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Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by resting tremor, slowness of move-

ments, rigidity, gait disturbance and postural instability. Most investigations on Parkinson’s disease focused on the basal

ganglia, whereas the cerebellum has often been overlooked. However, increasing evidence suggests that the cerebellum may

have certain roles in the pathophysiology of Parkinson’s disease. Anatomical studies identified reciprocal connections between

the basal ganglia and cerebellum. There are Parkinson’s disease–related pathological changes in the cerebellum. Functional or

morphological modulations in the cerebellum were detected related to akinesia/rigidity, tremor, gait disturbance, dyskinesia and

some non-motor symptoms. It is likely that the major roles of the cerebellum in Parkinson’s disease include pathological and

compensatory effects. Pathological changes in the cerebellum might be induced by dopaminergic degeneration, abnormal drives

from the basal ganglia and dopaminergic treatment, and may account for some clinical symptoms in Parkinson’s disease. The

compensatory effect may help maintain better motor and non-motor functions. The cerebellum is also a potential target for some

parkinsonian symptoms. Our knowledge about the roles of the cerebellum in Parkinson’s disease remains limited, and further

attention to the cerebellum is warranted.
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Introduction
Parkinson’s disease is one of the most common progressive neuro-

logical degenerative disorders. It is characterized by motor dys-

function including resting tremor, slowness of movements

(bradykinesia), difficulty in initiating movements (akinesia), rigidity,

gait disturbance and postural instability as well as the more re-

cently emphasized non-motor dysfunctions. The pathological hall-

mark of Parkinson’s disease is progressive dopamine neuronal loss

within the substantia nigra and other brain structures combined

with the appearance of intracytoplasmic inclusions composed of

�-synuclein aggregates known as Lewy bodies (Forno, 1981;

Jankovic, 2008). Since the discovery of markedly decreased dopa-

mine concentrations in the striatum in the 1960s (Hornykiewicz,

2006), the basal ganglia are the major clinical and research targets

in Parkinson’s disease. More recently, the importance of additional

degeneration including other catecholaminergic systems became

clear. In contrast, although it was previously recognized as
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important in the coordination of voluntary movement, gait,

posture and motor functions (Ghez and Fahn, 1985), the influ-

ences of the cerebellum in Parkinson’s disease were often over-

looked. However, increasing anatomical, pathophysiological and

clinical evidence suggested that the cerebellum may contribute

substantially to the clinical symptoms of Parkinson’s disease.

For example, parkinsonian resting tremor is abolished by stimulat-

ing or lesioning the ventral intermediate nucleus of the thalamus,

which is a target of cerebellar efferents (Benabid et al., 1991).

A PET study found that akinesia in Parkinson’s disease is correlated

with abnormally increased regional cerebral blood flow values

in the cerebellum. Deep brain stimulation of the subthalamic nu-

cleus of the basal ganglia improves the motor signs, which are

associated with reduced regional cerebral blood flow in the cere-

bellum (Payoux et al., 2004). Here, we review related anatomical,

clinical and neurophysiological findings, and discuss the possible

roles of the cerebellum in the pathophysiology of Parkinson’s

disease.

Anatomical connections
between the basal ganglia
and cerebellum
The cerebellum and basal ganglia are two major subcortical struc-

tures that influence multiple aspects of motor, cognitive and af-

fective behaviour (Alexander et al., 1986; Strick et al., 2009). Both

structures form multi-synaptic loops with the cerebral cortex; the

cerebellum is known to influence motor and cognitive operations

through the cerebello-thalamo-cortical circuit (Middleton and

Strick, 2001). The cerebellum and basal ganglia have distinct

loops connecting with largely overlapping cortical areas

(Middleton and Strick, 2000). Thus, basal ganglia and cerebellar

loops were long assumed to be entirely separate anatomically and

to perform distinct functional operations. Interactions between

these two regions were traditionally thought to occur at the

level of the cerebral cortex (Jones, 1985; Percheron et al.,

1996). However, recent studies elucidated that there are anatom-

ical connections between the cerebellum and basal ganglia.

Ichinohe et al. (2000) demonstrated the existence of a disynap-

tic connection between the cerebellum and striatum in rats.

Later, using transneuronal transport of rabies virus in monkeys,

Hoshi et al (2005) showed that one of the output nuclei of the

cerebellum, the dentate nucleus, projects to the striatum via a

disynaptic connection, and to the external globus pallidus via a

trisynaptic connection. The disynaptic projection to the striatum

originates from both the motor and non-motor domains of the

dentate. These findings demonstrate that the cerebellum has a

strong disynaptic projection to the striatum by way of the thal-

amus, and may influence the pathways involved in basal ganglia

processing.

In a more recent study, Bostan et al. (2010) used retrograde

transneuronal transport of the rabies virus to determine the origin

of multi-synaptic inputs to the cerebellum. They found that the

subthalamic nucleus has a disynaptic projection to the cerebellar

cortex by way of the pontine nuclei and that this connection

is topographically organized. Most of the subthalamic nucleus

neurons projecting to the Crus II posterior are located in its asso-

ciative territory, which receives input from the frontal eye fields

and regions of the prefrontal cortex. In contrast, most of the

subthalamic nucleus neurons projecting to the hemispheric expan-

sion of lobule VIIB are located in its sensorimotor territory, which

receives input from the primary motor cortex and premotor areas.

These results suggest that the subthalamic nucleus–cerebellar

connection is involved in integrating basal ganglia and cerebellar

functions in both motor and non-motor domains. The anatomical

findings from the above studies together prove that the cerebel-

lum and basal ganglia have substantial two-way communications

between each other and are linked together to form an integrated

functional network (Fig. 1). The discovery of this reciprocal

connection between the basal ganglia and cerebellum provides

an anatomical basis to explain the role of the cerebellum in

Parkinson’s disease.

