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AbstrAct
Metabolic‑associated fatty liver disease (MAFLD) is the most common chronic 
liver disease. Gut dysbiosis is considered a significant contributing factor in disease 
development. Increased intestinal permeability can be induced by gut dysbiosis, followed 
by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result 
in chronic inflammation. We reviewed how microbial metabolites push host physiology 
toward MAFLD, including short‑chain fatty acids (SCFAs), bile acids, and tryptophan 
metabolites. The effects of SCFAs are generally reported as anti‑inflammatory and can 
improve intestinal barrier function and restore gut microbiota. Gut microbes can influence 
intestinal barrier function through SCFAs produced by fermentative bacteria, especially 
butyrate and propionate producers. This is achieved through the activation of free fatty acid 
sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile 
acid composition by bile salt hydrolase‑producing bacteria and bacterial hydroxysteroid 
dehydrogenase‑producing bacteria. These bile acids can affect host physiology by activating 
farnesoid X receptor Takeda G protein‑coupled receptor 5. Gut microbes can also induce 
MAFLD‑associated symptoms by producing tryptophan metabolites kynurenine, serotonin, 
and indole‑3‑propionate. A summary of bacterial genera involved in SCFAs production, 
bile acid transformation, and tryptophan metabolism is provided. Many bacteria have 
demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic 
candidates for MAFLD.

Keywords: Bile acids, Gut microbiota, Metabolic‑associated fatty liver disease, 
Short‑chain fatty acid, Tryptophan

In this review, we aimed to provide a brief introduction to 
the roles of gut bacteria in MAFLD development [Figure 1]. 
Although many excellent reviews on MAFLD pathogenesis 
are available, we will emphasize how the gut microbes exert 
their influence and which bacterial taxa are involved in these 
processes.

Gut dysbiosis And metAbolic‑AssociAted 
fAtty liver diseAse
Metabolic‑associated fatty liver disease microbiota

Gut dysbiosis has been frequently reported in 
MAFLD patients and animal models and is considered a 
significant contributing factor to this disease. Due to high 
inter‑individual variation in gut microbiota composition, 
there is no clear‑cut threshold to define dysbiosis. Using a 

introduction

Metabolic‑associated fatty liver disease (MAFLD), or its 
synonym nonalcoholic fatty liver disease (NAFLD), 

is the most common chronic liver disease worldwide. 
MAFLD includes a continuum of liver pathologies 
ranging from nonalcoholic fatty liver to nonalcoholic 
steatohepatitis (NASH). A few MAFLD patients will progress 
to cirrhosis and hepatocellular carcinoma [1].

Gut microbes are essential in initiating and progressing 
fatty liver diseases. It is generally accepted that MAFLD 
pathogenesis involves gut microbiota dysbiosis, impaired 
intestinal barrier, entry of microbial cells and components into 
circulation, fat accumulation in the liver, aberrant bile acid 
production, oxidative stress in hepatocytes, and inflammation 
and fibrosis in the liver. Microbial components, especially 
lipopolysaccharides (LPS), are directly involved in disease 
development. Microbial metabolites, such as short‑chain fatty 
acids (SCFAs), secondary bile acids, and other molecules, can 
also affect host physiology.
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baseline microbial signature‑based machine‑learning model 
(random forest), Leung et al. have achieved high accuracies 
(auROCs of 0.72–0.80) in predicting MAFLD status and liver 
fat accumulation at the 4‑year follow‑up [2]. This suggests that 
the alteration of microbiota occurred before the appearance of 
clinical MAFLD symptoms.

Gut microbiota in MAFLD have been reviewed by 
many researchers [3,4]. An increase in Bacteroidota 
(previously known as Bacteroidetes) and Pseudomonadota 
(Proteobacteria), and a decrease in Bacillota [Firmicutes] 
are frequently reported in MAFLD patients and animals. 
However, variable or even contradictory results at the 
genus level were found among studies. This inconsistency 
is probably due to technical differences, for example, 
sampling methodology, sample size, and DNA processing 
procedures [5,6]. Host‑related differences such as genetic 
background, diet, medication use, and comorbidities are the 
potential sources of variation [7‑9].

