qiaquick gel extraction Kit (Qia-
gen) and amplified using Illustra GenomiPhi V2 DNA Am-
plification Kit (GE Healthcare). The chromosome-specific
FISH probes were also generated using polymerase chain
reaction (PCR)-amplified DNA fragments. Fifty-six and
forty-six pairs of primers were used for amplification of 5
kb DNA fragments derived from the chromosomes 1 and 2,
respectively (Supplementary Tables S1 and S2). DNA frag-
ments were labeled by incorporation of Cy3-dCTP, Cy5-
dCTP (GE Healthcare) or Alexa Fluor 488-dUTP (Life
Technologies) with a random primer DNA labeling kit
(Takara). FISH images were captured by a Zeiss Axioim-
ager Z1 fluorescence microscope with an oil immersion ob-
jective lens (Plan Apochromat, 100×, NA 1.4, Zeiss). The
images were acquired at 0.2 �m intervals in the z-axis con-
trolled by Axiovision 4.6.3 software (Zeiss). More than 100
cells were analyzed for every microscopic experiment. In the
analysis on locus-specific FISH data, the distance between
two loci was measured for each sample, and the data for the
two groups were subjected to the non-parametric Mann–
Whitney U test. When analyzing chromosome-painting
FISH results, the percentage of the overlapped area between
two chromosomes was estimated as shown in Supplemen-
tary Figure S3, and the data from wild-type (WT) and con-
densin mutant cells were compared by the non-parametric
Mann–Whitney U test. In the Mann–Whitney U test, all
the values from two groups were ranked from low to high
regardless of groups, and the mean ranks in the two groups
were compared.

RESULTS

Intra-chromosomal associations of Pol III gene loci

We previously reported that condensin binds to Pol III
genes and mediates associations between Pol III gene loci
and centromeres in fission yeast (19,26). If condensin binds
to Pol III genes and centromeres and mediates their associ-
ations, then Pol III genes also should associate with one an-
other. To explore this possibility, we performed FISH exper-
iments and examined associations between Pol III gene loci.
The c417 Pol III gene locus contains three tRNA and two 5S
rRNA genes within a 15 kb region. On average, the Pol III
gene loci we investigated consist of 1–2 Pol III genes within
10–20 kb regions. We observed that the two Pol III gene loci
(c10H11 and c417) on the chromosome 3 were frequently
positioned in proximity, reflecting their association (Figure
1A). Using a live-cell imaging, we have previously shown
that condensin-mediated associations are highly transient

during interphase, but gene loci and centromeres migrate
together in a coordinated fashion when associated through
condensin (29). Since condensin-mediated gene association
is a transient event, the association is scored as a frequency
of nearby localization of gene loci. In clear contrast, the two
Pol III gene loci (c10H11 and c354) on the different chromo-
somes were infrequently co-localized, and the localization
pattern was significantly different from that of the two Pol
III gene loci on the same chromosome (P < 0.001, Mann–
Whitney U test), suggesting that the Pol III gene loci on the
same chromosome tend to associate (Figure 1A and B).

We next investigated whether the intra-chromosomal
gene association we observed is a common feature of many
other Pol III genes distributed across the genome (Figure
1C). We co-visualized combinations of the Pol III gene loci
and the non-Pol III gene loci (Figure 1C). There are no Pol
III genes located within 100 kb from the c887, c1020 and
c162 negative control loci. We consistently observed that the
five pairs of the Pol III gene loci (c417-c736, c354-c1677,
c354-c800, c354-c428 and c417-c10H11) on the same chro-
mosomes were frequently positioned in proximity, whereas
the two pairs of the Pol III gene loci (c354-c27D7 and
c417-c354) on the different chromosomes were mainly sep-
arated (P < 0.001, Mann–Whitney U test; Figure 1B and
D). Moreover, the localization patterns between the non-
Pol III gene loci and the Pol III gene loci (c162-c736 and
c1020-c417) on the same chromosomes were not clearly dif-
ferent from that of the c162 non-Pol III gene loci and the
c354 Pol III gene loci on the different chromosomes (Fig-
ure 1D). These negative control data were similar to the lo-
calization patterns of the Pol III gene loci (c354-c27D7 and
c417-c354) on the different chromosomes, suggesting that
the Pol III gene loci on the different chromosomes rarely
or do not associate (Figure 1B and D). More importantly,
these results suggest that Pol III gene loci on the same chro-
mosomes, but not on the different chromosomes, frequently
associate.