Figure 1 Structural connections between the basal ganglia and cerebellum. The solid line indicates the projection from the dentate

nucleus to the striatum, while the dotted line indicates the projection from the subthalamic nucleus to the cerebellar cortex.

STN = subthalamic nucleus. Information from Bostan et al. (2010).
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Parkinson’s disease–associated
pathological changes in the
cerebellum
The presence of dopaminergic innervation and dopamine D1–3

receptors in the cerebellum has been proven (Hurley et al.,

2003; Giompres and Delis, 2005). The cerebellum receives a dopa-

minergic projection from the ventral tegmental area/substantia

nigra pars compacta (Panagopoulos et al., 1991; Ikai et al.,

1992; Melchitzky et al., 2000). Pathological changes in the cere-

bellum following dopaminergic degeneration were reported in pa-

tients with Parkinson’s disease and animal models. Rolland et al.

(2007) showed that degeneration of nigrostriatal dopaminergic

neurons causes dysfunction of both the basal ganglia–thalamic

and cerebello-thalamic pathways in 6-hydroxydopamine-lesioned

rats and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)

monkeys. Neuronal degeneration in the cerebellum was shown

in an MPTP mouse model (Takada et al., 1993), characterized

by the loss of Nissl-stained Purkinje cells and aggravated by the

number of repeated MPTP injections. An MPTP insult also induced

the loss of calcium-binding positive Purkinje cells in monkeys

(Vignola et al., 1994). A recent study found that persistent hyper-

activation of Purkinje cells correlated with the level of dopamin-

ergic neuronal loss in the substantia nigra in chronic parkinsonian

monkeys (Heman et al., 2012).

The deposition of �-synuclein-containing Lewy bodies and mito-

chondrial dysfunction are among the major pathological changes

in Parkinson’s disease (Schapira et al., 1990; Braak et al., 2003).

�-Synuclein is also present in regions not directly associated with

Parkinson’s disease, including the cerebellum (Solano et al., 2000).

With immunohistochemical examinations, Piao et al. (2003) found

that �-synuclein-positive doughnut-shaped structures occasionally

presented in the cerebellar molecular layer in some patients with

Parkinson’s disease. Fuchs et al. (2008) reported a correlation be-

tween Parkinson’s disease and decreased �-synuclein messenger

RNA levels in the cerebellum. Westerlund et al. (2008) found

significantly reduced �-synuclein protein levels in the cerebellum

of patients with Parkinson’s disease. Because this decrease

appeared to be independent of the SNCA (�-synuclein gene)

genotype, the authors suggested that the cerebellar �-synuclein

deficiency may be a more general aspect of Parkinson’s disease or

related to Parkinson’s disease medication. Previous studies on

�-synuclein levels in Parkinson’s disease reported contradictory

findings, that is, increased �-synuclein levels in the mid-brain

(Chiba-Falek et al., 2006) or substantia nigra (Gründemann

et al., 2008), decreased �-synuclein levels in the substantia nigra

(Neystat et al., 1999; Kingsbury et al., 2004; Fuchs et al., 2008)

or cerebellum (Fuchs et al., 2008; Westerlund et al., 2008) or

unchanged �-synuclein levels (Tan et al., 2005) in Parkinson’s

disease compared with control subjects. The reason for these in-

consistent findings remains unclear and might relate to different

stages of the disorder, genetic variability or medical treatment.

The decreased �-synuclein levels might indicate that the cerebel-

lum may also be a target of �-synuclein pathology. However,

because Lewy bodies have not been detected in the cerebellum

and the exact physiological function of �-synuclein and its changes

in Parkinson’s disease remain unclear, the meaning of decreased

�-synuclein levels in the cerebellum in Parkinson’s disease needs

further investigation.

In contrast, mitochondrial dysfunction in the cerebellum has not

been proven. Devi et al. (2008) showed that accumulation of

wild-type �-synuclein in the mitochondria of human dopaminergic

neurons led to reduced mitochondrial complex I activity and

increased production of reactive oxygen species. Mitochondria

from the substantia nigra and striatum, but not the cerebellum,

from patients with Parkinson’s disease showed significant accumu-

lation of �-synuclein and decreased complex I activity.

Hurley et al. (2003) examined dopaminergic neurotransmission

in the cerebellum from post-mortem brain tissue obtained

from healthy subjects and patients with Parkinson’s disease

who were receiving treatment with dopaminergic drugs. They

found that dopamine D1–3 receptors, tyrosine hydroxylase and

dopamine transporter messenger RNA were detected in the

uvula and nodulus (lobules 9 and 10, respectively) of the vermis

from control subjects. In Parkinson’s disease, the level of dopa-

mine D1 and D3 receptor messenger RNA was reduced in lobule

9 and the level of tyrosine hydroxylase messenger RNA was

reduced in lobule 10. The reduced dopamine D1 and D3 receptors

and tyrosine hydroxylase messenger RNA in cerebellum suggests

that this brain area may have a role in Parkinson’s disease

symptoms.

Structural changes in the
cerebellum
With the deformation-based morphometry method, Borghammer

et al. (2010) revealed significant contraction in the left cerebellum

in patients with early-stage Parkinson’s disease compared with

control subjects. Using the voxel-based morphometry method,

Benninger et al. (2009) found that in patients with mild-to-

moderate Parkinson’s disease with and without resting tremor,

grey matter volume is decreased in the right quadrangular lobe

and declive of the cerebellum in Parkinson’s disease with tremor

compared with those without. Other studies also found cognitive-

(Camicioli et al., 2009; Pereira et al., 2009; Nishio et al., 2010) or

olfactory-related (Zhang et al., 2011) structural changes in the

cerebellum in patients with Parkinson’s disease. Therefore, there

are specific Parkinson’s disease–related morphological changes in

the cerebellum.