Aron‑Wisnewsky et al. provide an excellent summary 
of microbial signatures seen in the gut of human NAFLD 
patients, compared to two metabolic diseases, type II 
diabetes mellitus, and obesity [10]. They provided figures 
showing bacterial taxa (genera or species) with differential 
abundance between NAFLD/NASH patients and healthy 
controls. Here, we adopted their results and rearranged these 
taxa phylogenetically to show whether the trend is conserved 
phylogenetically [Table 1]. The table shows how each genus 
reacts to NAFLD/NASH conditions.

Table 1 shows that not all genera within the same 
phylum (or other higher‑rank taxa) share the same trend. 
Taking phylum Bacteroidota as an example, there is an 
increase in Porphyromonas, a decrease in Coprobacter and 
Alistipes, and variable results in Parabacteroides, Bacteroides, 
and Prevotella. Unlike what has been reported in the 
literature, there is no consistent trend among genera within the 
same phylum or class. The Firmicutes‑to‑Bacteroidetes ratio 
is another indicator frequently used in the literature [15,16]. 
These phylum‑level change does not reflect the more 

physiology‑related genus‑level dynamic and should be avoided 
or replaced with a description of the turnover of genera.

Currently, only one clinical study on the gut microbiota of 
Taiwanese MAFLD patients is available in the literature [17]. 
In Taiwanese MAFLD patients, Acidaminococcus, Alistipes, 
Escherichia‑Shigella, Eubacterium, Faecalibacterium, and 
Subdoligranulum have trends consistent with that reported 
in Aron‑Wisnewsky et al. [10], but in Akkermansia and 
Ruminococcus opposite trend was seen. In this Taiwanese 
study, patients with broad age ranges (18–70 years old) 
were recruited. Genetic background is apparently a likely 
contributing factor for this difference. Due to the small number 
of samples included in this study (25 each for NAFL, NASH, 
and healthy control), and the fact that no other research on 
the Taiwanese population can be used for comparison, it 
is inconclusive whether Taiwanese MAFLD patients have 
different gut microbiota.

Intestinal barrier function and lipopolysaccharides
Dysbiosis leads to increased intestinal permeability and 

may move further into endotoxemia. Deterioration of intestinal 
barrier function is considered a significant contributor 
to the initiation and progression of MAFLD [18] and is 
commonly seen in MAFLD patients [19]. De Munck et al. 
performed a meta‑analysis on 14 human clinical studies. 
They concluded that MAFLD patients had increased small 
intestinal permeability compared to healthy controls, but no 
clear difference was seen between simple steatosis and NASH 
patients [20].

Intestinal barrier function has four components: physical 
barrier formed by the intestinal epithelium, mucus layer 
secreted by goblet cells, chemical barriers including gastric 
acid and digestive enzymes, and immunological barrier 
composed of antimicrobials and immune cells [21]. High‑fat 
diet (HFD) is known to alter gut microbiota. Safari et al. have 
shown that recovering from HFD‑induced dysbiosis to normal 
gut microbiota required < 7 days [22]. Therefore the dysbiosis 
is expected to occur within days after receiving HFD. 
Dysbiosis leads to altered host‑microbiota interaction and 

Figure 1: Microbial mechanisms on MAFLD. MAFLD: Metabolic‑associated fatty liver disease, FFAR: Free fatty acid‑sensing receptor, FXR: Farnesoid X receptor, 
TGR5: Takeda G protein‑coupled receptor 5, AHR: Aryl hydrocarbon receptor, SR: Serotonin receptor
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thus may disrupt intestinal barriers through the mechanisms 
described below.

Among these mechanisms, intestinal epithelial integrity 
is probably the most studied. This epithelial integrity is 
maintained by tight junctions between two adjacent epithelial 
cells. Reduction in tight junction proteins zonula occludens‑1 
and claudin are always seen in MAFLD animals [19]. Local 
inflammation can disrupt the intestinal barrier. Mice with 
dextran sulfate sodium‑induced intestinal inflammation have 
increased plasmalemma vesicle‑associated protein‑1 (an 
endothelial permeability marker) and decreased zonula 
occludens‑1 and claudin expression [23].