If Pol III genes are responsible for intra-chromosomal as-
sociations, a non-Pol III gene locus should associate with
other Pol III gene loci when Pol III genes are ectopically in-
serted. In this regard, we found that the c162 Pol III gene
locus consisting of the insertion of the two Pol III genes
(tRNAasn and 5S rRNA) frequently co-localized with the
c10H11 Pol III gene locus (Figure 1E and F), which was sig-
nificantly different from the localization pattern of the c162
locus without the insertion (P < 0.001, Mann–Whitney U
test). This localization pattern was similar to that of the two
Pol III gene loci (c417 and c10H11) on the same chromo-
some (Figure 1B). These results further demonstrate that
Pol III genes mediate associations of gene loci present on
same chromosomes.

Associations between Pol III gene loci relative to centromeres

We next examined whether co-localization of Pol III gene
loci on same chromosomes occurs at centromeres. We ob-
served that the Pol III gene loci (c417 and c10H11) present
on the same chromosome frequently co-localized near cen-
tromeres (category I) and away from centromeres (category
II), while one of the Pol III gene loci was independently
positioned near centromeres (category III) in the remain-
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ing cell population (Supplementary Figure S1A and S1B).
In contrast, the Pol III gene loci (c354 and c10H11) on
the different chromosomes predominantly showed the lo-
calization pattern of category III (Supplementary Figure
S1B). These results indicate that the association between
the Pol III gene loci on the same chromosome can occur
at and away from centromeres, whereas Pol III gene loci on
the different chromosomes preferentially associate with cen-
tromeres. We speculate that there is a potential mechanism
to prevent the co-localization of Pol III genes on different
chromosomes at centromeres.

Intra-chromosomal gene associations mediated by condensin

We next investigated whether intra-chromosomal gene as-
sociations are dependent upon condensin activity. The cut3-
477 and cut14-208 condensin mutants are commonly used
by fission yeast researchers, and condensin function in these
mutants is disrupted at the restrictive temperature (30). We
observed that the associations between the Pol III gene loci
(c417-c10H11 and c354-c800) on the same chromosomes
were significantly disrupted by the cut3-477 and cut14-208
mutations (P < 0.001, Mann–Whitney U test; Figure 2A).
In contrast, the localization patterns of the Pol III gene
loci and non-Pol III gene loci (c10H11-c162 and c354-c887)
on the same chromosomes as well as the non-Pol III gene
loci (c1020-c162 and c887-c162) on the same and different
chromosomes were not significantly affected by the con-
densin mutations (Figure 2B and C). These results sug-
gest that the condensin mutations specifically disrupt intra-
chromosomal associations between Pol III gene loci.

We previously found that the sfc3-1 point mutation in the
sfc3 gene encoding the Pol III transcription factor TFIIIC
subunit promotes condensin localization at Pol III genes
(19). We observed that the associations of the Pol III gene
loci (c10H11-c417 and c800-c354) on the same chromo-
somes were significantly disrupted by the cut3–477 con-
densin mutation but restored in the cut3-477 sfc3-1 dou-
ble mutant (P < 0.001, Mann–Whitney U test; Figure 2D).
We predict that the cut3-477 condensin mutation partially
decreases condensin activity, while the sfc3-1 mutation can
suppress the condensin defect in intra-chromosomal gene
associations by promoting condensin binding to Pol III
genes. These results collectively indicate that condensin me-
diates intra-chromosomal associations of Pol III gene loci.