The cerebellum and
parkinsonian akinesia/rigidity
Parkinson’s disease is not a homogenous disease and has two

predominant forms: akinesia and rigidity (akinesia/rigidity subtype)

and prominent resting tremor (tremor subtype). Akinesia can

be defined as a delay or a failure in movement initiation

(Hallett et al., 1991), particularly for self-initiated movements.

Functional neuroimaging studies using PET or blood oxygen
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level–dependent functional MRI frequently demonstrated

increased activation in the cerebellum in patients with

Parkinson’s disease during performance of various upper limb

movements (Rascol et al., 1997; Catalan et al., 1999; Wu and

Hallett, 2005, 2008; Yu et al., 2007; Wu et al., 2010b) (Fig. 2).

For example, during externally or internally timed simple finger

movements (Rascol et al., 1997; Cerasa et al., 2006; Yu et al.,

2007), motor timing (Jahanshahi et al., 2010), complex sequential

movements (Catalan et al., 1999), bimanual two-hand coordi-

nated tasks (Wu et al., 2010b) or two different motor tasks sim-

ultaneously (Wu and Hallett, 2008), patients with Parkinson’s

disease OFF medication showed hyperactivation in the cerebellum.

Increased activation of the cerebellum in Parkinson’s disease

appears not only during motor execution, but also during the

motor learning process. Functional MRI studies of motor learning

commonly found that patients with Parkinson’s disease have dys-

function in frontostriatal motor circuits, especially with decreased

activity in the prefrontal cortex, but with increased activation in

the parietal and premotor cortices and cerebellum (Werheid et al.

2003; Mallol et al., 2007; Bédard and Sanes, 2009). A PET study

on trial-and-error sequence learning found that mildly affected

patients with Parkinson’s disease could perform as well as control

subjects, but activated four times as much neural tissue as the

controls, including several brain cortical regions and bilateral cere-

bellum (Mentis et al., 2003). When patients with Parkinson’s dis-

ease try to automatize movement, they appear to require greater

activity in the cerebellum and premotor and parietal cortices

compared with normal subjects (Wu and Hallett, 2005). The

hyperactivation in the cerebellum not only occurs during motor

tasks, but also at rest. A functional MRI study showed increased

spontaneous neural activity in the cerebellum in the resting state in

patients with akinesia/rigidity Parkinson’s disease (Wu et al.,

2009a).

Because multiple neural areas are involved in performing any

tasks, examining network connectivity certainly provides valuable

information. It was suggested that connectivity analysis may be a

more sensitive method to detect changes in Parkinson’s disease

than activation amplitude (Palmer et al., 2010). In addition to

local activity, the connectivity pattern of the cerebellum in

Parkinson’s disease also shows characteristic changes. A specific

metabolic pattern (Parkinson’s disease–related spatial covariance

pattern) in patients with akinesia/rigidity Parkinson’s disease

was identified by 18F-fluorodeoxyglucose PET. This is characterized

by hypermetabolism in the striatum, thalamus, pons and cerebel-

lum, together with hypometabolism in the supplementary motor

cortex, premotor cortex and parieto-occipital association areas

(Ma et al., 2007; Eidelberg, 2009; Poston and Eidelberg, 2009).

A functional MRI study also investigated the pattern of functional

connectivity in the motor network in the resting state in patients

with Parkinson’s disease ON and OFF levodopa, based on the

graph theory (Wu et al., 2009b). Patients OFF levodopa

had decreased degrees of connectivity in the supplementary

motor cortex, left dorsolateral prefrontal cortex and left puta-

men, and increased connectivity degrees in the left cerebellum,

left premotor cortex and left parietal cortex. Administration of

levodopa somewhat normalized these connectivity patterns in

patients.

Jahanshahi et al (2010) investigated brain activation and effect-

ive connectivity correlated with motor timing in patients with

Parkinson’s disease ON and OFF apomorphine. They found that

patients with Parkinson’s disease had significantly greater activa-

tion in the bilateral cerebellum, right thalamus and left midbrain/

substantia nigra compared with the control subjects during motor

timing exercises. Effective connectivity analysis showed that activ-

ity in the caudate nucleus was associated with increased activity

in the lentiform nucleus and cerebellum OFF medication, and

with increased activity in the prefrontal cortex ON medication.

With the psychophysiological interaction method, Wu et al.

(2011) investigated the effective connectivity of the brain net-

works while performing self-initiated movement in patients with

akinesia/rigidity Parkinson’s disease, and found that the striatum–

cortical and striatum–cerebellar connectivities were weakened,

whereas the connections between cortico-cerebellar motor regions

were strengthened.

The nature of the hyperactivation or strengthened connectivity

in the cerebellum in Parkinson’s disease remains unclear. One

likely explanation, that has often been cited, is that this phenom-

enon presents a compensatory effect. Together with the hyperac-

tivation or strengthened connectivity in the cerebellum are

hypoactivations in some other regions, such as the supplementary

motor cortex and striatum (Sabatini et al., 2000; Haslinger et al.,

2001; Buhmann et al., 2003; Wu and Hallett 2005; Wu et al.,

2010b), and weakened striato-thalamo-cortical and striato-cere-

bellar connectivity (Wu and Hallett, 2008; Wu et al., 2011) in

patients with Parkinson’s disease compared with healthy control

subjects. The supplementary motor cortex is one of the main

receiving regions of the basal ganglia motor circuit (Schell and

Strick, 1984). The decreased activity in the supplementary motor

cortex is postulated as a consequence of insufficient striato-

thalamo-cortical facilitation in Parkinson’s disease (DeLong,

1990). The impaired striato-cerebellar connection is likely a reflec-

tion of abnormal signals from the basal ganglia to influence cere-

bellar function (Bostan et al., 2010). Because the supplementary

motor cortex is a critical component in effectively initiating

Figure 2 Brain areas more activated in patients with Parkinson’s

disease than in normal subjects during automatic execution of

sequential movements. Modified from Wu and Hallett (2005),

with permission from Oxford University Press.
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movements, and particularly for those that are internally gener-

ated (Deiber et al., 1991, 1996; Playford et al., 1992; Jahanshahi

et al., 1995; Jenkins et al., 2000; Tanji and Hoshi, 2001), an im-

paired striato-thalamo-cortical pathway secondary to dopamine

depletion is likely to be an important explanation underlying akin-

esia in Parkinson’s disease.