A disrupted intestinal barrier enables gut microbes and 
microbial metabolites to pass through, and they may reach the liver 
and facilitate MAFLD development. Endotoxemia is associated 
with systemic inflammation and metabolic syndrome [24]. 
NASH patients have elevated levels of LPS in their blood [25]. 
Entry of LPS into circulation is typical in MAFLD, and high 
blood LPS level has even been suggested to be used as a 
MAFLD biomarker [26]. In the liver, LPS can activate Kupffer 
cells by binding to TLR4 and activating NF‑κB, therefore 
inducing inflammation and developing liver diseases [27].

HFD, HFD‑responding gut microbes (HFD microbes), and 
impaired intestinal barriers are all considered essential factors 

Table 1: Bacterial genera that have increased or decreased abundance in metabolic‑associated fatty liver disease patients as 
compared to healthy controls, with their abilities to produce short chain fatty acids
Genus Change in 

MAFLD*
SCFA producer† Taxonomy (class‑order‑family)

Butyrate Propionate Acetate
Phylum Bacteroidota

Bacteroides +/− − + + Bacteroidia‑Bacteroidales‑Bacteroidaceae
Coprobacter − − + − Bacteroidia‑Bacteroidales‑Barnesiellaceae
Porphyromonas + − + − Bacteroidia‑Bacteroidales‑Porphyromonadaceae
Prevotella +/− − + + Bacteroidia‑Bacteroidales‑Prevotellaceae
Alistipes − − + + Bacteroidia‑Bacteroidales‑Rikenellaceae
Parabacteroides +/− − + + Bacteroidia‑Bacteroidales‑Tannerellaceae

Phylum Pseudomonadota
Bradyrhizobium + − − − Alphaproteobacteria‑Hyphomicrobiales‑Nitrobacteraceae
Sutterella +/− + − − Betaproteobacteria‑Burkholderiales‑Sutterellaceae
Escherichia + − − + Gammaproteobacteria‑Enterobacterales‑Enterobacteriaceae
Shigella + − − + Gammaproteobacteria‑Enterobacterales‑Enterobacteriaceae
Haemophilus − − − + Gammaproteobacteria‑Pasteurellales‑Pasteurellaceae

Phylum Verrucomicrobiota
Akkermansia + − + − Verrucomicrobiae‑Verrucomicrobiales‑Akkermansiaceae

Phylum Actinomycetota
Bifidobacterium +/− − − + Actinomycetes‑Bifidobacteriales‑Bifidobacteriaceae
Propionibacterium +/− − + − Actinomycetes‑Propionibacteriales‑Propionibacteriaceae
Eggerthella + − − − Coriobacteriia‑Eggerthellales‑Eggerthellaceae

Phylum Bacillota
Lactobacillus − − − − Bacilli‑Lactobacillales‑Lactobacillaceae
Eubacterium − + + + Clostridia‑Eubacteriales‑Eubacteriaceae
Anaerosporobacter − − + + Clostridia‑Eubacteriales‑Lachnospiraceae
Blautia +/− − + + Clostridia‑Eubacteriales‑Lachnospiraceae
Coprococcus − + + + Clostridia‑Eubacteriales‑Lachnospiraceae
Dorea + − + − Clostridia‑Eubacteriales‑Lachnospiraceae
Moryella − − + + Clostridia‑Eubacteriales‑Lachnospiraceae
Pseudobutyrivibrio − − + + Clostridia‑Eubacteriales‑Lachnospiraceae
Roseburia +/− + + − Clostridia‑Eubacteriales‑Lachnospiraceae
Anaerofilum +/− − − − Clostridia‑Eubacteriales‑Oscillospiraceae
Faecalibacterium − + − − Clostridia‑Eubacteriales‑Oscillospiraceae
Flavonifractor + − − − Clostridia‑Eubacteriales‑Oscillospiraceae
Oscillibacter − − − − Clostridia‑Eubacteriales‑Oscillospiraceae
Oscillospira − − − − Clostridia‑Eubacteriales‑Oscillospiraceae
Ruminococcus + − + + Clostridia‑Eubacteriales‑Oscillospiraceae
Subdoligranulum − + − − Clostridia‑Eubacteriales‑Oscillospiraceae
Acidaminococcus + − − − Negativicutes‑Acidaminococcales‑Acidaminococcaceae
Allisonella + − − − Negativicutes‑Veillonellales‑Veillonellaceae
Anaerococcus + + − − Tissierellia‑Tissierellales‑Peptoniphilaceae
Peptoniphilus + − − + Tissierellia‑Tissierellales‑Peptoniphilaceae