Painting the whole fission yeast chromosomes

To analyze chromosome territories in the fission yeast nu-
cleus, we established a FISH approach to visualize the en-
tire chromosomes (see ‘Materials and Methods’ section).
In brief, we purified the respective chromosomes after
pulsed-field gel electrophoresis (PFGE) and prepared FISH
probes that recognize the entire chromosomes (Figure 3A).
As an experimental control, we first applied these FISH
probes to prophase-arrested cells treated by carbendazim,
a microtubule-destabilizing agent, resulting in the artifi-
cially heavily compacted chromosomes. We observed that
the FISH probes almost exclusively visualized the indi-
vidual chromosomes, suggesting that the prepared FISH
probes can be used for chromosome painting (Supplemen-

tary Figure S2). We then analyzed interphase cells and ob-
served that the three yeast chromosomes were not dispersed
so as to occupy the entire nucleus, indicating a territorial
organization of the fission yeast chromosomes during in-
terphase (Figure 3B).

PFGE-derived FISH probes potentially recognize repet-
itive sequences including centromeric repeats, tRNA and
5S rRNA genes, and long terminal repeat retrotransposons
commonly present on all of the fission yeast chromosomes.
To precisely estimate chromosome territories, we developed
an alternative FISH approach. We prepared 56 and 46 DNA
fragments specific to the chromosomes 1 and 2, respec-
tively, by PCR (Figure 3C). These DNA fragments were de-
signed not to contain any repeat sequences and were dis-
tributed throughout the chromosomes at 100 kb intervals.
These PCR-derived DNA fragments were mixed to prepare
chromosome-specific FISH probes. We observed that the
chromosomes 1 and 2 were not spread throughout the nu-
cleus, again indicating the territorial organization of the
fission yeast chromosomes (Figure 3D). These FISH ap-
proaches work comparably for chromosome painting and
are useful for probing chromosome territories in the fission
yeast model system.

Coordination between intra-chromosomal gene associations
and chromosome territory organization during the cell cycle

We determined to investigate how chromosome territories
are regulated during the cell cycle. Because condensin di-
rects intra-chromosomal gene associations (Figure 2), we
hypothesized that these associations contribute to the ter-
ritorial organization of chromosomes during the cell cycle.
To test this possibility, we first analyzed the association of
the Pol III gene loci (c10H11 and c417) present on the same
chromosome during the cell cycle. The cell cycle was syn-
chronized using the temperature-sensitive cdc25-22 mutant
(Figure 4A). We observed that the intra-chromosomal as-
sociation was most promoted during mitosis and became
infrequent during S phase (Figure 4B and C). In contrast,
the c10H11 Pol III gene locus and the c162 non-Pol III gene
locus, as well as the two non-Pol III gene loci (c1020 and
c162), all of which are present on the same chromosome,
were consistently separated during the cell cycle (Figure 4B
and C). Note that the distances between the c417 Pol III
gene locus and c162 negative control locus, and between the
c10H11 Pol III gene locus and the c1020 non-Pol III gene
loci are both 120 kb and that the paired loci (c10H11-c417,
c10H11-c162 and c1020-c162) are positioned ∼1 Mb apart
(Figure 1C). It has been shown that two gene loci located
120 kb apart are generally separated by 0.4–0.5 �m in the
interphase nucleus, and these two loci can behave indepen-
dently of each other (31). Therefore, the observed change
in the intra-chromosomal association between the Pol III
gene loci during the cell cycle does not simply reflect indi-
rect effects derived from alterations in global chromosomal
compaction.

To further evaluate chromosome territories, we focused
on an overlap between different chromosomes as explained
in Supplementary Figure S3. We observed that the over-
lap between the chromosomes 1 and 2 became smallest
and largest during mitosis and S phase, respectively (Fig-
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ure 4D). This pattern was similar to the pattern of intra-
chromosomal gene associations during the cell cycle (Fig-
ure 4C). For instance, when the condensin-dependent intra-
chromosomal gene association is tightest during mitosis,
the chromosomal overlap becomes smallest. In contrast, the
gene association occurs in the least degree during S phase,
with the chromosomal overlap being largest. Together, these
results suggest that chromosome territories are regulated
during the cell cycle, and that the territorial organization is

coordinated with condensin-dependent intra-chromosomal
gene associations rather than global chromosomal com-
paction.