The dysfunction of the striato-thalamo-cortical circuit should

induce deterioration in motor performance. However, in several

studies that showed cerebellar hyperactivation, patients could exe-

cute the motor tasks at the same level as the healthy controls

(Rascol et al., 1997; Catalan et al., 1999; Wu and Hallett, 2005,

2008; Yu et al., 2007; Wu et al., 2010a, b). The cerebellum is

important in preparing or executing movements (Sasaki et al.,

1979; Ikeda et al., 1994; Ohishi et al., 2003; Purzner et al.,

2007), and is also involved in generating accurate timing of move-

ments (Rao et al., 1997; Kawashima et al., 2000; Dreher and

Grafman, 2002), which is important for self-paced movements.

Thus, it is likely that the increased activity or connectivity in the

cerebello-thalamo-cortical loop is to compensate for hypofunction

in the striato-thalamo-cortical circuit to maintain motor function at

a near normal level.

Some findings support the compensatory role of the cerebellum

in Parkinson’s disease. Yu et al. (2007) observed a significant

negative correlation between the blood oxygen level–dependent

activation in the ipsilateral cerebellum and the contralateral puta-

men while performing a right hand pressing task. In a study on

motor urgency in Parkinson’s disease (Ballanger et al., 2008),

during performance of externally cued movements in an urgent

situation, the cerebellum was more activated in patients with

Parkinson’s disease. Because an urgent situation dramatically im-

proved motor performance, the associated recruitment of the

cerebellum is possibly a compensation for basal ganglia dysfunc-

tion to increase movement velocity in patients with Parkinson’s

disease. Palmer et al. (2009) found that when performing a visu-

ally guided sinusoidal force task at different speeds (0.25, 0.5 and

0.75 Hz), the activity in the basal ganglia linearly increased with

movement speed. In patients with Parkinson’s disease, the activity

of this network at low speeds was similar to that in controls

at higher speeds. To perform the task at higher speeds, patients

additionally recruited the bilateral cerebellum and primary motor

cortex.

In rats unilaterally lesioned in the striatum with 6-hydroxydop-

amine, after 5 weeks, regional cerebral blood flow–related tissue

radioactivity was decreased in the striatum and external globus

pallidus and increased in the subthalamic nucleus, thalamus,

internal globus pallidus, primary motor cortex and cerebellum.

During walking, perfusion decreased in lesioned compared with

sham-lesioned rats across the ipsilateral striato-pallido-thalamo-

cortical motor circuit. Compensatory increases were seen bilat-

erally in the ventromedial thalamus and red nucleus, in the contra-

lateral subthalamic nucleus, anterior substantia nigra, subiculum,

motor cortex and midline cerebellum. Enhanced recruitment of

associative sensory areas was noted cortically and subcortically

(Yang et al., 2007).

The activity or connectivity was shown to be positively corre-

lated with the Unified Parkinson’s Disease Rating Scale in the

cerebello-thalamo-cortical loop, but negatively correlated with

Unified Parkinson’s Disease Rating Scale in the striato-thalamo-

cortical circuit (Wu et al., 2009a, 2010b). Recruitment of the

cerebello-thalamo-cortical circuit increases concomitant with

Parkinson’s disease progression (Sen et al., 2010). These findings

might indicate that as the disorder progresses, dysfunction of the

striato-thalamo-cortical circuit becomes more severe, while at the

same time, the apparent compensatory effect in the cerebello-

thalamo-cortical loop becomes more important.

The neurodegenerative process in Parkinson’s disease begins

several years before the onset of any clinical symptoms (Braak

et al., 2003). The motor symptoms of Parkinson’s disease usually

present after �70% of dopaminergic neurons have degenerated

(Fearnley and Lees, 1991; Lee et al., 2000). Presumably, the

compensatory effect in the cerebellum and other brain regions

accounts for delaying the onset of motor symptoms and preser-

ving relatively normal function.

The enhanced activity or connectivity in the cerebellum was

observed in some other neurological disorders. For example,

in stroke damaging the pyramidal tract, increased activity or

connectivity in the contralesional cerebellum was frequently

reported, and may be related to restoration of motor function

(Chollet et al., 1991; Weiller et al., 1992; Small et al., 2002;

Jaillard et al., 2005; Wang et al., 2010). Thus, the compensatory

efforts of the cerebellum are likely not specifically related to the

dopamine deficiency, but also appear in other neurological

conditions.

However, the idea of a compensatory effect of the cerebellum

in Parkinson’s disease is still speculative and requires further proof.

It is also possible that the increased activity in the cerebellum is

not only a compensation but may also reflect a primary patho-

physiological change of Parkinson’s disease, as a consequence of

the inability to inhibit contextually inappropriate circuits secondary

to abnormal basal ganglia outflow (Mink, 1996; Turner et al.,

2003; Grafton et al., 2006). The cerebellum receives a disynaptic

projection from the subthalamic nucleus (Bostan et al., 2010). The

subthalamic nucleus was described as the ‘driving force of the

basal ganglia’ (Kitai and Kita, 1987). Both normal and abnormal

signals from the subthalamic nucleus should exert influence on

cerebellar processing. In Parkinson’s disease, neural activity in

the subthalamic nucleus is higher than healthy control subjects

and is characterized by abnormal bursting and oscillatory activity

(Schrock et al., 2009). Output neurons from the subthalamic nu-

cleus are excitatory and use glutamate as a neurotransmitter

(Smith et al., 1998). Animal parkinsonism models have shown

increased glutamatergic output of the subthalamic nucleus

(Robledo and Feger, 1990; Parent and Hazrati, 1995). The sub-

thalamic nucleus projects to the cerebellar cortex likely by way of

the pontine nuclei (Bostan et al., 2010). The projection from the

pontine nuclei to the cerebellum was shown also to be largely

glutamatergic (Beitz et al., 1986). Thus, abnormal signals from

the subthalamic nucleus should increase cerebellar activation.