*Result from [10], showing changes in MAFLD compared to healthy control, †Data are compiled from multiple sources, including [11‑14]. +: Increase, 
−: Decrease, +/−: Variable results among studies, MAFLD: Metabolic‑associated fatty liver disease, SCFA: Short‑chain fatty acids
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in MAFLD. HFD has been shown to induce dysfunction in 
the intestinal barrier [28] and is commonly used to induce 
MAFLD in the murine model. HFD‑fed germ‑free mice gained 
less weight than HFD‑fed conventional mice [29], indicating 
that HFD itself is insufficient to induce MAFLD. HFD‑fed 
germ‑free mice receiving gut microbes from HFD‑responding 
mice developed MAFLD, showing that combining HFD and 
HFD microbes leads to MAFLD development [30]. Regular 
chow‑fed mice receiving regular chow and gut microbes from 
hepatic steatosis developed hepatic steatosis, indicating HFD 
microbes is sufficient in developing hepatic steatosis [31].

Fei et al. isolated LPS‑producing bacterial strains (LPS 
producer) from obese patients and used them to study 
MAFLD [32]. In their study, HFD‑fed mice receiving LPS 
producer developed the disease, but mice receiving other gut 
microbes did not, indicating that LPS producer is required for 
disease development. HFD‑fed mice receiving wildtype LPS 
producers developed the disease, but mice receiving LPS 
deficient mutants did not, indicating that LPS is required for 
this disease. HFD‑fed wildtype mice receiving LPS producer 
developed the disease, but HFD‑fed TLR4 deficient mice 
receiving the same inoculation did not, indicating TLR4 is 
required for disease development. These data suggest that LPS 
from HFD microbes is more likely the primary determinant 
in MAFLD development, and HFD and impaired intestinal 
barrier play a more supportive role. The importance of 
LPS in MAFLD also explains bacterial changes commonly 
reported in the literature, with an increase in Bacteroidota 
and Pseudomonadota, which have LPS in their cells, and a 
decrease in Bacillota, which has no LPS.

microbiAl metAbolites on 
metAbolic‑AssociAted fAtty liver diseAse

Host‑microbe interaction depends mainly on chemical 
signals. In the following discussion, we will describe how 
microbial metabolites affect hosts and contribute to the 
development of MAFLD. We will focus on three groups of 
metabolites involved in MAFLD pathogenesis [33]: SCFAs, 
secondary bile acids, and tryptophan metabolites.

Short‑chain fatty acids and metabolic‑associated fatty 
liver disease

SCFAs are fermentation products derived from gut 
microbes. Acetate, propionate, and butyrate are the dominant 
SCFAs in the human gut, with their molar ratio in the colon 
and feces at approximately 3:1:1 [34]. SCFAs are known 
to affect host physiology [35]. These SCFAs, especially 
butyrate, can be used by human colonocytes as a major 
energy source. They are sensed by various nutrient‑sensing 
G‑protein coupled receptors, collectively known as free fatty 
acid (FFA) receptors, including FFA2, FFA3, GPR109a, and 
OLFR78 [36]. Signaling through these receptors can affect 
immune function [37], the nervous system [33], adipose tissue, 
and the endocrine system [38]. In the intestine, SCFAs usually 
help to improve intestinal barrier function and suppress 
inflammation.

Bacterial species vary in the fermentative pathways they 
adopt and the final product produced; therefore, change 

in microbiota composition will alter SCFAs produced by 
the community. Bacteria may adopt different fermentation 
pathways and produce different SCFAs, depending on 
environmental conditions such as substrate availability, pH, 
and co‑inhabiting microbes. Some bacterial species mainly 
produce one product, while others may vary their choice. 
SCFA producers have been reviewed elsewhere [11‑14]. We 
summarize this information and present it in Table 1.