Condensin mutations compromise chromosome territory ar-
rangement

If condensin-directed gene associations are involved in the
territorial organization of chromosomes, then inhibition
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of the associations by condensin mutations should disrupt
chromosome territories (Figure 2A). To address this hy-
pothesis, we performed chromosome painting using the
cut3-477 and cut14-208 condensin mutants, and occasion-
ally observed the clear separation of the chromosomes 1 and
2 in WT cells, but not in the condensin mutants (Figure 5A).
More specifically, more than 20% of WT cells contained the
two chromosomes almost completely separated (0–5% of
the chromosomal overlap), while this clear separation was
infrequent in the condensin mutants (Figure 5B). On the
other hand, the chromosomes were also significantly over-
lapped in a subset of WT cells, implying that the degree of
territorial organization can vary among fission yeast cells.
Therefore, the pattern of the chromosomal overlap in a cell
population needs to be considered, and we observed that
the overlap patterns were significantly different between the
WT and the condensin mutants (P < 0.05, Mann–Whitney
U test; Figure 5C). In detail, we observed that more than
35% of the chromosomal overlap was observed in 18% of
WT cells, whereas 39% of cut3-477 and 33% of cut14-208
condensin mutant cells had the similar degree of the over-
lap (Figure 5B). Note that asynchronous culture contains

∼75% of G2 cells, and that the observed patterns mainly
reflect the chromosomal overlap during G2 phase.

For the different pair of the chromosomes, we again ob-
served a clear separation in the WT cells, but not in the
condensin mutants (Supplementary Figure S4A). The pat-
terns of the chromosomal overlap were significantly differ-
ent between the WT and condensin mutants (P < 0.001,
Mann–Whitney U test), and the average overlap became
larger in the condensin mutants compared to the WT (Sup-
plementary Figure S4B). We also observed that the chromo-
somal overlap became smaller in the cut3-477 sfc3-1 double
mutant compared to the cut3-477 single mutant (Supple-
mentary Figure S4C and S4D). Our results above suggest
that the sfc3–1 mutation can suppress the condensin defect
in intra-chromosomal gene associations by promoting con-
densin binding to Pol III genes (Figure 2D). These results
collectively demonstrate that condensin participates in the
organization of chromosome territories in fission yeast, and
likely that condensin-directed intra-chromosomal associa-
tions of Pol III gene loci contribute to the chromosome ter-
ritory arrangement.
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Figure 4. Intra-chromosomal gene association and chromosome territory arrangement during the cell cycle. (A) The cdc25–22 mutant was used for the
cell-cycle synchronization. The cell cycle was monitored by the two indexes (binucleated anaphase cells and septation). The same procedure was employed in
the following panels. (B) Intra-chromosomal gene association at the different stages of the cell cycle. The c10H11 Pol III gene locus (chr3) was co-visualized
with either the c417 Pol III gene locus (chr3) or the c162 non-Pol III gene locus (chr3). The c1020 and c162 non-Pol III gene loci on the chromosome 3
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from the box. (D) The painting FISH experiments with PCR-derived probes were performed using cells in different stages of the cell cycle. Representative
FISH images are shown on top. The percentage overlap between the chromosomes 1 and 2 during the cell cycle was estimated as detailed in Supplementary
Figure S3 and summarized as boxplots explained in panel C.

Involvement of condensin in cell cycle-dependent organization
of chromosome territories

It was still possible that the condensin mutations might
cause chromosomal entanglement and segregation defects
during mitosis, resulting in the disruption of chromo-
some territories in the following cell-cycle phases. To di-
rectly investigate roles of condensin in the chromosome
territory organization during interphase, we performed
HU block/release experiments with the condensin mutants
(Figure 6A). The HU treatment arrests the cell cycle at S
phase, and cells were subsequently cultured at the restric-
tive temperature to inhibit condensin activity. This proce-
dure allows condensin mutant cells to progress through in-
terphase, and we can specifically investigate roles of con-
densin in chromosome territory arrangement during inter-
phase. As expected, the mitotic defects were observed in the
cut3-477 and cut14-208 condensin mutants 1.5 h after HU
release, indicating that the condensin mutants go through
the normal interphase and progress to mitosis after the HU
treatment (Figure 6B).