A recent finding that high-frequency stimulation of the subthala-

mic nucleus increases neuronal activation in the deep cerebellar

nuclei in rats supports this assumption (Moers-Hornikx et al.,

2011). The altered cerebello-thalamo-cortical input to the cerebral

cortex might then contribute to the clinical symptoms in

Parkinson’s disease.
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The cerebellum and
parkinsonian tremor
The classic type of tremor in Parkinson’s disease is resting tremor.

Parkinsonian resting tremor is mainly caused by central mechan-

isms because peripheral deafferentation does not suppress it

(Pollock and Davis, 1930; Deuschl et al., 2000; McAuley and

Marsden, 2000). The pathophysiology of Parkinson’s disease

tremor certainly differs from that underlying akinesia/rigidity

(Paulus and Jellinger, 1991; Zaidel et al., 2009). Akinesia/rigidity

is related to dopamine depletion and is typically responsive to

dopamine treatment. The striatal dopamine depletion and dys-

function of basal ganglia seem to be more important in akin-

esia/rigidity than in tremor. Although still debatable (Ni et al.,

2010), increasing evidence suggests that the cerebello-thalamo-

cortical circuit is an important underlying pathophysiology of the

parkinsonian resting tremor. For example, electrophysiological

recordings in the thalamus of MPTP-treated monkeys showed

that during tremor, the mean firing rate of neurons in the pallidal

and cerebellar territories increases (Guehl et al., 2003).

For amelioration of parkinsonian tremor, deep brain stimulation of

the thalamic ventral intermediate nucleus, the cerebellar territory of

the thalamus, was considered to be the optimal target (Lenz et al.,

1995; Papavassiliou et al., 2008). An early PET study found that

suppressing tremor by stimulating the ventral intermediate nucleus

was specifically associated with decreased regional cerebral blood

flow in the cerebellum in patients with Parkinson’s disease (Deiber

et al., 1993). This finding is supported by later studies (Fukuda et al.,

2004). In contrast, Lozza et al. (2002) found a negative correlation

between tremor scores and cerebral metabolic rate of glucose in the

bilateral putamen and cerebellar vermis. The reasons contributing to

these inconsistent findings are unclear, but might relate to different

experimental situations. In Deiber’s study (1993), the regional cere-

bral blood flow was measured when the patients were OFF

anti-parkinsonian medications and during deep brain stimulation;

while in Lozza’s study (2002), the experiment was performed

when the patients were ON anti-parkinsonian medications and

without deep brain stimulation.

Another effective intervention to relieve parkinsonian tremor is

deep brain stimulation of the subthalamic nucleus (Krack et al.,

1997). Imaging studies during deep brain stimulation of the subtha-

lamic nucleus reported regional cerebral blood flow, cerebral meta-

bolic rate of glucose or metabolic changes in the cerebellum

(Asanuma et al., 2006; Nagaoka et al., 2007; Cilia et al., 2008;

Geday et al., 2009). However, the clinical improvements in these

studies following deep brain stimulation of the subthalamic nucleus

were not restricted to tremor, but also included other motor signs,

such as rigidity or bradykinesia. Thus, whether these neural changes

in the cerebellum were tremor-related need further clarification.

With magnetoencephalography, Timmermann et al. (2003)

showed tremor-related oscillatory network, with abnormal cou-

pling in a cerebello-diencephalic-cortical loop and cortical motor

and sensory areas contralateral to the tremor hand, which is

supported by subsequent magnetoencephalography studies

(Timmermann et al., 2004; Pollok et al., 2009). A specific meta-

bolic brain network associated with Parkinson’s disease resting

tremor, Parkinson’s disease tremor-related pattern has been iden-

tified with fluorodeoxyglucose PET (Mure et al., 2011). The

Parkinson’s disease tremor-related pattern is characterized by

covarying metabolic increases in the cerebellum, motor cortex

and putamen. This network correlates specifically with clinical

tremor ratings, but not with akinesia/rigidity. Its activity is elevated

in tremor-dominant versus akinesia-dominant patients. The

Parkinson’s disease tremor-related pattern differs from the

Parkinson’s disease–related spatial covariance pattern in akinesia/

rigidity patients that was described previously (Eckert et al., 2007;

Ma et al., 2007). Relief of tremor symptoms by deep brain stimu-

lation of the ventral intermediate nucleus selectively reduces the

activity of Parkinson’s disease tremor-related pattern. By contrast,

subthalamic nucleus deep brain stimulation reduces abnormal ac-

tivity of both tremor- and akinesia-related brain networks. These

findings suggest that Parkinson’s disease tremor is mediated by a

distinct metabolic network involving primarily cerebello-thalamo-

cortical pathways.