Butyrate and intestinal barrier function
Among SCFAs, butyrate has more roles in physiological 

modulation than propionate and acetate [39]. Butyrate can help 
to restore gut microbiota. The administration of sodium butyrate 
restored bleomycin‑induced changes in fecal microbiota in 
mice [40]. Butyrate also helps to maintain intestinal barrier 
function. It has been shown to facilitate the assembly of tight 
junctions [41] and increase trans‑epithelial electrical resistance 
in Caco‑2 cells [42]. Butyrate can improve mucus barrier 
function. Butyrate and propionate increased MUC2 expression 
in human goblet cell‑like LS174T cells [43] and mucin 
production in the mouse model [44]. Butyrate was shown to 
decrease pro‑inflammatory and increase anti‑inflammatory 
cytokines in the collagen‑induced arthritis mouse model [45]. 
Butyrate supplementation reduced intestinal inflammation in 
Citrobacter rodentium‑infected mice [46] and the pancreatitis 
rat model [47]. Butyrate concentration generally decreases 
in MAFLD conditions. Among the bacterial genera affected 
by MAFLD, butyrate‑producing genera Eubacterium, 
Coprococcus, Roseburia, and Faecalibacterium decrease in 
relative abundance [Table 1].

Propionate and intestinal barrier function
Propionate modulates gut microbiota, intestinal barrier 

function, and immune response like butyrate. Oral or rectal 
administration of propionate in rats altered the intestinal 
microbiota, increased SCFA production, improved intestinal 
barrier function, and reduced inflammation [48]. Sodium 
propionate administration restored gut microbiota dysbiosis 
and SCFA production in HFD‑fed mice [15]. However, 
propionate supplementation did not alleviate this disease in 
a high‑fructose‑induced steatosis and gut dysbiosis mouse 
model [49]. Propionate can strengthen tight junction barrier 
integrity in Caco‑2 cells [42,50]. Propionate administration 
attenuated intestinal epithelial barrier dysfunction, restored 
mucus production, altered gut microbiota dysbiosis, and 
reduced intestinal inflammation in mice with alcoholic‑
related liver disease [51]. Among the bacterial genera affected 
by MAFLD, most Lachnospiraceae propionate producers 
decrease, and Akkermansia increases, while Bacteroidota 
producers and Propionibacterium have inconsistent 
results [Table 1].

Bile acids and metabolic‑associated fatty liver disease
Bile acids are a group of structurally similar molecules. 

MAFLD patients generally have altered bile acid profile, 
which has been proposed to be used as biomarkers for 
the disease [52]. Bile acids can modulate gut microbiota, 
and in reverse, bile acid composition is affected by gut 
microbiota [53]. They are produced as primary bile acids 
and transformed into secondary bile acids by gut microbes. 
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About 95% of these bile acids are reabsorbed into the portal 
circulation and can affect host physiology.

The primary bile acids, synthesized and conjugated 
to glycine or taurine in the hepatocyte, include cholic 
acid (CA), chenodeoxycholic acid (CDCA), and 
ursodeoxycholic acid (UDCA). Gut bacteria act on bile 
acids through a two‑staged transformation [54]. They 
use bacterial bile salt hydrolases to de‑conjugate glycine 
or taurine and release free CA and CDCA. Bacterial 
bile salt hydrolases are found in all major lineages of 
gut bacteria [55], as Bacteroides and Lactobacillus are 
considered the leading bile salt hydrolase producers in the 
human gut [56,57].

Bacterial hydroxysteroid dehydrogenase will further 
convert CA and CDCA to deoxycholic acid (DCA) and 
lithocholic acid, respectively. Bacterial species equipped with 
hydroxysteroid dehydrogenase are much more limited. It 
was estimated that only < 1% of total gut bacteria have the 
7α‑dehydroxylating bai gene cluster, based on analysis of 
metagenomic and metatranscriptomic data [58]. Since not all 
the gut microbes have these enzymes, the composition of gut 
microbial community will directly affect bile acid composition. 
Bacterial hydroxysteroid dehydrogenase has been reported in 
Eubacterium, Clostridium, Collinsella [59], Eggerthella [60] 
and Ruminococcus [61].