During both S and G2 phases, we observed that the pat-
terns of the chromosomal overlap were significantly differ-
ent between the WT and condensin mutants (P < 0.05,
Mann–Whitney U test), and that the average chromoso-
mal overlap was consistently enlarged in the condensin mu-
tants compared to WT cells (Figure 6C and D). These re-
sults indicate that condensin contributes to the organiza-
tion of chromosome territories during S and G2 phases. Al-
though the chromosomal overlap becomes largest during
S phase (Figure 4D), condensin seemingly still participates
in the relatively loose organization of chromosome territo-
ries, suggesting the involvement of condensin in the chro-
mosome territory organization throughout the cell cycle.

DISCUSSION

We show that condensin mediates intra-chromosomal gene
associations, and that the condensin mutations disrupt
those associations and the organization of chromosome ter-
ritories. We also find that condensin-mediated gene asso-
ciations are coordinated with the territorial organization
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during the cell cycle. These results collectively suggest that
condensin-mediated associations contribute to the organi-
zation and regulation of chromosome territories during the
cell cycle.

Mechanistically speaking, our study indicates that Pol
III genes located on the same chromosomes associate fre-
quently. Condensin is known to interact with another con-
densin molecule to mediate associations between chromatin
fibers (32,33). As a result, condensin molecules present at
Pol III genes can mediate associations between these genes
through condensin–condensin interactions. How condensin
mediates only intra-chromosomal associations remains un-
clear, but it has been suggested that the interaction of
condensin, preferentially with another condensin molecule
present nearby on the same chromatin fiber, results in mi-
totic chromosome assembly (34). Recently, a computational
simulation study has also predicted that the condensin–
condensin interaction and the resulting gene associations

can mediate chromatin domain formation (35). This study
suggests that condensin-directed intra-chromosomal gene
associations are also involved in the territorial organization
of chromosomes.

It has previously been shown that condensin plays an in-
hibitory role in the expression of Pol III genes (19). In this
study, we find that condensin mediates intra-chromosomal
associations between Pol III genes and facilitates the chro-
mosome territory arrangement. We speculate that embed-
ding Pol III genes in chromosome territories can poten-
tially play an inhibitory role in their transcription. In sup-
port of this notion, it has been shown that genes loop out
from chromosome territories upon transcriptional activa-
tion (9,10). Also, condensin mutations are known to cause
mitotic defects, which are observed as stretched chromo-
somes in fission yeast cells and referred to as the �-shaped
chromosomes phenotype (30). In this regard, we predict
that the condensin-mediated intra-chromosomal gene asso-
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ciations help maintain chromosomal separation during the
cell cycle, thereby improving the fidelity of chromosome seg-
regation during mitosis.

How are chromosome territories governed during the cell
cycle in fission yeast? It has been shown that phosphoryla-
tion of the Cut3 condensin subunit by Cdc2 results in an
accumulation of condensin molecules in the mitotic nucleus
(36). Additionally, phosphorylation of the Cnd2 condensin
subunit promotes condensin-chromatin affinity during mi-
tosis (37). Moreover, an epigenetic histone modification,
acetylation of histone H3 lysine 56, has an inhibitory ef-

fect on condensin binding to chromatin during S phase (38).
These mechanisms likely cause the stable chromatin binding
of condensin during mitosis as well as condensin dissocia-
tion from chromatin during S phase, allowing condensin to
mediate frequent and rare intra-chromosomal gene associ-
ations during mitosis and S phases, respectively. This mod-
ulation of condensin-directed gene associations presumably
enables condensin to affect chromosome territories in a
cell cycle-dependent manner. Moreover, it has recently been
shown that, when condensin is stabilized or over-expressed
during interphase, DAPI-dense chromatin domains, likely
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reflecting chromosome territories, are observed in the fly
and human nuclei, implying that condensin promotes intra-
chromosomal gene associations and the territorial orga-
nization of interphase chromosomes in higher eukaryotes
(39,40). We thus hypothesize that the role of condensin in
the organization and regulation of chromosome territories
is likely conserved in other eukaryotes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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