A recent study combined functional MRI and electromyography

methods to investigate tremor-related activity and connectivity

in the basal ganglia and the cerebello-thalamo-cortical circuit

(Helmich et al., 2011). They found that the basal ganglia are

transiently activated at the onset of tremor episodes, whereas

tremor amplitude-related activity correlates with the cerebello-

thalamo-cortical circuit (Fig. 3). The patients with tremor-

dominant Parkinson’s disease had increased functional connectivity

between the basal ganglia and the cerebello-thalamo-cortical cir-

cuit. These results indicate that resting tremor may result from a

pathological interaction between the basal ganglia and the cere-

bello-thalamo-cortical circuit. Tremor generation in the cerebello-

thalamo-cortical circuit is likely triggered by activity in the basal

ganglia. Lewis et al. (2011) supposed that the primary dysfunction

in the cerebello-thalamo-cortical circuit, particularly the vermis/

paravermis region, may be responsible for the occurrence of rest-

ing tremor.

It has long been thought that resting tremor may be generated

by neural mechanisms compensating for akinesia/rigidity (Hallett

and Khoshbin, 1980; Rivlin-Etzion et al., 2006; Zaidel et al., 2009;

Helmich et al., 2011). Whether compensation or pathological

changes in the cerebello-thalamo-cortical circuit contribute to

parkinsonian resting tremor still needs further investigation.

The cerebellum and
parkinsonian gait
Gait disturbance is one of the cardinal symptoms in Parkinson’s

disease, which is characterized by small shuffling steps and general

movement slowness (Aita, 1982; Morris et al., 1998). Compared

with motor deficits in the upper limbs, neural correlates underlying

gait disturbance in Parkinson’s disease were much less investi-

gated. In a single-photon emission computed tomography study

during gait on a treadmill, Hanakawa et al. (1999) found that in

controls, a gait-induced increase in brain activity was observed in

the medial and lateral premotor areas, primary sensorimotor areas,

anterior cingulate cortex, superior parietal cortex, visual cortex,
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dorsal brainstem, basal ganglia and cerebellum. The patients with

Parkinson’s disease had hypoactivation in the left medial frontal

area, right precuneus and left anterior lobe of the cerebellar hemi-

sphere, but hyperactivity in the left temporal cortex, right insula,

left cingulate cortex and cerebellar vermis (Fig. 4). The authors

suggested that the hypoactivation in the left cerebellar hemisphere

may be related to a loss of lateral gravity shift in parkinsonian gait,

which in turn might result in small shuffling steps. The hyperacti-

vation in the vermis might possibly be a compensatory effect.

These assumptions, of course, still need further verification.

Deep brain stimulation of the pedunculopontine nucleus may be

an effective therapy for some patients with Parkinson’s disease

with gait disturbances (Stefani et al., 2007). Schweder et al.

(2010) characterized the anatomical connectivity of the peduncu-

lopontine nucleus in patients with gait freezing Parkinson’s disease

using diffusion tensor imaging techniques. They found that the

pedunculopontine nucleus showed connectivity with the cerebel-

lum in control subjects and patients with Parkinson’s disease with-

out gait freezing. In contrast, patients with Parkinson’s disease

with gait freezing showed absence of pedunculopontine nu-

cleus–cerebellar connectivity, and increased visibility of the decus-

sation of cortico-pontine fibres in the anterior pons. Deep brain

stimulation in the pedunculopontine nucleus (Ballanger et al.,

2009) induced significant regional cerebral blood flow increments

in the thalamus, cerebellum, midbrain and different cortical areas

involving the medial sensorimotor cortex extending into the caudal

supplementary motor cortex. Pedunculopontine nucleus deep

brain stimulation in advanced Parkinson’s disease resulted in

blood flow changes in subcortical and cortical areas involved in

balance and motor control, including the mesencephalic locomotor

region (e.g. pedunculopontine nucleus) and closely interconnected

structures within the cerebello-(rubro)-thalamo-cortical circuit.

A recent study used PET with 11C-methylpiperidinyl propionate

to measure acetylcholinesterase activity (Gilman et al., 2010), and

demonstrated a correlation between the severity of the balance

and gait in patients with Parkinson’s disease and decreased acetyl-

cholinesterase activity in the midbrain and cerebellum, but not for

any other structure. These findings suggest the involvement of the

Figure 4 Relative underactivity (A) and overactivity (B) induced by treadmill walking in patients with Parkinson’s disease. In A, relative

underactivity in Parkinson’s disease includes the left cerebellar hemisphere (1), precuneus (2) and the left presupplementary motor cortex

(3). In B, relative overactivity in Parkinson’s disease was found in the left middle temporal gyrus (1), right insula (2), left cingulate cortex

(3) and cerebellar vermis (4 and 5). Modified from Hanakawa et al. (1999), with permission from Oxford University Press.

Figure 3 Tremor-related cerebral activity in tremor-dominant Parkinson’s disease. Location of cerebral regions where activity cofluctu-

ated with tremor amplitude. Activity was localized to the motor cortex, ventral intermediate nucleus of the thalamus and cerebellum

(side contralateral to the tremor). BA = Brodmann area; lob = lobule; VIM = ventral intermediate nucleus. Reprinted from Helmich et al.

(2011), with permission from John Wiley and Sons.
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cortico-pontine-cerebello-thalamo-cortical pathway in the patho-

physiology of gait disturbances.

The cerebellum and dyskinesia
Chronic dopamine replacement therapy in patients with Parkinson’s

disease is commonly complicated by involuntary movements known

as levodopa-induced dyskinesia (Fahn, 2000; Rascol et al., 2000).