Many gut bacteria are susceptible to bile acids. Different 
bile acid molecules vary in their spectrum and strength 
of inhibitory activities, consequently controlling the 
gut’s ecology and microbiota composition. For example, 
minimum inhibitory concentrations (MICs) of unconjugated 
bile acid against Staphylococcus aureus is 20 mM for CA 
and 1 mM for DCA, and MICs for tested conjugated bile 
acids are over 200 mM [62]. Tian et al. demonstrated 
that bile acids have a differential inhibitory effect on gut 
microbes, and this differential inhibition varies among 
different bile acids [63].

Besides their roles in fat digestion and modulation of gut 
microbial composition, bile acids can also affect host energy 
management. Bile acids can be detected by the nuclear 
farnesoid X receptor (FXR) and the cell surface Takeda G 
protein‑coupled receptor 5 (TGR5), and are associated with 
the regulation of glucose, lipid, and energy metabolism [64]. 
FXR can affect hepatic fatty acid metabolism [65]. FXR 
deficiency in mice enhanced glucose clearance, but increased 
liver steatosis due to repression of β‑oxidation genes [66] and 
developed liver damage resembling NASH [67]. TGR5 has 
an immunomodulatory effect and can inhibit LPS‑induced 
cytokine production [68]. Gillard and Leclercq reviewed 
the effect of bile acids on MAFLD and concluded that 
the administration of bile acids (CA, DCA, UDCA) could 
alleviate MAFLD symptoms [69]. Bacteroides fragilis 
modulates bile acid synthesis using bile salt hydrolase, and 
through FXR signaling, this change led to excessive bile 
acid production [70]. This indicates the possibility of using 
bile‑metabolizing bacteria to modulate bile acid composition, 
which has been proposed as a potential therapeutic approach 
for MAFLD [69].

Tryptophan metabolites
Tryptophan is an essential amino acid for humans commonly 

found in everyday diets. Recently the roles of tryptophan 
metabolites in disease development have been reported in 
various diseases, including MAFLD [71], dermatological 
diseases [72], neurodegenerative diseases [73] and kidney 
diseases [74]. Tryptophan can be metabolized through 
the following pathways in the human gut: the kynurenine 
pathway (90%–95% of tryptophan metabolism), the serotonin/
melatonin pathway (1%–2%), and indole pathway (5%) [71].

Gut microbes are known to produce kynurenine and 
kynurenine derivatives [75]. Fecal samples of NASH patients 
have lower L‑tryptophan and higher kynurenine [76]. 
Germ‑free mice receiving gut microbes from MAFLD have 
increased kynurenine [76]. Supplementation of kynurenine 
in HFD‑fed mice led to body mass gain, liver steatosis, and 
hyperglycemia [77]. This effect is conducted by sensing 
kynurenine through aryl hydrocarbon receptors. These data 
support the view that microbially‑derived kynurenine may 
contribute to MAFLD development.

Serotonin can regulate hepatic energy metabolism and 
affect MAFLD development [78]. Blocking serotonin receptors 
can reduce hepatic steatosis and fibrosis in MAFLD mice [79]. 
Germ‑free mice have reduced blood serotonin, indicating that 
gut microbes can modulate host serotonin production [80]. 
Some bacteria have been shown the capability to produce 
serotonin [81]. However, whether this microbially‑produced 
serotonin can affect host physiology is unclear.

Gut microbes can metabolize tryptophan through the 
indole pathway to indole and its derivatives indole‑3‑acetate, 
indole‑3‑propionate (IPA), and skatole [82]. Interestingly, 
IPA stimulated the expression of tight junction proteins 
and exerted anti‑inflammatory and anti‑oxidant effects and 
has been proposed to be used as a therapeutic option for 
metabolic diseases, including MAFLD [83]. Bacterial taxa 
previously shown to be positively correlated to IPA production 
include species from Lactobacillus [84], Akkermansia 
and Clostridium [85], Allobaculum, Bifidobacterium, 
Lachnospiraceae, and Allobaculum [86]. However, only 
C. sporogenes has been experimentally validated for IPA 
production [87].