The neural mechanisms of levodopa-induced dyskinesia are still par-

tially obscure, but levodopa-induced dyskinesia has been considered

to be the consequence of an abnormal activity pattern in the striato-

thalamo-cortical loops, which in turn induces the excessive disinhib-

ition of thalamocortical neurons and overactivation of cortical motor

areas (Lozano et al., 2000; Bezard et al., 2001; Wagle-Shukla et al.,

2007). Recent studies suggested that the cerebello-thalamo-cortical

circuit also contributes to the development of levodopa-induced

dyskinesia. Deep brain stimulation of the subthalamic nucleus or

globus pallidus, the surgical procedures that alleviate

levodopa-induced dyskinesia (Krack et al., 2003; Anderson et al.,

2005), was reported to modulate neural activity or metabolism in

the cerebellum (Hilker et al., 2004; Payoux et al., 2004; Asanuma

et al., 2006; Grafton et al., 2006; Geday et al., 2009; Payoux et al.,

2009). In a PET study (Nimura et al., 2004) on patients with

advanced Parkinson’s disease undergoing stereotactic pallidal sur-

gery (pallidotomy or deep brain stimulation), the level of binding

potential of cerebellar sigma receptors did not correlate with the

Hoehn and Yahr stages, or Unified Parkinson’s Disease Rating

Scale, but a positive correlation was seen between the binding po-

tential and the preoperative levodopa-induced dyskinesia severity

score, giving evidence that the cerebellum may be involved in the

genesis of dyskinesia.

Koch et al. (2009) tested the effect of repetitive transcranial mag-

netic stimulation over the lateral cerebellum on levodopa-induced

dyskinesia. The authors found that a single session of cerebellar

continuous theta burst stimulation could transiently reduce

levodopa-induced dyskinesia. Cerebellar continuous theta burst

stimulation reduced short intracortical inhibition and increased

long intracortical inhibition in the contralateral primary motor cor-

texs, inducing a cortical reorganization that is associated with

reduced levodopa-induced dyskinesia. A 2-week course of bilateral

cerebellar continuous theta burst stimulation induced persistent

clinical beneficial effects, reducing peak-dose levodopa-induced

dyskinesia for up to 4 weeks after the stimulation. These clinical

improvements were paralleled by reducing 18F-fluorodeoxyglucose

metabolism in the cerebellum (Brusa et al., 2012). There was

a global decrease in the metabolism of the bilateral cerebellar

hemispheres and a significant corresponding decrease in 18F-

fluorodeoxyglucose uptake in the bilateral dentate nuclei. These

findings demonstrate that the antidyskinetic effect of cerebellar con-

tinuous theta burst stimulation is accompanied by modulation of the

cerebellar activity, supporting the hypothesis that the cerebell-

thalamo-cortical circuit is involved in generating levodopa-induced

dyskinesia. A reduced level of dopamine D1 and D3 receptor mes-

senger RNA in the cerebellum in patients with Parkinson’s disease

receiving dopaminergic treatment was reported (Hurley et al.,

2003). Whether this change is secondary to long-term exposure

to levodopa and a partial reason contributing to dyskinesia still

needs further investigation.

The cerebellum and non-motor
symptoms in Parkinson’s
disease
Many non-motor symptoms, including sensory, autonomic, cogni-

tive and behavioural problems, coexist with the motor signs in

Parkinson’s disease (Hillen and Sage, 1996). Non-motor symptoms

exist in up to 60% of patients (Shulman et al., 2001), and can be

primary complaints in Parkinson’s disease (Adler, 2005). Cognitive

impairment is common in patients with Parkinson’s disease

(Aarsland et al., 2001). Hypometabolism in the prefrontal, parietal,

temporal and mesolimbic regions was correlated with cognitive

impairment in Parkinson’s disease (Hu et al., 2000; Rinne et al.,

2000; Ito et al., 2002; Mentis et al., 2002; Nagano-Saito

et al., 2004). With fluorodeoxyglucose PET and spatial covariance

analysis, Huang et al. (2007a) identified a significant covariance

pattern that correlated with cognitive performance, particularly

involving executive functioning in Parkinson’s disease. This

Parkinson’s disease–related cognitive pattern is characterized by

metabolic reductions in frontal and parietal association areas,

and increases in the cerebellar vermis and dentate nuclei (Huang

et al., 2007a). Parkinson’s disease–related cognitive pattern ex-

pression increased with worsening of cognitive impairment

(Huang et al., 2008; Eidelberg, 2009), but is not correlated with

the decline of striatal dopaminergic function (Huang et al.,

2007b). Therefore, the hypermetabolism in the cerebellum might

also be a compensatory effort to maintain cognitive function in

Parkinson’s disease.

Using the voxel-based morphometry method, Nishio et al. (2010)

found reduced regional grey matter volume in the cerebellum, as

well as in the cortico-limbic network in non-demented Parkinson’s

disease with impaired cognition. Verbal fluency tests are often used

to assess cognitive dysfunction in Parkinson’s disease. Pereira et al.

(2009) showed that in non-demented patients with Parkinson’s dis-

ease, grey matter density in the temporal, frontal and cerebellar

areas correlated with semantic fluency scores. Camicioli et al.

(2009) found that executive function is associated with grey

matter atrophy in the cerebellum, middle temporal gyri and left

precuneus in patients with Parkinson’s disease.

Cao et al. (2011) investigated neural correlates of sensory

damage in early Parkinson’s disease. During a passive tactile

stimulation task, patients with Parkinson’s disease had hypoactiva-

tion in the bilateral sensorimotor cortex, and hyperactivation in the

bilateral prefrontal cortex, bilateral cerebellum and contralateral

striatum compared with control subjects. In addition, there was

significantly decreased connectivity in the supplementary motor

cortex and increased striato-prefrontal and cerebello-prefrontal

connections in Parkinson’s disease.

Impaired olfaction is a characteristic and early feature of

Parkinson’s disease. Recent studies indicate that olfactory loss is

one of the most prevalent motor and non-motor symptoms in

patients with early stage Parkinson’s disease (Haehner et al.,
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2009; Politis et al., 2010). However, the underlying mechanism of

olfactory dysfunction remains unknown. A recent diffusion tensor

imaging study (Zhang et al., 2011) reported decreased fractional

or increased mean diffusivity in the bilateral cerebellum and orbi-

tofrontal cortex in patients with Parkinson’s disease compared

with control subjects (Fig. 5). There was a positive correlation

between fractional anisotropy values in the white matter of the

left cerebellum and the thresholds of olfactory identification, and a

negative correlation between mean diffusivity values in the white

matter of right cerebellum and the thresholds of olfactory identi-

fication. These findings suggest that there is a correlation between

cerebellar white matter damage and olfactory dysfunction in pa-

tients with Parkinson’s disease. Although the cerebellum is trad-

itionally not considered to be part of the olfaction processing

system, activation of the cerebellum was observed during per-

formance of olfactory tasks in healthy participants (Qureshy

et al., 2000). Aged subjects had decreased cerebellar activation

correlating with decreased olfactory abilities (Ferdon and

Murphy, 2003). Moreover, olfactory dysfunction was detected in

patients with cerebellar lesions (Mainland et al., 2005), or patients

with ataxias primarily due to cerebellar pathology (Connelly et al.,

2003; Moscovich et al., 2012). Therefore, whether functional or

structural changes in the cerebellum contribute to olfactory impair-

ment in Parkinson’s disease is worth further investigation.

Goerendt et al. (2004) measured brain activation patterns

related to processing monetary rewards in unmedicated patients

with Parkinson’s disease. Both Parkinson’s disease and healthy

groups showed increased search efficiency with increasing

reward, but with different patterns of neuronal activation. The

increasing reward magnitude correlated with the activity in the

prefrontal and rhinal cortices and thalamus in healthy controls,

but correlated with activity in the cerebellar vermis in patients

with Parkinson’s disease. Because motivational processes are

mediated by dopaminergic neural systems and are relatively

spared in Parkinson’s disease, the cerebellum might be particularly

involved in motivational modulation and its compensatory

influence is possibly a reason why the motivational processes are

relatively intact in Parkinson’s disease.

The cerebellum as a target for
Parkinson’s disease treatment
While cerebellar dysfunction might contribute to some motor and

non-motor signs in Parkinson’s disease, a possible approach for

treating parkinsonian symptoms is to attempt to normalize cere-

bellar function. Surgical treatment, such as deep brain stimulation

of the subthalamic nucleus (Hilker et al., 2004; Payoux et al.,

Figure 5 Increased mean diffusivity in bilateral orbitofrontal cortices (A) and bilateral inferior temporal gyri (B), decreased mean diffusivity

in bilateral parietal lobes and left precentral gyrus (C) and decreased fractional anisotropy in bilateral cerebellum and right rectus gyrus

(D) in patients with Parkinson’s disease versus normal controls. The red colour indicates an increase of the value, and blue-green colour

indicates a decrease. Modified from Zhang et al. (2011), with permission from Elsevier.

704 | Brain 2013: 136; 696–709 T. Wu and M. Hallett



2004; Asanuma et al., 2006; Grafton et al., 2006; Geday et al.,

2009) or globus pallidus (Payoux et al., 2009) improves the motor

signs and normalizes cerebellar activation. Levodopa adminis-

tration can also normalize the activity and connectivity in the

cerebello-thalamo-cortical circuit (Wu et al., 2009a, b).

However, whether it is reduced compensation or alleviation of

pathological impairment as a consequence of effective treatment

remains unclear. Suppressing cerebellar activity should theoretically

answer the question: improvement would mean that the cerebel-

lum is contributing to the manifestations; worsening would mean

that the cerebellar activity is compensatory. We suppose that if

the main efforts of the cerebellum in Parkinson’s disease are com-

pensatory, suppression of cerebellar activity should be accompa-

nied by further impairments of Parkinson’s disease symptoms.

Lesion or deep brain stimulation of the cerebellar territory of

the thalamus can successfully ameliorate parkinsonian resting

tremor (Benabid et al., 1991; Lenz et al., 1995). Moreover, the

observation that a 2-week course of bilateral cerebellar repetitive

transcranial magnetic stimulation could induce a marked and

persistent reduction of levodopa-induced dyskinesia that lasted

for up to 4 weeks after the end of the stimulation period (Koch

et al., 2009) demonstrated that the cerebellum is a potential

target to relieve some Parkinson’s disease symptoms. While

these two arguments favour cerebellar contribution to the parkin-

sonism, both tremor and levodopa-induced dyskinesia are not

primary symptoms. Observations would be needed particularly

on aspects of bradykinesia.

Summary
We propose that the major role of the cerebellum in Parkinson’s

disease includes two aspects, pathological and compensatory

effects. Pathological changes in the cerebellum might be induced

by dopaminergic degeneration, abnormal drives from the

subthalamic nucleus and dopaminergic treatment, and may

account for several clinical symptoms in Parkinson’s disease.

Because dopaminergic degeneration develops gradually (Hilker

et al., 2005), presumably, pathological impairments should be

more severe as disease progresses. The compensatory effect may

help to maintain relatively normal motor and non-motor function.

In the mild-to-moderate stages of Parkinson’s disease, recruitment

of the cerebello-thalamo-cortical circuit positively correlates with

the severity of symptoms or progression (Wu et al., 2009a,

2010b; Sen et al., 2010). It is likely that the compensatory

effect strengthens at a relatively early stage, but may diminish

or eventually fail as pathological damages become more severe

at the advanced stage (Jankovic, 2005). A hypothetical model of

functional changes in the cerebellum during progression of

Parkinson’s disease is shown in Fig. 6.

Our knowledge on the role of the cerebellum in Parkinson’s

disease remains limited. Further investigations are needed to clarify

Parkinson’s disease–related pathological alterations in the cerebel-

lum and how cerebellar pathological and compensatory effects

evolve as the disorder progresses. A better understanding of the

Parkinson’s disease–related functional and morphological changes

of the cerebellum will significantly contribute to the pathophysi-

ology of Parkinson’s disease and may help develop new strategies

and targets for treatment.
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