Other microbial metabolites
Metagenomic analysis has shown that patients with 

steatosis have dysregulated aromatic and branched‑chain 
amino acid metabolism [31], although more evidence is 
needed to clarify their importance in MAFLD pathogenesis. 
Tyrosine metabolite 3‑(4‑hydroxyphenyl) lactate has been 
found to be associated with liver steatosis and fibrosis [88]. 
Palmitic acid‑treated hepatocyte cell lines PH5CH8 and 
HepG2 showed typical features of steatosis, and differential 
changes in tyrosine and phenylalanine pathways, fatty acid 
metabolism, and bile acids [89]. MAFLD microbiota facilitated 
phenylalanine production in the MAFLD mouse model [90]. 
Chronic treatment with phenylacetic acid, a microbial product 
of aromatic amino acid metabolism triggered steatosis [31]. 
Elevated plasma concentrations of branched‑chain amino 
acids have been reported in MAFLD patients [91]. However, 
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it also positively correlated with insulin resistance and BCAA 
supplements were previously linked to a beneficial outcome in 
various liver diseases [92].

Association of trimethylamine‑N‑oxide (TMAO) to 
MAFLD has been noticed recently. Trimethylamine is 
produced by bacterial metabolism of choline or carnitine and 
can be further oxidized to TMAO in the liver. Individuals 
with histologically proven MAFLD have higher plasma 
TMAO [93]. TMAO has been linked to many MAFLD‑related 
diseases, such as obesity, diabetes, dyslipidemia, and 
hypertension [94]. However, a direct mechanistic link to 
MAFLD has yet to been established.

Bacterially‑derived ethanol is another potential cause 
of MAFLD. An alcohol‑producing Klebsiella pneumoniae 
HiAlc has been reported and is found to be associated with 
up to 60% of MAFLD patients in a Chinese cohort [95]. 
This strain can cause MAFLD in mice, as confirmed by FMT 
experiments. The mutant of this strain, which has reduced 
alcohol production, has less prominent hepatic damage [96]. 
Ethanol‑producing yeasts in the Pichia, Candida, and 
Galactomyces have been isolated from NASH patients and are 
suspected to be the causative agents [97]. Meijnikman et al. 
have shown that hepatic alcohol dehydrogenase could greatly 
reduce circulating ethanol and obscures the endogenous 
ethanol production [98].

Microbial modulation of lipid metabolism
MAFLD is characterized by aberrant metabolism and the 

accumulation of lipids. Gut microbes can act as a regulator of 
lipid metabolism in the intestine by regulating lipid digestion/
absorption and energy balance [99] and therefore has great 
potential in participating in MAFLD development through 
manipulating lipid metabolism.

Gut microbes affect hepatic lipid metabolism through 
several mechanisms. They can exert their control by 
modulating bile acid composition. These bile acids can, in 
turn, modulate host hepatic or systemic lipid and glucose 
metabolism [100,101]. They produce SCFAs and provide 
them to host as an alternative energy source. They can also 
affect cholesterol and steroid metabolism. Amino acid choline 
and carnitine can be metabolized to trimethylamine, which 
is further oxidized to trimethylamine N‑oxide in the liver, 
affecting cholesterol and sterol metabolism and increasing the 
risk of cardiovascular diseases [102].

Gut microbes can also regulate lipid metabolism by 
suppressing fasting‑induced adipocyte factor (Fiaf) in the 
intestinal epithelium [99]. This will reduce circulating 
lipoprotein lipase levels and enhance liver‑derived 
triacylglycerols storage in adipocytes [103]. Germ‑free 
mice have a 60% increase in body fat content after 
receiving gut microbiota from conventionally‑raised mice, 
due to suppression of Fiaf by gut microbes [104]. Gut 
microbes Lactobacillus rhamnosus [105] and Akkermansia 
muciniphila [106] have been shown to suppress Fiaf 
expression. Liver‑specific overexpression of lipoprotein lipase 
has been shown to attenuate lipid droplet accumulation in the 
liver and improve glucose metabolism in HFD‑fed mice [107]. 

Although gut microbes can apparently affect lipid metabolism, 
direct evidence showing gut microbes facilitate hepatic lipid 
accumulation through Fiaf is still waiting to be established.

Microbial modulators of metabolic‑associated fatty liver 
disease

Many bacterial species have shown properties that might 
be used to prevent or treat MAFLD [Table 2]. These potential 
microbial modulators include genera commonly used as 
probiotics, such as Lactobacillus and Bifidobacterium, as well 
as other gut inhabitants.

Lactobacillus isolates reported to alleviate MAFLD include 
L. reuteri [120], L. plantarum [116‑118], L. pentosus [119], 
L. rhamnosus [121], L. paracasei [114,115], L. gasseri [113], 
and Latilactobacillus sakei [122]. Generally, these isolates 
demonstrate the capability to reduce hepatic fat accumulation, 
suppress immune activation and improve intestinal barrier 
integrity. Bifidobacterium species also show great potential. 
Supplementation of B. adolescentis reduced HFD‑induced 
visceral fat accumulation, insulin sensitivity, and steatosis 
in Wistar rats [111]. B. animalis modulated gut microbiota, 
restored intestinal barrier function, and reduced LPS entry into 
the circulation and inflammation to alleviate HFD‑induced 
NAFLD in mice [112].

Certain “new generation probiotics” have been shown to 
have MAFLD‑alleviating effects. A. muciniphila can improve 
metabolic disorders, improving hepatic inflammation mainly 
by suppressing pro‑inflammatory immune responses [127]. 
The supplementation of Faecalibacterium prausnitzii in the 
NASH mouse improved glucose homeostasis, prevented 
hepatic lipid accumulation and liver damage, and restored 
damaged gut barrier functions [123,124]. Roseburia intestinalis 
is anti‑inflammatory and has been shown to increase 
anti‑inflammatory cytokine production [125] and maintain tight 
junction integrity during colitis [128]. A Roseburia species has 
been shown to alleviate the alcohol‑related fatty liver disease 
by reducing hepatic steatosis and inflammation, recovering 
gut barrier integrity, and restoring gut microbiota [110]. 
Supplementation of Clostridium butyricum improved 
HFD‑induced intestinal inflammation in rats, probably through 
its capability of butyrate production [47,126].

Bacteroides species have been proposed as probiotics in 
dealing with many diseases. No report on the application 
of Bacteroides species in dealing with MAFLD, despite the 
reduction in Bacteroides has been associated with MAFLD. 
However, the closely related Parabacteroides distasonis has 
recently been reported in mice to ameliorate hepatic fibrosis, 
potentially through modulating bile acid metabolism and 
pyroptosis in hepatocytes [129]. Consumption of butyrate 
or butyrate‑producing C. butyricum reduced intestinal injury 
and decreased the plasma levels of inflammatory cytokines, 
diamine oxidase, and LPS in rats [47].

A meta‑analysis on the efficacy of probiotic treatments 
in NAFLD shows improvement in liver function, decreases 
in blood lipid, glucose, and insulin levels, and reduction 
in hepatic steatosis, based on 21 clinical trials [130]. Thus, 
probiotic treatment may be a potentially useful tool in treating 
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MAFLD. However, so far evidence showing clinical efficacy 
in improving MAFLD is scarce, and more clinical trials on 
different populations are therefore urgently needed.

conclusion

The importance of gut microbes in MAFLD has been 
recognized. However, we usually consider the gut microbes 
in bulk and need to identify the specific role each bacterial 
species plays in disease development. The next generation 
(NGS) sequencing and bioinformation revolution enables us 
to monitor the changes in each bacterial species, giving us an 
excellent opportunity to dissect their respective contribution to 
host‑microbe interaction. Dietary supplementation of beneficial 
microbes or microbial metabolites to achieve desired bile 
acid or SCFA composition can be considered a promising 
MAFLD‑alleviating approach. The high diversity among gut 
microbes provides us with a plethora of candidate beneficial 
microbes, to be used as replacement parts to manipulate and 
fix host physiology and improve health.
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